Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61756
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝宗霖(Tzong-Lin Shieh)
dc.contributor.authorSzu-Wei Chenen
dc.contributor.author陳思瑋zh_TW
dc.date.accessioned2021-06-16T13:12:00Z-
dc.date.available2018-08-06
dc.date.copyright2013-08-06
dc.date.issued2013
dc.date.submitted2013-07-30
dc.identifier.citation1. A. Kudo, “Photocatalyst Materials for Water Splitting,” Catalysis Surveys from Asia, 7, 31-38 (2003)
2. M. Matsuokaa, M. Kitanoa, M. Takeuchia, K. Tsujimarua, M. Anpoa, and J.M. Thomas, “Photocatalysis for New Energy Production: Recent Advances in Photocatalytic Water Splitting Reactions for Hydrogen Production,” Catalysis Today, 122, 51-61 (2007)
3. A. Fujishima, and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature, 238, 37-38 (1972)
4. A. Fujishima, and K. Honda, “Electrochemical Evidence for the Mechanism of the Primary Stage of Photosynthesis,” Bulletin of the Chemical Society of Japan, 44, 1148-1150 (1971)
5. A. Fujishima, K. Kohayakawa, and K. Honda, “Formation of Hydrogen Gas with an Electrochemical Photo-Cell,” Bulletin of the Chemical Society of Japan, 48, 1041-1042 (1975)
6. T. Watanabe, A. Fujishima, and K. Honda, “Photoelectrochemical Reactions at SrTiO3 Single-Crystal Electrode,” Bulletin of the Chemical Society of Japan, 49, 355-358 (1976)
7. R. van de Krol, and M. Gratzel, “Photoelectrochemical Hydrogen Production,” Electronic Materials: Science and Technology, 102, Springer, New York (2007)
8. A.J. Nozik, and R. Memming, “Physical Chemistry of Semiconductor-Liquid Interfaces,” Journal of Physical Chemistry, 100, 13061-13078 (1996)
9. W.H. Brattain, and G.G.B. Garrett, “Experiments on the Interfaces Between Germanium and an Electrolyte,” Bell System Technical Journal, 34, 129-176 (1955)
10. M.S. Wrighton, A.B. Eills, P.T. Wolczanski, D.L. Morse, H.B. Abrahamson, and D.S. Ginley, “Strontium Titanate Photoelectrodes. Efficient Photoassisted Electrolysis of Water at Zero Applied Potential,” Journal of the American Chemical Society, 98, 2774-2779 (1976)
11. J.G. Mavroides, J.A. Kafalas, and D.F. Kolesar, “Photoelectrolysis of Water in Cells with SrTiO3 Anodes,” Applied Physics Letters, 28, 241-243 (1976)
12. P.E. De Jongh, D. Vanmaekelbergh, and J.J. Kelly, “Photoelectrochemistry of Electrodeposited Cu2O,” Journal of the Electrochemical Society, 147, 486-489 (2000)
13. M. Hara, T. Kondo, M. Komoda, S. Ikeda, J.N. Kondo, K. Domen, M. Hara, K. Shinohara, and A. Tanaka, “Cu2O as a Photocatalyst for Overall Water Splitting under Visible Light Irradiation,” Chemical Communications, 3, 357-358 (1998)
14. H. Yoneyama, H. Sakamoto, and H. Tamura, “A Photo-Electrochemical Cell with Production of Hydrogen and Oxygen by a Cell Reaction,” Electrochimica Acta, 20, 341-345 (1975)
15. A.J. Nozik, “p-n Photoelectrolysis Cells,” Applied Physics Letters, 29, 150-153 (1976)
16. J.E. Turner, M. Hendewerk, and G.A. Somorjai, “The Photodissociation of Water by Doped Iron Oxide: The Unblased p/n Assembly,” Chemical Physics Letters, 105, 581-585 (1984)
17. H. Morisaki, T. Watanabe, M. Iwase, and K. Yazawa, ”Photoelectrolysis of Water with TiO2-Covered Solar-Cell Electrodes,” Applied Physics Letters, 29, 338-340 (1976)
18. M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, and N.S. Lewis, “Solar Water Splitting Cells,” Chemical Reviews, 110, 6446-6473 (2010)
19. O. Khaselev, and J.A. Turner, “A Monolithic Photovoltaic-Photoelectrochemical Device for Hydrogen Production via Water Splitting,” Science, 280, 425-427 (1998)
20. A.J. Nozik, “Photochemical Diodes,” Applied Physics Letters, 30, 567-569 (1977)
21. H. Mettee, J.W. Otvos, and M. Calvin, “Solar Induced Water Splitting with p/n Heterotype Photochemical Diodes: n-Fe2O3/p-GaP,” Solar Energy Materials, 4, 443-453 (1981)
22. A. Kudo, and Y. Miseki, “Heterogeneous Photocatalyst Materials for Water Splitting,” Chemical Society Reviews, 38, 253-278 (2009)
23. B.T. Chang, G. Campet, J. Claverie, and P. Hagenmullar, “Anomalous Visible Light Photoresponse of Polycrystalline SrTiO3 Anodes,” Solid State Communications, 43, 335-339 (1982)
24. P.A. Fleury, J.F. Scott, and J.M. Worlock, “Soft Phonon Modes and 110 oK Phase Transition in SrTiO3,” Physical Review Letters, 21, 16 (1968)
25. P.H.M. de Korte, L.G.J. de Haart, R.U.E. ‘t Lam, and G. Blasse, “The Sensitization of SrTiO3 Photoanodes for Visible Light Irradiation,” Solid State Communications, 38, 213-214 (1981)
26. K. Domen, S. Naito, M. Soma, T. Onishi, and K. Tamaru, “Photocatalytic Decomposition of Water Vapor on an NiO-SrTiO3 Catalyst,” Journal of the Chemical Society, Chemical Communications, 543-544 (1980)
27. K. Domen, S. Naito, T. Onishi, and K. Tamaru, “Photocatalytic Decomposition of Liquid Water on a NiO-SrTiO3 Catalyst,” Chemical Physics Letters, 92, 433-434 (1982)
28. K. Domen, S. Naito, T. Onishi, K. Tamaru, and M. Soma, “Study of the Photocatalytic Decomposition of Water Vapor over a Nickel(II) Oxide-Strontium Titanate (SrTiO3) Catalyst,” The Journal of Physical Chemistry, 86, 3657-3661 (1982)
29. K. Domen, A. Kudo, T. Onishi, N. Kosugi, and H. Kuroda, “Photocatalytic Decomposition of Water into Hydrogen and Oxygen over Nickel(II) Oxide-Strontium Titanate (SrTiO3) Powder. 1. Structure of the Catalysts,” The Journal of Physical Chemistry, 90, 292-295 (1986)
30. K. Domen, A. Kudo, and T. Onishi, “Mechanism of Photocatalytic Decomposition of Water into H2 and O2 over NiO-SrTiO3,” Journal of Catalysis, 102, 92-98 (1986)
31. Y. Wang, T. Yu, X. Chen, H. Zhang, S. Ouyang, Z. Li, J. Ye, and Z. Zou, “Enhancement of Photoelectric Conversion Properties of SrTiO3/α-Fe2O3 Heterojunction Photoanode,” Journal of Physics D-Applied Physics, 40, 3925-3930 (2007)
32. R. Konta, T. Ishii, H. Kato, and A. Kudo, “Photocatalytic Activities of Noble Metal Ion Doped SrTiO3 under Visible Light Irradiation,” The Journal of Physical Chemistry B, 108, 8992-8995 (2004)
33. D.F. Wang, J.H. Ye, T. Kako, and T. Kimura, “Photophysical and Photocatalytic Properties of SrTiO3 Doped with Cr Cations on Different Sites,” The Journal of Physical Chemistry B, 110, 15824-15830 (2006)
34. M. Miyauchi, M. Takashio, and H. Tobimatsu, “Photocatalytic Activity of SrTiO3 Codoped with Nitrogen and Lanthanum under Visible Light Illumination,” Langmuir, 20, 232-236 (2004)
35. T. Ishii, H. Kato, and A. Kudo, “H2 Evolution from an Aqueous Methanol Solution on SrTiO3 Photocatalysts Codoped with Chromium and Tantalum Ions under Visible Light Irradiation,” Journal of Photochemistry and Photobiology A: Chemistry, 163, 181-186 (2004)
36. D.F. Wang, T. Kako, and J.H. Ye, “New Series of Solid-Solution Semiconductors (AgNbO3)1-x(SrTiO3)x with Modulated Band Structure and Enhanced Visible-Light Photocatalytic Activity,” Journal of Physical Chemistry C, 113, 3785-3792 (2009)
37. H. Kato, H. Kobayashi, and A. Kudo, “Role of Ag+ in the Band Structures and Photocatalytic Properties of AgMO3 (M: Ta and Nb) with the Perovskite Structure,” Journal of Physical Chemistry B, 106, 12441-12447 (2002)
38. G. Li, T. Kako, D. Wang, Z. Zou, and J. Ye, “Enhanced Photocatalytic activity of AgNbO3 under Visible Light Irradiation,” Dalton Transactions, 2423-2427 (2009)
39. G. Li, Y. Bai, X. Liu, and W.F. Zhang, “Surface Photoelectric Properties of AgNbO3 Photocatalyst,” Journal of Physics D-Applied Physics, 42, (2009)
40. N. Li, M.K.H. Leung, D.Y.C. Leung, and K. Sumathy, “A Review and Recent Developments in Photocatalytic Water-Splitting Using TiO2 for Hydrogen Production,” Renewable and Sustainable Energy Reviews, 11, 401-425 (2007)
41. A.A. Nada, M.H. Barakat, H.A. Hamed, N.R. Mohamed, and T.N. Veziroglu, “Studies on the Photocatalytic Hydrogen Production Using Suspended Modified TiO2 Photocatalysts,” International Journal of Hydrogen Energy, 30, 687-691 (2005)
42. A. Koca, and M. Sahin, “Photocatalytic Hydrogen Production by Direct Sun Light from Sulfide/Sulfite Solution,” International Journal of Hydrogen Energy, 27, 363-367 (2002)
43. R. Abe, K. Sayama, K. Domen, and H. Arakawa, “A New Type of Water Splitting System Composed of Two Different TiO2 Photocatalysts (Anatase, Rutile) and a IO3-/I- Shuttle Redox Mediator,” Chemical Physics Letters, 344, 339-344 (2001)
44. K. Sayama, and H. Arakawa, “Significant Effect of Carbonate Addition on Stoichiometric Photodecomposition of Liquid Water into Hydrogen and Oxygen from Platinum-Titanium (IV) Oxide Suspension,” Journal of the Chemical Society, Chemical Communications, 150-152 (1992)
45. K. Sayama, and H. Arakawa, “Effect of Na2CO3 Addition on Photocatalytic Decomposition of Liquid Water over Various Semiconductor Catalysis,” Journal of Photochemistry and Photobiology, A: Chemistry, 77, 243-247 (1994)
46. W. Choi, A. Termin, and M.R. Hoffmann, “The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics,” The Journal of Physical Chemistry, 98, 13669-13679 (1994)
47. A.W. Xu, Y. Gao, and H.Q. Liu, “The Preparation, Characterization, and Their Photocatalytic Activities of Rare-Earth-Doped TiO2 Nanoparticles,” Journal of Catalysis, 207, 151-157 (2002)
48. D. Li, H. Haneda, N.K. Labhsetwar, S. Hishita, and N. Ohashi, “Visible-Light-Driven Photocatalysis on Fluorine-Doped TiO2 Powders by the Creation of Surface Oxygen Vacancies,” Chemical Physics Letters, 401, 579-584 (2005)
49. T. Umebayashi, T. Yamaki, H. Itoh, and K. Asai, “Band Gap Narrowing of Titanium Dioxide by Sulfur Doping,” Applied Physics Letters, 81, 454-456 (2002)
50. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides,” Science, 293, 269-271 (2001)
51. R. Abe, K. Sayama, and H. Arakawa, “Efficient Hydrogen Evolution from Aqueous Mixture of I- and Acetonitrile Using a Merocyanine Dye-Sensitized Pt/TiO2 Photocatalyst under Visible Light Irradiation,” Chemical Physics Letters, 362, 441-444 (2002)
52. M. Anpo, Y. Ichihashi, M. Takeuchi, and H. Yamashita, “Design of Unique Titanium Oxide Photocatalysts by an Advanced Metal Ion-Implantation Method and Photocatalytic Reactions under Visible Light Irradiation,” Research on Chemical Intermediates, 24, 143-149 (1998)
53. H.P. Maruska, and K. Ghosh, “A Study of Oxide-Based Heterostructure Photoelectrodes,” Solar Energy Materials, 1, 411-429 (1979)
54. K. Gruunathan, P. Maruthamuthu, and M.V.C. Sastri, “Photocatalytic Hydrogen Production by Dye-Sensitized Pt/SnO2 and Pt/SnO2/RuO2 in Aqueous Methyl Viologen Solution,” International Journal of Hydrogen Energy, 22, 57-62 (1997)
55. V. Keller, and F. Garin, “Photocatalytic Behavior of a New Composite Ternary System: WO3/SiC-TiO2. Effect of the Coupling of Semiconductors and Oxides in Photocatalytic Oxidation of Methylethylketone in the Gas Phase,” Catalysis Communications, 4, 377-383 (2003)
56. J. Zhang, J.H. Banq, C. Tanq, and P.V. Kamat, “Tailored TiO2-SrTiO3 Heterojunction Nanotube Arrays for Improved Photoelectrochemical Performance,” ACS Nano, 4, 387-395 (2010)
57. M. Anpo, and M. Takeuchi, “The Design and Development of Highly Reactive Titanium Oxide Photocatalysts Operating under Visible Light Irradiation,” Journal of Catalysis, 216, 505-516 (2003)
58. V. Subramanian, E.E. Wolf, and P.V. Kamat, “Catalysis with TiO2/Gold Nanocomposites. Effect of Metal Particle Size on the Fermi Level Equilibration,” Journal of American Chemical Society, 126, 4943-4950 (2004)
59. V. Subramanian, E.E. Wolf, and P.V. Kamat, “Green Emission to Probe Photoinduced Charging Events in ZnO-Au Nanoparticles. Charge Distribution and Fermi-Level Equilibration,” The Journal of Physical Chemistry B, 107, 7479-7485 (2003)
60. M. Jakob, H. Levanon, and P.V. Kamat, “Charge Distribution between UV-Irradiated TiO2 and Gold Nanoparticles: Determination of Shift in the Fermi Level,” Nano Letters, 3, 353-358 (2003)
61. G.R. Bamwenda, S. Tsubota, T. Nakamura, and M. Haruta, “Photoassisted Hydrogen Production from a Water-Ethanol Solution: a Comparison of Activities of AuTiO2 and PtTiO2,” Journal of Photochemistry and Photobiology, A: Chemistry, 89, 177-189 (1995)
62. S. Sakthivel, M.V. Shankar, M. Palanichamy, B. Arabindoo, D.W. Bahnemann, and V. Murugesan, “Enhancement of Photocatalytic Activity by Metal Deposition: Characterisation and Photonic Efficiency of Pt, Au and Pd Deposited on TiO2 Catalyst,” Water Research, 38, 3001-3008 (2004)
63. K.B. Dhanalakshmi, S. Latha, S. Anandan, and P. Maruthamuthu, “Dye Sensitized Hydrogen Evolution from Water,” International Journal of Hydrogen Energy, 26, 669-674 (2001)
64. N.L. Wu, and M.S. Lee, “Enhanced TiO2 Photocatalysis by Cu in Hydrogen Production from Aqueous Methanol Solution,” International Journal of Hydrogen Energy, 29, 1601-1605 (2004)
65. E.S. Bardos, H. Czili, and A. Horvath, “Photocatalytic Oxidation of Oxalic Acid Enhanced by Silver Deposition on a TiO2 Surface,” Journal of Photochemistry and Photobiology, A: Chemistry, 154, 195-201 (2003)
66. N.V. Burbure, P.A. Salvador, and G.S. Rohrer, “Influence of Dipolar Fields on the Photochemical Reactivity of Thin Titania Films on BaTiO3 Substrate,” Journal of American Chemical Society, 89, 2943-2945 (2006)
67. Y. Inoue, M. Okamura, and K. Sato, “A Thin-Film Semiconducting TiO2 Combined with Ferroelectrics for Photoassisted Water Decomposition,” Journal of Physical Chemistry, 89, 5184-5187 (1985)
68. Y. Inoue, K. Sato, and H. Miyama, “A Device Type Photocatalyst Using Oppositely Polarized Ferroelectric Substrates,” Chemical Physics Letters, 129, 79-81 (1986)
69. N.V. Burbure, P.A. Salvador, and G.S. Rohrer, “Photochemical Reactivity of Titania Films on BaTiO3 Substrates: Origin of Spatial Selectivity,” Chemistry of Materials, 22, 5823-5830 (2010)
70. N.V. Burbure, P.A. Salvador, and G.S. Rohrer, “Photochemical Reactivity of Titania Films on BaTiO3 Substrates: Influence of Titania Phase and Orientation,” Chemistry of Materials, 22, 5831-5837 (2010)
71. J.T. Davis, and E.K. Rideal, “Interfacial Phenomena,” Academic Press, (1963)
72. A.C. Pierre, “Introduction of Sol-Gel Processing,” (1998)
73. 陳慧英,黃定加,朱秦億,溶膠凝膠法在薄膜製備上之應用,化工技術,第七卷,第十一期,152, (1999)
74. J. Livage, and C. Sanchez, “Sol-Gel Chemistry,” Journal of Non-Crystalline Solids, 145, 11-19 (1992)
75. R.J.P. Corriu, and D. Leclercq, “Recent Developments of Molecular Chemistry for Sol-Gel Processes,” Angewandte Chemie-International Edition in English, 35, 1420-1436 (1996)
76. C. Sanchez, J. Livage, M. Henry, and F. Babonneau, “Chemical Modification of Alkoxide Precursors,” Journal of Non-Crystalline Solids, 100, 65-76 (1988)
77. Z.H. Du, T.S. Zhang, M.M. Zhu, and J. Ma, “Growth Mode of Sol-Gel Derived PLT Seeding Layers on Glass Substrates and Its Effect on Templating the Oriented Growth of PLZT Thin Films,” Journal of Applied Physics, 105, (2009)
78. K.D. Preston, and G.H. Haertling, “Comparison of Electrooptic Lead-Lanthanum Zirconate Titanate Films on Crystalline and Glass Substrates,” Applied Physics Letters, 60, 2831-2833 (1992)
79. H. Kozuka, and S. Takenaka, “Single-Step Deposition of Gel-Derived Lead Zirconate Titanate Films: Critical Thickness and Gel Film to Ceramic Film Conversion,” Journal of the American Ceramic Society, 85, 2696-2702 (2002)
80. Z.H. Du, T.S. Zhang, M.M. Zhu, and J. Ma, “Perovskite Crystallization Kinetics and Dielectric Properties of the PMN-PT Films Prepared by Polymer-Modified Sol-Gel Processing,” Journal of Materials Research, 24, 1576-1584 (2009)
81. Z.H. Du, T.S. Zhang, and J. Ma, “Effect of Polyvinylpyrrolidone on the Formation of Perovskite Phase and Rosette-Like Structure in Sol-Gel-Derived PLZT Films,” Journal of Materials Research, 22, 2195-2203 (2007)
82. M. Cardona, “Optical Properties and Band Structure of SrTiO3 and BaTiO3,” Physical Review, 140, (1965)
83. N.L.V. Carreno, J.H.G. Rangel, C.D. Pinheiro, E. Longo, E.R. Leite, J.A. Varela, C.E.M. Campos, and P.S. Pisani, “Structure Effects on the Optical Properties of Thin (PbLa)TiO3 Films,” Latin American Applied Research, 37, 171-176 (2007)
84. D. Reyes-Coronado, G. Rodriguez-Gattorno, M.E. Espinosa-Pesqueira, C. Cab, R. de Coss, and G. Oskam, “Phase-Pure TiO2 Nanoparticles: Anatase, Brookite and Rutile,” Nanotechnology, 19, (2008)
85. M.I. Stockman, “Nanoplasmonics: The Physics behind the Applications,” Physics Today, 64, 39 (2011)
86. W.L. Barnes, A. Dereux, and T.W. Ebbesen, “Surface Plasmon Subwavelength Optics,” Nature, 424, 824-830 (2003)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61756-
dc.description.abstract本研究的主旨在於探討鈣鈦礦氧化物薄膜所形成的層狀堆疊結構的半導體與鐵電特性對其光電流表現之影響。本研究中所使用的鈣鈦礦氧化物有:SrTiO3、AgNbO3以及(Pb0.86La0.14)TiO3 (簡稱為PLT),其中,SrTiO3與AgNbO3為光觸媒材料,而PLT則為晶種層(seeding layer)用以使SrTiO3與AgNbO3薄膜能夠於低溫(500 oC)形成穩定的結晶相。
本研究將能隙值較大(3.3 eV)的SrTiO3與能隙值較小(2.8 eV)的AgNbO3接合形成異質接面(heterojunction)以製備光電極,並將光電極應用於PEC (photoelectrochemical cell)裝置中的photoanode。異質接面乃是當兩不同能帶結構之半導體接合時,於兩者接面處會因為能帶結構的差異(band offset)而使光致激發的電子與電洞能夠快速分離,藉以提升材料的光電流表現。製備光電極的基材主要選用具備良好導電性以及高透光度的ITO導電玻璃,本研究利用溶膠-凝膠法以及旋轉塗佈法將三種鈣鈦礦氧化物薄膜堆疊於ITO上形成SrTiO3/AgNbO3/PLT/ITO的層狀結構,並以此層狀結構作為基礎模型,來與其他光電流量測結果進行比較。
本研究利用紫外光/可見光光譜儀(ultraviolet-visible spectrophotometer,UV-Vis)以及紫外光電子能譜儀(ultraviolet photoelectron spectroscopy,UPS)來鑑定SrTiO3、AgNbO3以及PLT的能帶結構,並且藉由電流-電壓曲線的量測來觀察SrTiO3/AgNbO3與AgNbO3/PLT兩異質接面的半導體特性。結果顯示,SrTiO3/AgNbO3界面呈現近似二極體(diode)的曲線,電子傾向由SrTiO3的導帶傳遞至AgNbO3的導帶,而AgNbO3/PLT界面則呈現歐姆接觸(Ohmic contact)的線性曲線,表示PLT薄膜由於厚度較薄(約20 nm)而存在著較多的缺陷,使得電子得以經由缺陷跳躍(hopping)傳遞至ITO。
除了半導體異質接面外,本研究尚利用另外兩種方法來提升SrTiO3/AgNbO3/PLT/ITO層狀堆疊結構的光電流表現。其一為貴金屬金的添加,本研究將金奈米顆粒添加於上述層狀堆疊結構中的不同位置,並藉由不同面入射的光來觀察並比較金奈米顆粒的添加對於層狀堆疊結構光電流表現之影響。實驗結果顯示,當光由SrTiO3面垂直射入時,金顆粒的存在對於層狀結構的光電流表現有著顯著的影響,由於金的費米能階位置較正(more positive),因此當金顆粒與半導體接合時,電子傾向由半導體的導帶傳遞至金顆粒上,使得金顆粒添加於PLT/ITO界面的層狀堆疊結構(SrTiO3/AgNbO3/PLT/Au/ITO)有著最佳的光電流表現。另一方面,當光由ITO面垂直射入時,金顆粒會因表面電漿(surface plasma)效應而造成光的散射,使得含有金顆粒的層狀堆疊結構的光電流表現較差。此外,本研究尚嘗試增加金顆粒的大小以觀察不同大小的金顆粒對於層狀堆疊結構光電流表現的影響,結果顯示,含有粒徑較大的金顆粒的層狀堆疊結構有著較佳的光電流表現,原因在於含有粒徑較大的金顆粒的層狀結構能降低電子於高介電PLT薄膜中傳遞的有效路徑,使得電子較容易由AgNbO3傳遞至ITO,提升光電流值。
第二種提升SrTiO3/AgNbO3/PLT/ITO層狀堆疊結構光電流表現的方法為極化鐵電晶種層PLT,藉以觀察不同PLT電偶極方向對於層狀堆疊結構光電流表現的影響。結果顯示,經極化後,PLT的電偶極方向(負電指向正電)指向AgNbO3薄膜的試片有著最佳的光電流表現。由於極化的影響,AgNbO3/PLT界面存在著正電荷,使得界面處AgNbO3的能帶產生向下翹曲(bend downward)的現象,此現象能加速電子由AgNbO3傳遞至ITO,故使光電流值有顯著的提升。此外,本研究尚將SrTiO3、AgNbO3以及PLT薄膜製備於已鍍有銀電極的PZT鐵電陶瓷基材上,形成SrTiO3/AgNbO3/PLT/Ag/PZT的層狀堆疊結構,藉由使PZT產生不同方向的電偶極來觀察極化方向與光電流表現的關係。結果顯示,PZT的電偶極方向指向層狀堆疊結構的試片有著最佳的光電流表現,原因與上述相同,然而,由於PZT有著較佳的極化量,故使極化後所造成的光電流值上升幅度較大。
zh_TW
dc.description.abstractThe goal of this study is to investigate photocatalytic semiconductor systems which are layered thin film composites built from perovskite oxide materials with characteristics such as small and large band gaps and/or ferroelectricity. In order to improve the efficiency of photocatalysis, semiconductor heterojunctions within the developed composites have been designed to possess electronic band offsets favoring the separation of photo-induced electron and hole (e-/h+) pairs. Furthermore, the remanent polarization of the ferroelectric component within the composites has been utilized to induce favorable band bending at the material interface, lowering the potential barrier for electron transfer. The band offsets and ferroelectric polarization could be considered as built-in electric fields; how they interact with photo-induced e-/h+ would greatly affect the photocatalytic properties of the composites. In this study, various perovskite oxide thin film materials – large band gap strontium titanate (SrTiO3), small band gap silver niobate (AgNbO3) and ferroelectric lead lanthanum titanate (PLT) – were combined to form layered thin film composites. The composites were then adopted as photoanodes in a photoelectrochemical cell and detailed characterization of their photocurrent response was carried out under different light irradiation and ferroelectric polarization conditions. Electronic band offsets at the material interface (i.e., heterojunction) were determined by ultraviolet-visible spectrophotometry and ultraviolet photoelectron spectroscopy. Electric field poling of the ferroelectric component was achieved by non-contact corona charging.
Our results have shown that the band offsets at the SrTiO3-AgNbO3 heterojunction were about 1.0 eV in conduction band edge and 0.4 eV in valence band edge, promoting the rapid separation of photo-induced charge carriers; i.e., the flow of e- from SrTiO3 to AgNbO3 and the flow of h+ from AgNbO3 to SrTiO3. It was found that ferroelectric PLT could be used as a seeding layer for the low-temperature (500 oC) growth of SrTiO3/AgNbO3 thin film composites on ITO/glass substrates, forming a layered structure of SrTiO3/AgNbO3/PLT/ITO. In addition, the photocurrent density of the composites could be increased by depositing gold nanoparticles at the PLT-ITO interface. When the polarization of the PLT layer was poled toward the AgNbO3 layer, the potential barrier associated with the flow of e- to the ITO electrode was reduced by favorable band bending created at the AgNbO3-PLT interface. This resulted in a significant increase in photocurrent density.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:12:00Z (GMT). No. of bitstreams: 1
ntu-102-R00527043-1.pdf: 6705855 bytes, checksum: 11d12cafdb3fb3f50967b2456fb1bdb6 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents致謝………………………………………………………………………………………I
摘要….………………………………………………………………………….…....III
Abstract………...……………………………………………………..V
目錄……………………………………………………………………………………VII
圖目錄…………………………………………………………………………………..X
表目錄………………………………………………………………………………..XVI
第一章 緒論………………………………………………………………………….....1
1.1 研究背景與動機…………………………………………………………………1
1.2 論文架構……………………………………………………………………..…..2
第二章 文獻回顧…………………………………………………………………….....3
2.1 光解水裝置與光觸媒材料…………………………………………………..…..3
2.1.1 PEC裝置的原理與設計…………………………………………………..…5
2.1.1.1 半導體與電解液的界面……………………………………………..…5
2.1.1.2 PEC裝置的改良設計………………………………………….……....10
2.1.2 光觸媒材料………………………………………………………….….….15
2.1.2.1 SrTiO3…………………………………………………………………..17
2.1.2.2 AgNbO3………………………………………………………………...21
2.2 提升材料光催化能力的方法………………………………….…………….....23
2.2.1 異質接面…………………………………………………….……………..27
2.2.2 貴金屬的添加………………………………………………………….…..29
2.2.3 鐵電材料之極化……………………………………………………….…..33
2.3 溶膠-凝膠法及旋轉塗佈法………………………………………………….…37
2.3.1 溶膠和凝膠之定義………………………………………………………...37
2.3.2 溶膠-凝膠法之基本原理…………………………………………………..38
2.3.3 旋轉塗佈法………………………………………………………………...41
第三章 實驗方法…………………………………………………………………...…42
3.1 含金奈米顆粒之層狀堆疊結構………..………………………………...…….44
3.1.1 溶膠配製…………………………………………………………….……..44
3.1.2 薄膜製備…………………………………………………………….……..47
3.2 含已極化的鐵電層之層狀堆疊結構……..……………………………………50
3.2.1 溶膠配製…………………………………………………………………...50
3.2.2 薄膜製備…………………………………………………………………...50
3.2.3 極化………………………………………………………………………...51
3.3 分析量測儀器…………………………………………………………………..54
3.3.1 結晶相與微結構鑑定……………………………………………………...54
3.3.2 能帶結構鑑定……………………………………………………………...54
3.3.3 光電流密度分析…………………………………………………………...55
3.3.4 表面元素分析…………………………………………………….……..…56
第四章 結果與討論………………………………………………………….………..57
4.1 含有金奈米顆粒之層狀堆疊結構……..………………………………………58
4.1.1 金顆粒的位置對光電流的影響(光由SrTiO3面垂直射入)………………59
4.1.1.1 結晶相與微結構鑑定………………………………….……………...59
4.1.1.2 能帶結構鑑定………………………………………………………....68
4.1.1.3 光電流密度分析………………………………………………………80
4.1.1.4 外加偏壓的影響……………………………………………………....83
4.1.2 金顆粒的位置對光電流的影響(光由ITO面垂直射入)…….……………85
4.1.2.1 光電流密度分析………………………………………………………86
4.1.3 金顆粒的大小對光電流的影響(光由SrTiO3面垂直射入)………………88
4.1.3.1 結晶相與微結構鑑定………………………………………………....88
4.1.3.2 光電流密度分析……………………………………………………..100
4.2 含已極化的鐵電層之層狀堆疊結構……….………………………………...103
4.2.1 PLT電偶極方向對層狀堆疊結構光電流的影響………………………...103
4.2.1.1 結晶相與微結構鑑定………………………………………………..103
4.2.1.2 光電流密度分析……………………………………………………..106
4.2.2 PZT電偶極方向對層狀堆疊結構光電流的影響………………………...111
4.2.2.1 結晶相鑑定…………………………………………………………..111
4.2.2.2 光電流密度分析……………………………………………………..112
第五章 結論………………………………………………………………………….115
5.1 研究成果……………………………………………………………………....115
5.2 未來研究方向………………………………………………………………....116
5.2.1 含有金顆粒之層狀堆疊結構………………….…………………………116
5.2.2 含有已極化的鐵電層之層狀堆疊結構……….…………………………116
5.2.3 產氫量的量測…………………………………………………………….117
5.2.4 PLT薄膜厚度的降低……………………………………………………...117
參考文獻……………………………………………………………………………...118
dc.language.isozh-TW
dc.subjectPLTzh_TW
dc.subject光電流zh_TW
dc.subject異質接面zh_TW
dc.subject金奈米顆粒zh_TW
dc.subject極化zh_TW
dc.subjectSrTiO3zh_TW
dc.subjectAgNbO3zh_TW
dc.subjectSrTiO3en
dc.subjectPolarizationen
dc.subjectGold nanoparticlesen
dc.subjectHeterojunctionen
dc.subjectPLTen
dc.subjectPhotocurrenten
dc.subjectAgNbO3en
dc.title鈣鈦礦氧化物薄膜層狀堆疊結構之半導體與鐵電特性對其光電流表現之影響zh_TW
dc.titlePhotocurrent Response of Layered Structures of Perovskite Oxide Thin Films with Semiconducting and Ferroelectric Propertiesen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳敏璋,薛景中,郭錦龍
dc.subject.keyword光電流,SrTiO3,AgNbO3,PLT,異質接面,金奈米顆粒,極化,zh_TW
dc.subject.keywordPhotocurrent,SrTiO3,AgNbO3,PLT,Heterojunction,Gold nanoparticles,Polarization,en
dc.relation.page131
dc.rights.note有償授權
dc.date.accepted2013-07-30
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
6.55 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved