請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6171完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳宜良 | |
| dc.contributor.author | Li-Ren Lin | en |
| dc.contributor.author | 林立人 | zh_TW |
| dc.date.accessioned | 2021-05-16T16:22:21Z | - |
| dc.date.available | 2013-07-26 | |
| dc.date.available | 2021-05-16T16:22:21Z | - |
| dc.date.copyright | 2013-07-26 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-23 | |
| dc.identifier.citation | [1] Weizhu Bao and Yongyong Cai. Ground states of two-component Bose-Einstein
condensates with an internal atomic Josephson junction. EAJAM, 1(1):49–81, 2011. [2] Weizhu Bao and Fong Yin Lim. Computing ground states of spin-1 Bose-Einstein condensates by the normalized gradient flow. SIAM J. Sci. Comput., 30(4):1925– 1948, 2008. [3] Weizhu Bao and Hanquan Wang. A mass and magnetization conservative and energy-diminishing numerical method for computing ground state of spin-1 Bose-Einstein condensates. SIAM J. Numer. Anal., 45(5):2177–2200, 2007. [4] Fabrice Bethuel and Xiaomin Zheng. Density of smooth functions between two manifolds in sobolev spaces. Journal of Functional Analysis, 80(1):60 – 75, 1988. [5] Jean Bourgain, Haim Brezis, and Petru Mironescu. Lifting in Sobolev spaces. J. Anal. Math., 80:37–86, 2000. [6] Daomin Cao, I-Liang Chern, and Jun-Cheng Wei. On ground state of spinor Bose-Einstein condensates. NoDEA Nonlinear Differential Equations Appl., 18(4):427–445, 2011. [7] R-H Chen, I-L Chern, and W-C Wang. Exploring ground states and excited states of spin-1 Bose-Einstein condensates by continuation methods. Journal of Computational Phyics, 2011. [8] David Gilbarg and Neil S. Trudinger. Elliptic partial differential equations of second order. Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. [9] Tin-Lun Ho. Spinor Bose Condensates in Optical Traps. Phys. Rev. Lett., 81(4):742–745, Jul 1998. [10] David Jacob, Lingxuan Shao, Vincent Corre, Tilman Zibold, Luigi De Sarlo, Emmanuel Mimoun, Jean Dalibard, and Fabrice Gerbier. Phase diagram of spin- 1 antiferromagnetic Bose-Einstein condensates. Phys. Rev. A, 86:061601, Dec 2012. [11] Yuki Kawaguchi and Masahito Ueda. Spinor Bose-Einstein condensates. Physics Reports, 520(5):253 – 381, 2012. [12] C. K. Law, H. Pu, and N. P. Bigelow. Quantum spins mixing in spinor Bose- Einstein condensates. Phys. Rev. Lett., 81(24):5257–5261, Dec 1998. [13] Elliott H. Lieb and Michael Loss. Analysis, volume 14 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, 2001. [14] Elliott H. Lieb, Robert Seiringer, and Jakob Yngvason. Bosons in a trap: A rigorous derivation of the gross-pitaevskii energy functional. Phys. Rev. A, 61:043602, 2000. [15] Fong Yin Lim and Weizhu Bao. Numerical methods for computing the ground state of spin-1 Bose-Einstein condensates in a uniform magnetic field. Phys. Rev. E, 78(6):066704, Dec 2008. [16] L. Lin and I. Chern. Proofs of some simplified characterizations of the ground states of spin-1 Bose-Einstein condensates. ArXiv e-prints, February 2011. [17] L. Lin and I. Chern. Bifurcation between 2-component and 3-component ground states of spin-1 Bose-Einstein condensates in uniform magnetic fields. ArXiv e-prints, February 2013. [18] Tetsuo Ohmi and Kazushige Machida. Bose-Einstein condensation with internal degrees of freedom in alkali atom gases. Journal of the Physical Society of Japan, 67(6):1822–1825, 1998. [19] D. M. Stamper-Kurn, M. R. Andrews, A. P. Chikkatur, S. Inouye, H.-J. Miesner, J. Stenger, and W. Ketterle. Optical confinement of a Bose-Einstein condensate. Phys. Rev. Lett., 80(10):2027–2030, Mar 1998. [20] Michael Struwe. Variational methods, volume 34 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. Springer-Verlag, Berlin, fourth edition, 2008. [21] S. Yi, O‥ . E. Mu‥stecaplıog˘lu, C. P. Sun, and L. You. Single-mode approximation in a spinor-1 atomic condensate. Phys. Rev. A, 66(1):011601, Jul 2002. [22] Wenxian Zhang, Su Yi, and Li You. Mean field ground state of a spin-1 condensate in a magnetic field. New Journal of Physics, 5(1):77, 2003. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6171 | - |
| dc.description.abstract | 自旋1玻色愛因斯坦凝聚是一類特殊的,含有三個分量函數的系統。通常以
$Psi=(psi_1,psi_0,psi_{-1})$ 表示。它的行為由一個能量泛函 $E[Psi]$ 及兩個限制條件所描述。這兩個限制分別是原子數守恆與磁化量守恆,也就是說 $int |Psi|^2$ 及 $int (|psi_1|^2-|psi_{-1}|^2)$ 是兩個固定的數。而所謂的基態即指在這兩個條件之下,使能量 $E$ 達到最小的狀態 $Psi$。要解釋這篇論文所討論的問題,首先我們還得指出,根據能量 $E$ 的表達式裡的某個參數的正負號,自旋1玻色愛因斯坦凝聚被分成兩類:順磁性與反磁性。這篇論文裡所討論的工作,其動機來自於下面兩個現象。 1. 任何順磁性系統中的基態,必定滿足下列形式 begin{align*} Psi = (gamma_1 psi,gamma_0 psi,gamma_{-1} psi), end{align*} 其中 $gamma_j$ 皆為常數,而 $psi$ 為函數。這個形式稱作單模近似。 2. 考慮外加一個均勻磁場的情形。若將磁場的強度由零慢慢增加,當強度超過某個特定的數值時,反磁性系統的基態會經歷一個從 $psi_0 equiv 0$ 到 $psi_0 ne 0$ 的分歧。 雖然這兩個現象很早就已經在數值模擬中被發現,但在我們的研究之前,還沒有一個真正嚴格的數學證明。這篇論文包含我們在 [16,17] 這兩篇論文裡的工作,它們分別給出了上面兩個現象的嚴格證明。比起兩篇原本的論文,在本文中我們盡可能把所有的細節都交待清楚。我們的證明方法主要是使用了下面這個原理:質量密度(也就是 $|psi_1|^2$, $|psi_0|^2$ 及 $|psi_{-1}|^2$)的重分配將必定導致動能的下降。這個原理可視為某個廣為人知的梯度的凸性不等式的簡單推廣。我們將會說明這個簡單的原理如何給出解決上面問題的一個統一的想法。 | zh_TW |
| dc.description.abstract | Spin-1 Bose-Einstein condensate (BEC) is a special three-component system, written as
$Psi=(psi_1,psi_0,psi_{-1})$. Its behavior is described by an energy functional $E[Psi]$ with two constraints: the conservation of the number of atoms and the conservation of total magnetization. That is $int |Psi|^2$ and $intlt(|psi_1|^2-|psi_{-1}|^2t)$ are fixed numbers. And a ground state is a minimizer of $E$ under the constraints. To explain what we do in this thesis, we remark that according to the sign of a specific parameter in the energy $E$, spin-1 BECs are classified into two groups: ferromagnetic ones and antiferromagnetic ones. The works in this thesis are motivated by the following two phenomena: 1. Any ground state of a ferromagnetic system is of the form begin{align*} Psi = (gamma_1 psi,gamma_0 psi,gamma_{-1} psi), end{align*} where $gamma_j$ are constants and $psi$ a function. This is called single-mode approximation. 2. When an external magnetic field is applied, the ground state of an antiferromagnetic system undergoes a bifurcation from $psi_0 equiv 0$ to $psi_0 ne 0$ as the strength of the magnetic field surpasses a critical value. Although these phenomena have been well-known from numerical simulations for quite a long time, there were no rigorous mathematical justifications before our investigations. In this thesis, our works [16,17] on their proofs are given, with more details. The proofs rely on a principle which says that a redistribution of the mass densities (i.e. $|psi_1|^2$, $|psi_0|^2$ and $|psi_{-1}|^2$) will decrease the kinetic energy. This principle can be regarded as a simple generalization of a well-known convexity inequality for gradients. We will show how this principle can give a rather unified approach toward our problems. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-16T16:22:21Z (GMT). No. of bitstreams: 1 ntu-102-D97221009-1.pdf: 1818231 bytes, checksum: 0d87372c12f3bd657aa0923089e59cc3 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 iii 摘要 v Abstract vii Contents viii 1 Introduction 1 1.1 Mathematical model of spin-1 BEC . . . . . . . . . . . 1 1.2 The motivations . . . . . . . . . . . . . . . . . . . 4 2 Preliminaries 7 2.1 A reduction of the model . . . . . . . . . . . . . . . 7 2.2 Fundamental properties .. . . . . . . . . . . . . . . 10 2.3 Mass redistribution . . . . . . . . . . . . . . . . . 13 3 The Simplified Characterizations 16 3.1 The single-mode approximation . . . . . . . . . . . . 16 3.2 The vanishing of u0 . . . . . . . . . . . . . . . . . 19 3.3 Some degenerate situations . . . . . . . . . . . . . 20 4 Some Further Properties 23 4.1 Continuity and monotonicity of Eg(M; q) . . . . . . . 23 4.1.1 Eg as a function of M . . . . . . . . . . . . . . . 23 4.1.2 Eg as a function of q . . . . . . . . . . . . . . . 27 4.2 u_{-1} is no larger than u1 . . . . . . . . . . . . 28 4.3 Exponential decay of ground states . . . . . . . . . 32 5 The Bifurcation Phenomenon 35 5.1 Proof of Claim 3 . . . . . . . . . . . . . . . . . . 37 5.2 What remains . . . . . . . . . . . . . . . . . . . . 41 5.2.1 Estimates of qc from the proof . . . . . . . . . . 41 5.2.2 The boundedness of qc with respect to M . . . . . . 42 6 Redistributional Perturbation in a Fixed Admissible Class 44 6.1 Inequality from redistributional perturbation . . . . 44 6.1.1 Comparison with previous results . . . . . . . . . 49 6.2 From the viewpoint of the GP system . . . . . . . . . 50 6.2.1 Validity of the equality of (6.6) . . . . . . . . . 51 6.2.2 Discussions on (6.4) . . . . . . . . . . . . . . . 53 7 Discussions of some Open Problems 56 7.1 Uniqueness . . . . . . . . . . . . . . . . . . . . . 56 7.2 Uniform convergence at boundary regimes . . . . . . . 58 7.3 Comparison of the decaying rates . . . . . . . . . . 59 8 Appendices 61 8.1 Convexity inequality for gradients . . . . . . . . . 61 8.2 Equivalence of the u-model and the psi-model . . . . 62 8.3 Complements to Section 2.2 . . . . . . . . . . . . . 66 8.3.1 Positivity of nonvanishing components . . . . . . . 66 8.3.2 Proof of Proposition 2.2 . . . . . . . . . . . . . 68 Bibliography 72 | |
| dc.language.iso | en | |
| dc.title | 質量重分配及其在自旋-1玻色-愛因斯坦凝聚基態上之應用 | zh_TW |
| dc.title | Mass Redistribution and Its Applications to the Ground States of Spin-1 Bose-Einstein Condensates | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 陳俊全,林太家,方永富,陳建隆 | |
| dc.subject.keyword | 自旋,旋量,玻色-愛因斯坦凝聚系統,薛丁格系統,單模近似,質量重分配,分歧, | zh_TW |
| dc.subject.keyword | spin-1,spinor,BEC system,Schrodinger system,single-mode approximation,mass redistribution,bifurcation, | en |
| dc.relation.page | 74 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2013-07-23 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf | 1.78 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
