Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61847
Title: 以增量式關聯分類方法分析海量資料
An Incremental Associative Classification Approach for Big Data Analytics
Authors: Hsin-Ting Chung
鍾欣廷
Advisor: 陳靜枝
Keyword: 海量資料,資料探勘,分類,關聯規則,增量式演算法,
Big Data,Data Mining,Classification,Association Rules,Incremental Algorithm,
Publication Year : 2013
Degree: 碩士
Abstract: 由於資訊科技以及網路的發展,讓大量的資料得以從眾多的來源快速地蒐集及儲存,海量資料近年來成為一個火紅的議題。企業組織可以利用海量資料獲取競爭優勢,例如:組織能透過分析海量資料以改善決策的品質。然而,管理與分析這些龐大且快速更新的資料,對組織而言是一項艱鉅的挑戰。
  與資料分析息息相關的議題為資料探勘技術,其中分類是一項普遍的資料探勘方法。分類為將資料物件依據某些條件歸類到事先制定好的類別之中的資料探勘方法。然而,海量資料的巨量、即時性及多樣性這三項特點,使得傳統的資料探勘方法不足以分析海量資料。因此,本研究提出一個增量式關聯分類的啟發式演算法,用來有效並有效率地分析海量資料。
  本研究所提出的關聯分類演算法並不同時使用所有的屬性去建置分類器,而是逐步增加屬性去改良分類器的正確性。並且此演算法可以篩選出具有鑑別力的屬性,優先使用這些具有鑑別力的屬性,以最小化建置分類器所需屬性之數量,顯著地縮減計算時間。此外,本研究所提出的關聯分類演算法能夠使用之前所產生的規則與新增的資料來更新分類器,以避免重複尋找已知的資訊。最後,本研究使用大量的網路入侵偵測資料來驗證此演算法的有效性和效率。
Big data has emerged as one of the most popular issues these days since the advance of IT and network technologies enable the massive data collection from many different sources. Organizations can derive competitive advantage from big data. For instance, they can improve the quality of the decision making by analyzing big data. However, big data creates huge challenges for organizations to manage and analyze such large and updated rapidly data.
  Closely connected to the big data issues is the development of data mining technique, and one of the most popular data mining tasks is the classification that deals with grouping data objects into predefined categories based on certain criteria. However, since the three characteristics of big data, volume, velocity and variety, big data has exceeded the capability of the conventional data mining approaches. Therefore, a heuristic incremental associative classification algorithm is proposed in this study to analyze big data effectively and efficiently.
  The associative classification algorithm proposed in this study builds a classifier by iterative steps, which adds some of attributes to improve the accuracy of the classifier each time, instead of using all the attributes at the same time. In addition, the proposed algorithm can identify and prioritize the discriminative attributes to minimize the number of attributes used, so it can reduce the computing time significantly. Moreover, the classifier can be updated based on the previous rules and the incremental data to avoid re-finding the existing information. The efficiency and the validity of the proposed algorithm are verified with a large volume of intrusion detection data set.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61847
Fulltext Rights: 有償授權
Appears in Collections:資訊管理學系

Files in This Item:
File SizeFormat 
ntu-102-1.pdf
  Restricted Access
1.03 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved