Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6181
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳永芳
dc.contributor.authorTong-Ming Wengen
dc.contributor.author翁桐敏zh_TW
dc.date.accessioned2021-05-16T16:22:33Z-
dc.date.available2015-07-26
dc.date.available2021-05-16T16:22:33Z-
dc.date.copyright2013-07-26
dc.date.issued2013
dc.date.submitted2013-07-22
dc.identifier.citationChapter 1
1. V. S. Letokhov, Sov. Phys. JETP 1968, 26, 835.
2. H. D. Li, S. F. Yu, S. P. Lau, and E. S. P. Leong, Appl. Phys. Lett. 2006, 89, 021110.
3. M. Anni, S. Lattante, T. Stomeo, R. Cingolani, G. Gigli, G. Barbarella, and L. Favaretto, Phys. Rev. B. 2004, 70, 195216
4. R. C. Polson, and Z. V. Vardeny, Appl. Phys. Lett. 2004, 85 1289–1291.
5. W. Guerin, N. Mercadier, F. Michaud, D. Brivio, L. S. Froufe-Perez, R. Carminati, V. Eremeev, A. Goetschy, S. E. Skipetrov, and R. Kaiser, J. Opt. 2010, 12, 024002.
6. S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G. C. Yi, Appl. Phys. Lett. 2004, 84, 3241-3243.
7. H. Zhu, C. X. Shan, J. Y. Zhang, Z. Z. Zhang, D. X. Zhao, B. H. Li, B. Yao, D. Z. Shen, X. W. Fan, Z. K. Tang, X. H. Huo, and K. L. Choy, Adv. Mater. 2010, 22, 1877-1881.
8. A. Tsukazaki, M. Kubota, A. Ohtomo, T. Onuma, K. Ohtani, H. Ohno, S. F. Chichibu, and M. Kawasaki, Jpn. J. Appl. Phys. 2005, 44, L643-L645.
9. S. Chu, M. Olmedo, Z. Yang, J. Kong, and J. Liu, Appl. Phys. Lett. 2008, 93, 181106.
10. C. Zhang, F. Zhang, T. Xia, N. Kumar, J. I. Hahm, J. Liu, Z. L. Wang, and J. Xu, Opt. Express 2009, 17, 7893-7900.
11. M. H. Huang, Science 2001, 292, 1897-1899.
12. D. J. Gargas, M. C. Moore, A. Ni, S. W. Chang, Z. Zhang, S.-L. Chuang, and P. Yang, ACS Nano 2010, 4, 3270-3276.
13. R. Chen, B. Ling, X. W. Sun, and H. D. Sun, Adv. Mater. 2011, 23, 2199-2204.
14. Y. T. Chen and Y. F. Chen, Opt. Express 2011, 19, 8728-8734.
15. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, Phys. Rev. Lett. 1999, 82, 2278-2281
16. C. W. Chen and Y. F. Chen, Appl. Phys. Lett. 2007, 90, 071104.
17. Y. Wu and P. T. Leung, Phys. Rev. A 1999, 60, 630-633.
18. T. J. Lin, H. L. Chen, Y. F. Chen, and S. Cheng, Appl. Phys. Lett. 2008, 93, 223903.
19. I. S. Grudinin, A. B. Matsko, and L. Maleki, Phys. Rev. Lett. 2009, 102, 043902.
Chapter 2
1. Y. Yu, M. Cardona, Fundamentals of Semiconductors, pp.348, published by springer, 1990.
2. Quirk, M.; Serda, J. Semiconductor Manufacturing Technology, Prentice Hall, 2000.
3. Xu, Y.; Sheng, K.; Li, C.; Shi, G. ACS Nano 2010, 4, 4324-4330.
4. H. K. Schroeder, Semiconductor Material and Device Characterization, published by John Willey & Sons, 1998, 624,
5. Chen Z.; Ren, W.; Gao, L.; Liu, B.; Pei, S., Cheng, H. M. Nat. Mater. 2011, 10, 424-428.
6. O. Dulub, L. A. Boatner, and U. Diebold, Surf. Sci. 519, 201 (2002)
7. Z. L. Wang, J. Phy. Condens. Matter 16, 829 (2004)
8. T. Kogure, and Y. Bando, J. Electron Microsc. 47, 7903 (1993)
9. Park, S. Ruoff, R. S. Nature Nanotech. 2009, 4, 217-224.
10. Seung J. C.; Fethullah G.; Ki K. K.; Eun S. K.; Gang H. H.; Soo M. K.; Hyeon J. S., Seon M. Y.; Jae Y. C.; Min H. P.; Cheol W. Y.; Didier P.; Young H. L.; Adv. Mater. 2009, 21, 2328-2333.
Chapter 3
1. Online resource, http://en.wikipedia.org/wiki/Scanning_electron_microscope.
2. D. McMullan, Scanning, 2006, 17, 175.
3. Online source, http://www4.nau.edu/microanalysis/Microprobe-SEM/Signals.html
4. S. Fatikow, “Nanostructuring and Nanobonding by EBID”. Automated nanohandling by Microrobts, 2007, Chapter 1.
5. K. Kanaya, S. Okayama, J. Appl. Phys. 1972, 5, 43
6. B. G. Yacobi and D. B. Holt, Cathodoluminescence microscopy of inorganic solids, Plenum Press, New York and London (1990)
7. A. Umar, S. H. Kim, Y. S. Lee, K. S. Nahm, and Y. B. Hahn, J. Cryst. Growth , 2005, 282, 131-136.
Chapter 4
Reference
1. V. S. Letokhov, Sov. Phys. JETP 1968, 26, 835.
2. B. Q. Sun, M. Gal, Q. Gao, H. H. Tan, C. Jagadish, T. Puzzer, L. Ouyang, and J. Zou, J. Appl. Phys. 2003, 93,5855.
3. F. Quochi, J. Opt. 2010, 12,024003.
4. W. Guerin, N. Mercadier, F. Michaud, D. Brivio, L. S. Froufe-Perez, R. Carminati, V. Eremeev, A. Goetschy, S. E. Skipetrov, and R. Kaiser, J. Opt. 2010, 12,024002.
5. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, Phys. Rev. Lett. 1999, 82, 2278-2281.
6. J. E. Shaw, P. N. Stavrinou, and T. D. Anthopoulos, Adv. Mater. 2013, 25, 552-558.
7. T. S. Kulmala, A. Colli, A. Fasoli, A. Lombardo, S. Haque, and A. C. Ferrari, ACS Nano 2011, 5, 6910–6915.
8. M. L. Lu, T. M. Weng, J. Y. Chen, Y. F. Chen, NPG Asia Mater. 2012, 4, e26.
9. M. Lin. Lu, C. Wei. Lai, H. Ju. Pan, C. T. Chen, P. T. Chou, and Y. F. Chen, Nano Letters 2013, DOI: 10.1021/nl3041367.
10. X. Fang, J. Yan, L. Hu, H. Liu, and P. S. Lee, Adv. Funct. Mater. 2010, 22, 1613-1622.
11. T. Zhai, M. Ye, L. Li, X. Fang, M. Liao, Y. Li, Y. Koide, Y. Bando, and D. Golberg, Adv. Mater. 2010, 22, 4530-4533 (2010).
12. S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G. C. Yi, Appl. Phys. Lett. 2004, 84, 3241-3243.
13. H. Zhu, C. X. Shan, J. Y. Zhang, Z. Z. Zhang, D. X. Zhao, B. H. Li, B. Yao, D. Z. Shen, X. W. Fan, Z. K. Tang, X. H. Huo, and K. L. Choy, Adv. Mater. 2010, 22, 1877-1881.
14. A. Tsukazaki, M. Kubota, A. Ohtomo, T. Onuma, K. Ohtani, H. Ohno, S. F. Chichibu, and M. Kawasaki, Jpn. J. Appl. Phys. 2005, 44, L643-L645.
15. S. Chu, M. Olmedo, Z. Yang, J. Kong, and J. Liu, Appl. Phys. Lett. 2008, 93, 181106.
16. C. Zhang, F. Zhang, T. Xia, N. Kumar, J. I. Hahm, J. Liu, Z. L. Wang, and J. Xu, Opt. Express 2009, 17, 7893-7900.
17. M. H. Huang, Science 2001, 292, 1897-1899.
18. D. J. Gargas, M. C. Moore, A. Ni, S. W. Chang, Z. Zhang, S.-L. Chuang, and P. Yang, ACS Nano 2010, 4, 3270-3276.
19. R. Chen, B. Ling, X. W. Sun, and H. D. Sun, Adv. Mater. 2011, 23, 2199-2204.
20. Y. T. Chen and Y. F. Chen, Opt. Express 2011, 19, 8728-8734.
21. C. W. Chen and Y. F. Chen, Appl. Phys. Lett. 2007, 90, 071104.
22. Y. Wu and P. T. Leung, Phys. Rev. A 1999, 60, 630-633.
23. T. J. Lin, H. L. Chen, Y. F. Chen, and S. Cheng, Appl. Phys. Lett. 2008, 93, 223903.
24. I. S. Grudinin, A. B. Matsko, and L. Maleki, Phys. Rev. Lett. 2009, 102, 043902.
25. A. Umar, S. H. Kim, Y. S. Lee, K. S. Nahm, and Y. B. Hahn, J. Cryst. Growth 2005, 282, 131-136.
26. M. L. Lu, H. Y. Lin, T. T. Chen, and Y. F. Chen, Appl. Phys. Lett. 2011, 99, 091106.
27. W. M. Kwok, Y. H. Leung, A. B. Djurišić, W. K. Chan, and D. L. Phillips, Appl. Phys. Lett. 2005, 87, 093108.
28. A. K. Bhowmik , Appl. Opt. 2000 , 39, 3071.
29. T. Nobis, E. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, Phys. Rev. Lett. 2004, 93, 103903.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6181-
dc.description.abstract本論文主要目的在於研究利用回音廊模態增強氧化鋅奈米柱的隨機雷射。為了探討其中的運作原理,我們研究了二氧化矽奈米球修飾氧化鋅奈米線的雷射特性。我們發現在二氧化矽奈米球的幫助下,放射光譜裡有數個半高寬小於0.3奈米的雷射尖峰,而隨機雷射的微分量子效率也增加了七倍。拿來做修飾的奈米球不但可以做為回音廊模態的共振腔、增強發光強度,也可以做為一個散射中心。透過我們元件的二維的陰極發光影像、圓形迴音廊模態的理論計算、不同大小氧化矽奈米球的使用,我們進一步地驗證了提出的理論。這樣獨特的雷射特性將可以利用在製作高效率的光電元件。zh_TW
dc.description.abstractWhispering-gallery-mode (WGM) resonance enhanced random laser action has been proposed and demonstrated. To illustrate the working principle, lasing characteristics of ZnO nanorods decorated with SiO2 nanospheres have been investigated. It is found that with the assistance of SiO2 nanospheres, the emission spectrum exhibits a very narrow background signal with few sharp lasing peaks and a very small full width at half maximum of less than 0.3 nm. The differential quantum efficiency (ηd) of random laser action can be greatly enhanced by up to 735 %. The decorated nanospheres not only enable to generate WGM resonance and enhance the emission intensity, but also can serve as scattering centers. Cathodoluminescence mapping images of nanorods decorated with nanospheres and theoretical calculation based on the spherical cavity were utilized to confirm our proposed mechanism. The unique lasing behavior shown here may open up a new approach for the creation of highly efficient optoelectronic devices.en
dc.description.provenanceMade available in DSpace on 2021-05-16T16:22:33Z (GMT). No. of bitstreams: 1
ntu-102-R00245003-1.pdf: 1450151 bytes, checksum: 3a8909aab5aadb472117fd1ab00d7223 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontentsChapter 1 Introduction……………………………… ……………………………………………1
Reference………………………………………………………...……………………...………6
Chapter 2 Background knowledge of experimental technique and studied nanomaterials……8
2.1 Theory of photoluminescence of semiconductors……………......……...…….……….…8
2.2 ZnO nanorods……………………….…………..….…….......................……...…...13
Reference……………………………………………………………………………....………16
Chapter 3 Experimental details, Theoretical background and Sample preparation……….17
3. 1 Scanning Electron Microscopy....................……...……...……...……...……...……...…17
3. 2 Cathodoluminescence.........................................................................................................24
3. 3 Photoluminescence arrangement……………....……...……...……...……...……....……25
3. 4 Time-resolved photoluminescence……….....……...……...……...……...……………..27
3. 5 Absorption Spectroscopy………………...……...……...….....……...……...……...……28
3. 6 Vapor-Soild (VS) Growth Mechanism of ZnO Nanorods…………...……..……...30
Reference………………………………………………………………...…………….....……31
Chapter 4 Enhancement of Random Laser Action Assisted by Whispering-Gallery-Mode Resonance…………………………………………………………………………………………...32
5. 1 Introduction..................................................................................................................32
5. 2 Experiment………………….…………...……...……...……...……...……...…….....…35
5. 3 Results and discussion…………………………...……...……...……...……...……........36
5. 4 Summary…………………………...……...……...……...……...……...……...……......43
Reference………………………………………………………………...…………….....……52
Chapter 5 Conclusion………………………………..........................................................……….55
dc.language.isoen
dc.subject雷射zh_TW
dc.subject光學共振腔zh_TW
dc.subject奈米材料zh_TW
dc.subject紫外光zh_TW
dc.title回音廊模態增強氧化鋅奈米柱的隨機雷射zh_TW
dc.titleEnhancement of Random Laser Action Assisted by Whispering-Gallery-Mode Resonanceen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林泰源,許芳琪
dc.subject.keyword雷射,紫外光,奈米材料,光學共振腔,zh_TW
dc.subject.keywordlasers, ultraviolet,nanomaterials,optical resonators,en
dc.relation.page55
dc.rights.note同意授權(全球公開)
dc.date.accepted2013-07-22
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用物理所zh_TW
顯示於系所單位:應用物理研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf1.42 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved