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Abstract

Spin-1 Bose-Einstein condensate (BEC) is a special three-component system, writ-
ten as W = (1)1, 1, 10_1). Its behavior is described by an energy functional E[¥] with
two constraints: the conservation of the number of atoms and the conservation of total
magnetization. Thatis [ |¥|* and [ (]¢1]* — |¢)_1]?) are fixed numbers. And a ground
state is a minimizer of £ under the constraints. To explain the problems considered in
this thesis, we remark that according to the sign of a specific parameter in the energy F,
spin-1 BEC:s are classified into two groups: ferromagnetic ones and antiferromagnetic
ones. They exhibit rather different behaviors. The works in this thesis are motivated
by the following two phenomena.

1. Any ground state of a ferromagnetic system is of the form

U= (lewv ’Yo% 7—1¢)>

where ; are constants and ¢ a function. This is called single-mode approximation.
According to the name, this form was originally only used as a simplified assumption,
while from later studies it is found to be exactly the case for ferromagnetic ground
states.

2. When an external magnetic field is applied, the ground state of an antiferromagnetic
system undergoes a bifurcation from 1y = 0 to 1)y # 0 as the strength of the magnetic
field surpasses a critical value.

Although these phenomena have been well-known from numerical simulations for
quite a long time, there were no rigorous mathematical justifications before our inves-
tigations. In this thesis, our works [16, 17] on their proofs are given, with more details.
The proofs rely on a principle which says that a redistribution of the mass densities (i.e.
|11]2, |1bo|? and |¢p_1 |*) will decrease the kinetic energy. This principle can be regarded
as a simple generalization of a well-known convexity inequality for gradients. We will
show how this principle can give a rather unified approach toward our problems.
Keywords: spin-1, spinor, BEC system, Schrodinger system, single-mode approxima-

tion, mass redistribution, bifurcation
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Chapter 1

Introduction

When a Bose-Einstein condensate (BEC) of dilute atomic gas is confined by an optical
trap, all its hyperfine spin states can be active simultaneously. In this situation, a spin- f

BEC is described by a (2f + 1)-component order parameter

U= (g, g1, 0p),

where the components v/; are complex-valued functions in the mean-field theory. Since
the first realization of such spinor BECs in 1997 [19] (spin-1 BEC of ?*Na), their rich
structures have drawn great interest and a lot of researches.

This thesis focuses on some facts exhibited by the ground states of spin-1 BEC
which have been well-known from numerical simulations for a long time. The aim is to
provide rigorous mathematical justifications of them, based on a principle which says
that a redistribution of the mass densities between different components will decrease
the kinetic energy. Before further discussion, we shall first introduce the mathematical

model.

1.1 Mathematical model of spin-1 BEC

A spin-1 BEC, as mentioned above, is described by a three-component vector function
U = (t1,%0,%_1), where each 1); is a complex-valued function on R®. We leave
the specification of the suitable function space for ¥ to §2.1, although it should be

very clear from the energy functional given below. Also note that we consider W as



being independent of time since we will only be interested in ground states. For the
dynamical law, see e.g. [15].

The energy of the system is
ENV] = Epin[V] + Epot[V] + Eo[V] + Ev[U] + Egee[ V],

where'

Eunlt) = [ Y190
J
Eyal¥] = [ Via)|0f
Eo[¥] = /50|‘1”4
B[] = /ﬁ1|\I/*F\IJ]2
Bz ®) = [ ol = 101l + a(ln + i)
V(x) is a real-valued function, and Sy, 51, p, q are real constants. In the definition of

E1[¥], U is regarded as a column vector and W* is its conjugate transpose. F' stands

for the triple (F}, F,, F,) of 3 x 3 matrices given by

Thus
UV FV = (U F,U, U FU, U ).

The notation |¥| denotes the Euclidean length (3. [¢;|*)'/?, and similarly for [V4);]
and |[U*FU|.
Physically, V' represents a state-independent trap potential, the terms with coeffi-

cients 3y and (; describe the interactions between the atoms, p and ¢ are the linear

'Remark on notation. When the domain of an integration is not specified, it’s understood to
be R3. Also, the dummy variable  as well as the differential dz in integrals are almost never
written explicitly. Nevertheless, we shall sometimes retain the variable z for the trap potential
V. This convention seems better in some places.



and quadratic Zeeman effects induced by an external uniform magnetic field, and the
components of F' are called the spin-1 Pauli matrices.
Besides the energy, the system is described to have the following two conserved

quantities:
Number of atoms ~ N[¥] = / |W|?,
Total magnetization M[¥] = / ([ = |- ).

And a ground state is a minimizer of £ under fixed N' and M. By normalization, we
can assume N[¥] = 1. And M[V] = M for some constant M. Note that |[M[¥]| <
N[¥] for every state ¥, so we must have |M| < 1. Due to the symmetry of the roles
of ¥y and ¥_;, we will only consider 0 < M < 1. The general assumptions on the

parameters of ' are the following:

(A1) V € L (R?), and V (z) tends to infinity as |z| tends to infinity. Precisely?

loc

]%i_r&(élrgRV(x)) = 00.
Note that in particular V' is bounded from below.
(A2) Bo > [B1] > 0.
(A3) ¢ =>0.
(A4) V >0andp = 0.

We give some remarks for these assumptions.

1. (A2) indicates a repulsive nature of the system. (A1) will then guarantee that
V' (x) traps the system essentially in a localized region, which will be crucial in

some places, including the proof of the existence result.

2. I’'m not sure whether (A2) must be true in principle, but it holds for real systems

as far as I know. (For example spin-1 BEC of ?Na and 8"Rb.) Mathematically,

2We’ll write inf (and the like) also for ess inf.



the fact | 51| < [ is also helpful in the proof of existence when 3; < 0. For
By > 0, the assumption 31 < [ is in fact not used in this thesis. By the way,
the case Jy = (51 = 0 or only 3; = 0 can also be studied mathematically. We’ll
however not consider them since they exhibit no further difficulty but only result

in some degenerate situations not of much interest.

3. According to the sign of 3;, spin-1 BECs are classified into two groups: ferro-
magnetic ones for $; < 0, and antiferromagnetic ones for 3; > 0. The typical
examples are respectively 2*Na and 3’Rb. They show very different behaviors

from each other.

4. Physically, the values of p and ¢ can be tuned by modifying the applied magnetic
field. It’s also possible to make ¢ negative, but we do not consider this case in

this thesis.

5. Due to the conservations of N and M, ground states are not changed by shifting
the values of V' and p by any constants. Hence (A4) causes no loss of generality

for our purposes.

Note. The model of spin-1 BEC appeared very soon after the first realization. The ear-
liest papers being [9], [18] and [12]. As to the understanding of the model, I however
most benefited from [22] and various papers by Dr. Weizhu Bao and his collaborators,
for example [3], [2] and [15]. Besides them, the review article [11] is also a reference |
consulted from time to time. Our expression of the energy functional is mostly similar

to that given in [22], [15] and [11].

1.2 The motivations

The whole study is motivated by two phenomena, pertaining to ferromagnetic and

antiferromagnetic systems respectively.



1. For a ferromagnetic system, when there is no external magnetic field (i.e. ¢ = 0),

its ground state W obeys the single-mode approximation (SMA)

U = (e, 01, v-1%),

where each ; is a constant, and ¢} is a function independent of j.

2. For an antiferromagnetic system, as ¢ increases from zero, its ground state ¥

undergoes a bifurcation from )y = 0 to ¢y # 0 at a critical ¢. > 0.

The SMA, as the name indicates, was originally only regarded as an approximation,
which was used to simplify the study of spin-1 BEC. As later investigations showed,
it turns out to be exactly the case but not only an approximation for ferromagnetic
systems (and is in general not suited for antiferromagnetic systems).

These phenomena have been known from numerical simulations for a long time.
For clear declarations and discussions of them, see respectively [21] and [22, 15]. The
bifurcation phenomenon was recently also observed in experiments [10]. Nevertheless,
there seems to be no sound mathematical reasonings for the validity of these facts be-
fore. In theoretical discussions on the bifurcation, like in [22], the researchers usually
assume WV is a constant vector, which is of course not a satisfactory demonstration.

We will later first consider ¢ = 0. Due to the SMA, a ferromagnetic ground state
can be characterized as a one-component system. On the other hand, the antiferromag-
netic ground state has only two components since 1)y = 0. They will be referred to as
simplified characterizations in this thesis. Their proofs first appeared in our paper [16].
It’s interesting that, by using the mentioned redistribution method, they can be proved
in almost the same way.

On the other hand, the bifurcation phenomenon can also be deduced by using mass
redistribution, while a lot more technical details are involved. The most difficult part
is to prove that we do have 1)y = 0 for some q strictly larger than zero. The proof first
appeared in [17], where there are also many relevant discussions on the redistribution
method. I am recently also preparing a simplified version, which go straight to the

verification of the bifurcation phenomenon.

5



Note. The outline of the thesis is very clear from the contents. Moreover, I’ll use a few

words in the beginning of every chapter or section to indicate what we are going to do.



Chapter 2

Preliminaries

In this chapter we give some preliminaries which are essential for the discussions in
the rest of this thesis. In Section 2.1, we introduce a reduction which says that we can
simply consider (|11, [1o], [t)—1]) for our purposes. Many notations are also given in
the same section. In Section 2.2, the fundamental facts such as the existence of ground
state, the Euler-Lagrange system and its direct corollaries are given. In Section 2.3, the

idea of mass redistribution is introduced.

2.1 A reduction of the model

We shall write H! for H*(R3, C), and similarly for other function spaces. Let
B = {(1/117%71?71) ‘1/13- € H' N L2 N L* for each j} ,

where L?, is the V-weighted L? space. That is, a measurable function f belongs to L3,

if || f[|2. := [V (x)|f|? is finite. Note that L, is nothing but L? space with respect to
\%4

the (o-finite) measure V' (z)dz. By endowing B with the norm

19 =37 (1slln + sllg + 15l ) @)

J

B is a Banach space. Obviously, B is the appropriate space for our variational model.

Precisely, ground states are minimizers of the following problem:

min £ over {VeB|N[VY| =1 MU]=M}.



For our purposes, we can reduce this model on B to a model on B, where
B, = {(u1,uo,u—1) € B |u; >0 foreach j}.

We give the reduction in the following.

Given ¥ = (91,19, 1_1) € B, we have
Eyinl®] = > [Ve* > > V]l
J J
by the convexity inequality for gradients (Section 8.1). Moreover, let
,lvbj = |wj|€i9j7
then it’s easy to check that

B = [ 51{2|w0|2 [+ -2 + 20y [ ] cos (61 — 26 +6-1)]

(P - |w_1|2>2}.

Hence
Bil0] 2 [ 2P (0n] — sl + (ol = oo
where
i) ={ 1 00

And the equality holds if
cos (01 — 20p + 0_1) = —sgn(5y).
For other parts of the energy, we obviously have

Epor[¥] = Epot[ (|91, [0l [$-1])],
Eo[‘l’] - Eo[(|1/11|, |1/)0|» W)_ll)],
EZee[\IJ] = EZee[(|w1|7 |¢0|7 |¢—1|)]

(2.2)



We thus obtain

E[\Ij] > €[<|¢1|7 |¢0|7 |¢—1|)}7

where (remember that we have assumed p = 0)
Elu] = / { S (Va2 + V@)l + folul?
J

i [2ud s — sem(Br)us? 4+ (0 — 2, ] + gl + u%)}

foru = (u1,ug,u_1) € B,. Also, note that the conservations of N and M are actually
constraints on |¢;| and have nothing to do with the phases. These observations lead us

to replace the original variational problem by the following one:

min E[ul, (2.3)

ucA

where the admissible class
A={ueB,; |[Nu =1, Mul=M}.

The validity of using this reduced model is provided by Corollary 8.5, Corollary 8.6
and Corollary 8.8, of which we can say the last one is the only not totally trivial asser-
tion. We give careful examinations of them for the sake of being completely rigorous.
For later discussions, one can indeed just forget the original model and focus on (2.3).

We introduce some more notations to conclude this section. Define

E, = min &[ul,

ucA

and
G={uecA|fu=E,}.

Thus F, is the ground-state energy, and G is the set of minimizers of (2.3), which
are exactly the objects to study. Since many assertions and discussions in this thesis

involve different values of M and g, in later parts of this thesis we will write A, (the



admissible class has nothing to do with ¢), Gy, and E (M, q) to specify their values
explicitly.
Similar to E, we will use Exin, Epots £o, €1, and Ez.. to denote the five parts of £.

Moreover, we will use H (u) to denote the integrand of £[u, i.e.

Elu] = /H(u).

Hyin, Hpor, etc. are similarly defined for the corresponding parts.

2.2 Fundamental properties

In some aspects our three-component system can be regarded as a generalization of
the one-component system studied in [14]. The fundamental properties about the one-
component model hold and can be proved similarly for our model. (The uniqueness
is however a remarkable exception. See Remark 2.2 below. Detailed discussions are

given in §7.1.) We summarize them in the following.

Theorem 2.1. G # (). u € G is at least of class C*, and satisfies the Euler-Lagrange

system
(14 Nur = Ly +261 [ug(ur — sgn(Br)u_r)+ur (uf — u? )] +qu (2.4a)
pug = Lug + 2B1uo(uy — s(Br)u_1)? (2.4b)

(1 = Nu—y = Lu 426 [ug(uy = sgn(Br)u) +uy(u? ) —ui)| +qu_y (24c)

in the sense of distribution, where L = —A +V + 25|u 2, and )\ and 1 are the La-

grange multipliers induced by the constraints N'[u] = 1 and M[u] = M respectively.

Moreover, for each uj, either u; = 0 or u; > 0 on all of R3.

The existence result can be proved by the standard direct method in the calculus
of variations, in which one tries to show that a minimizing sequence in A has a subse-
quence which weakly converges to an element in G. The only difference from a typical
situation is that here the system is on the whole space but not a bounded domain. As

a result, we do not have compact embedding H' < L? to guarantee that the weak

10



limit is still in A. Instead, we should use the assumption (A1), which implies that, in
some sense, most part of u is really contained in bounded domains, on which compact
embedding applies. A precise argument can be given almost the same as in Lemma
A.2 of [14]. (See also [1, 6].) Nevertheless, besides the conclusion of existence, some
observations from its proof will also be needed later. We give them in Proposition 2.2
below. For convenience we give the proof in Section 8.3. The most important point
is that we actually have strong convergence but not only weak convergence for the ex-
tracted subsequence of the minimizing sequence. This holds for our model since the

norm of B is bounded by a constant multiple of the energy functional.
Proposition 2.2. Let {u"} be a sequence in B. Suppose
N[u"] =1, Mu"| = M,

and E[u"] is uniformly bounded in n, then {u"} has a subsequence {u™*)}% | con-

verging weakly to some u™ € A, which satisfies

E[u™] < liminf E[u"®).

k—o0
If we assume further that £[u"] — E,, then u>* € G, and u"®) — u™ in the norm of

B.

The Euler-Lagrange system (2.4) is called a time-independent Gross-Pitaevskii sys-
tem (GP system). We remark that (2.4) is indeed valid not only in the sense of distri-
bution, but also when tested by elements in B. In fact, £, N and M are continuously
(Fréchet) differentiable as functionals from B into R, and (2.4), after multiplied by 2,

is exactly
pN'[u] + AM'[u] = E'[u].

We omit the verification of this fact. Once (2.4) is obtained, that u € G is continu-
ously differentiable follows standard regularity theorem (see e.g. [13], 10.2). And the
strict positivity of a nonvanishing component can be obtained by the strong maximum
principle. We give the proof of this last assertion also in Section 8.3. We shall usually

use this fact tacitly to avoid repeatedly referring to Theorem 2.1.

11



Corollary 2.3. Letu € G. If 0 < M < 1, thenu; # O for j =1, —1.

Proof. Since [(uf —u?,) = M > 0, uy # 0, and hence u; > 0. To prove u_; # 0,
assume otherwise, then (2.2¢) gives u2u; = 0, and so ug = 0. Thus among the three
components only u; # 0, which implies M = 1 from the constraint N'[u] = 1,

contradicting to our assumption. 0

The two-component ground state

Since we will investigate whether ug = 0 for u € G, it will be convenient to introduce

the two-component admissible class
A" ={u € Aluy=0}.
Note that for u € A™° the constraints are equivalent to

1+M 1-M
/’U/%: 5 and /U21:T.

Due to the following uniqueness result, there is no need to introduce the corresponding

class of minimizers G*°.

Theorem 2.4. There exists exactly one element z = (z1,0,2z_1) € A™° which mini-

mizes the energy € over A™°. Moreover, z is independent of the value of q € [0, 00).

Proof. The existence of z can be proved as for the general three-component case. On
the other hand, the fact that z is independent of ¢ follows the simple observation that
Ez.. equals the constant ¢ over A™°, and hence plays no role in the minimization. We
prove the uniqueness of z in the following.

Given u,v € A™. Let w € B, be defined by w} = (uj + v3)/2 for j = 1,0, -1,
then w is also in A"™°. Let D = (E[u] + £[v])/2 — E[w], then D = Dy, + D,, + D,

where

. . 2 12
ka _ Skm[u] -+ Ekm[v] _ gkm{W] _ / Z (|Vu]| + |VUJ| _ |ij|2> 7
1

2

12



which is nonnegative by the convexity inequality for gradients. Also,

En &,
D= BN g = 2 [ e — vy 20
and
D, = EMEN g = B [ -z, o et) 20

as are easily checked. Now assume, moreover, u and v both minimize £ over A™°,
then we must have Dy;,, = D, = D, = 0. Otherwise we get the contradiction
Elw] < (E[u] + £[v])/2. From D,, = 0 and Ds; = 0 we then conclude that u = v.

This proves the uniqueness of z. ]

Remark 2.1. Let u € G. The assertion ug = 0 is obviously equivalent to u = z.
We will show in Section 3.2 that z € G when ¢ = 0. As a corollary, the assertions in

Theorem 2.1 for elements in G also apply to z.

Remark 2.2. The convexity argument used to prove the uniqueness of z is standard.
The idea however fails for general G, due to the term H;(u). Although the unique-
ness will not be needed essentially, the lack of it still causes troubles in some of our

presentations. See Section 7.1 for more discussions on the uniqueness problem.

2.3 Mass redistribution

Let f = (fi, fo, ..., f) be an n-tuple of real-valued function in H'(R?), and let g =

|f|. The convexity inequality for gradients (Section 8.1) says
Vgl* <> IV
k

This fact has a simple while interesting generalization, when fZ, ..., 2 do not sum to
a single ¢2, but are distributed into multiple parts. To be precise, we give the following

definition.

13



Definition 2.1. Let f be as above, and let g = (g1, 92, - - -, gm) be an m-tuple of non-
negative functions. We say g is a mass redistribution of f if
9i = anfi +awfi + - +awnf;

g5 = ao fi + agafi + -+ + agn f?

2 2 2 2
Im = a'mlfl + am2f2 + amnfnv
where ag, (( =1,...,m; k =1,...,n) are nonnegative constants satisfying

m
Zaek =1 foreach k=1,...,n.
=1
That is, the coefficients of every column sum to 1.

Note that g = |f| is the only mass redistribution of f for m = 1. For general m, we

have the following result.
Proposition 2.5. Let g be a mass redistribution of f as in Definition 2.1, then we have

(1) |g| = |f], and

) Y IVael® < ST IV
Proof. The first assertion follows directly from the definition of mass redistribution.

For the second assertion, apply the convexity inequality for gradients to

1/2

9= (Wanf) + (Vamf)* + -+ Vamb))
and we get

Vo> < an|Vil* + aw Vs> + - 4 amam|V ol
The assertion is then obtained by summing over £ = 1,2, ..., m. ]

Remark 2.3. It should be clear why we use the word “redistribution”. On the other
hand, we will consider mass redistributions of u € A. The adjective “mass” is added
since the square of u; represents the mass density of the j-th component. Indeed, we
might as well use the term “square redistribution”. For convenience, however, we shall

later only say redistribution.
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Let’s write A, and Gy, here. Redistribution provides a simple and concrete way
to variate an element in A j; into another element, in the same space or in another A ;.
Indeed, if v is a redistribution of some u € A,;, then (1) of Proposition 2.5 implies
N[v] = 1, and one needs only to take care of the value of M[v]. Also, it’s easy to

compare E[v| with £[u]. Precisely, again from (1) we have
Epot[V] = Epot[u]  and & [v] = Elu], (2.5)
and from (2) we have
ErinlV] < Epinlul. (2.6)

As will be seen, these features make it easy to deduce some facts by using redistribu-
tion, which might otherwise be harder to obtain or need more elaboration.

The true merit of redistribution (in my opinion and for our purpose) exhibits in
Chapter 5, when we use it to obtain simple inequalities satisfied by ground states. To
be precise, let u € G, , for some M, ¢g. Then for any redistribution v of u in the same

class Ay, the fact £[u] < £[v] together with (2.5) imply
Erinlu] + E1[u] + Ezee[u] < Epin[V] + E1[V] + Ezee[V].
And (2.6) further implies
E1[u] + Ezee[u] < E1[v] + EzeelV]. 2.7)

Inequality (2.7) is particularly simple in that it involves only algebraic expressions

of u (v is practically also expressed in terms of u). This inequality, with suitable

constructions of v, will be sufficient for our proof of the bifurcation phenomenon.
The “best” way to gain sharper inequalities from redistribution will be the topic of

Section 6
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Chapter 3

The Simplified Characterizations

In this chapter we assume ¢ = 0, i.e. no external magnetic field. Thus
&= gkm + 5p0t + 5() + 51 and H = Hkm + Hpat + Hg + Hl.

In Section 3.1, we prove the SMA. And in Section 3.2, we consider the phenomenon
ug = 0 for u € G. A direct consequence of these results is that we can characterize
elements in G (and hence ground states) by systems with fewer (one or two) compo-
nents.

It’s interesting that, though these two phenomena look quite different, they can
be proved in essentially the same way. To explain the idea, let P denote the property
(SMA or ug = 0) to be justified. We will prove that, for every u € A, there corresponds

a redistribution u of u which also lies in A, such that
(a) u has the property P, and
(b) [ < Eu)

From (b), we have £[u] = £[u] provided u € G, from which we shall prove u is

exactly u, and hence u has the property P.

3.1 The single-mode approximation

In this section we assume (5, < 0. Let

Ay ={ueAju=(nff 7-1f) for some constants y; and some function f}.

16



The goal is to prove G C A;.

Now given any u € A. It’s easy to see that a redistribution of u in A; can be
expressed as ~y|u|, where v = (71,70, 7-1) is any triple of nonnegative constants sat-
isfying

7+ +2 =1
3.1
’Y% - 731 = M.

Let I' denote the set containing all such ~:
I':={(1,%,7-1) € R?" 7; > 0 for each j, ~ satisfies (3.1)}. (3.2)

Then for each « € T', since «y|u] is a redistribution of u, we have

Hpor(v|u]) = Hpot(u) and Hy(vy|u|) = Ho(u). (3.3)
Also,
Hyin(yu]) = |Vl <) [Vuy|? = Hin (w). (3.4)
J
On the other hand,
Hy(vy|ul) = B P(7)|ul,
where

P(y) =29 (1 +7-1)> + M.

Since f#; < 0, to make E[y|u|] < £[u] as possible as we can, we compute the max-
imum of P(v) for v € I'. It’s easy to check that there is a unique v* € I' such
that

max P(y) = P(y*) = 1.

Indeed the maximizer v* = (77, 75,77, ) is given by

N —

N =
N

We can now state our main theorem in this section.

17



Theorem 3.1. Assume ¢ =0 and (, < 0. If u € G, then u = ~*|u|.

Proof. By direct calculation we have

i)~ Hy(yful) =~ {Jul* — (e +w)? + (8 = 2,7}
(3.5

= —51(11,3 — 2U1U_1)2 Z 0.
By (3.3), (3.4) and (3.5), we have H(u) > H(~*|u|) for every u € A. And hence
u € G implies £[u] = E[y*|u|], and the equality holds if and only if the inequalities

in (3.4) and (3.5) are equalities. That is

> IV = [V[ul* =0, (3.6)

J

and
ug —2ugu_q = 0. 3.7
From (8.1), the equality (3.6) holds iff
ujVup —uVu; =0 for j # k. (3.8)

Since u is not identically zero (by the assumption A/[u] = 1), at least one component

of u is strictly positive everywhere. Assume u; > 0. Then from (3.8) we have

ERCH
U1 Uy

which implies ug and u_; are both constant multiples of u;. This shows u € A;.
That u must be v*|u| then follows either by (3.7) or by the fact that v* is the unique

maximizer of P over I'. The case uy > 0 or u_; > 0 can be proved similarly. U

Remark 3.1. Since |u| is bounded away from zero, we can also conclude from (3.6)

and Corollary 8.3 that u € A;.

The above theorem implies that searching for ground states of a ferromagnetic

spin-1 BEC can be reduced to an one-component minimization problem. Precisely, let

A*={jul|lueA}={feH'NL* NL}|f>0and [ f?=1}, (3.9)

18



and define £° : A®* — R by
el = [{I9rP+ve+ @+ s0r).
Then E[y* f] = E°[f] for f € A®. Also let

(G-}S:{feAs

&[] = min £[g]}.

geA®
Then if u € G, by Theorem 3.1 we have for every f € A®
Eflul] = Ey*[ul] < €[y f] = &E°[f].
Thus |u| € G*. Conversely if f € G*, then for every u € A we have
E fl=&°[f1 < &uf] = E[y*|u]] < E[u].
Hence v* f € G. We thus obtain the following one-component characterization of G.

Corollary 3.2. G = {~*f| f € G*}.

3.2 The vanishing of v

We assume 3; > 0 in this section. Recall the definition of A in Section 2.2 We want
to show that G C A™°. Now, similarly, for every u € A we want to find an appropriate
redistribution u = (u1,0,u_1) € A™ so that £[u] < E[u]. This time, however, the
assumption u € A"° alone doesn’t give us an obvious candidate of u. In view that
such u satisfies |[u| = |u| and hence NV'[u] = 1, as a guess, we try just imposing the

additional assumption that u also satisfies

~2 o~ 9 2
U — U = U —U_y,

to make M[u] = M automatically. This results in only one possibility, that is

2
U = u?—l—% for j=1,—1. (3.10)

It’s fortunate that it works, and we obtain our main theorem of this section as follows.
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Theorem 3.3. Assume 31 > 0 and M > 0, then u € G implies uy = 0.

Proof. For u € A, define u € A™° by (3.10). Again since u is a redistribution of u,

we have

H,(a) = Hp(u) and Hp(u) = Hy(u),

p
and
Hiin(0) < Hyip(u).
Also obviously
Hi(u) — Hy(Q) = 2B1u3(uy — u_y)? > 0.
Thus for u € G we have £[u] = £[u], and
ud(uy —u_1)* =0.

From this equality, we have either uy = 0 or u; = u_;. However, since we assume

M > 0, we cannot have u; = u_1, and hence uy = 0. ]

Remark 3.2. From Theorem 3.3 and Theorem 2.4, z is then the unique element in G
when 0 < M < 1 and ¢ = 0. From Theorem 3.4 below, z is also an element in G

when M = g = 0, but is not the unique one.

3.3 Some degenerate situations

The requirement M > 0 in Theorem 3.3 is necessary. In fact, for M = 0, ground
states are not unique, and uy = 0 corresponds to only one possible state. Moreover,

the SMA is again valid. Precisely, consider the following variational problem:

min/{|Vf|2+Vf2+ﬁof4}, (3.11)

feAs

where A® is defined by (3.9). We have the following characterization.
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Theorem 3.4. Assume 31 > 0 and M = 0, then
G= { (t, m,t)f’ 0<t<1/V2, f isaminimizerof(3.11)}.
Proof. Since M = 0, «v € I' (defined by (3.2)) implies
= (t, \/ﬁ,t) for some t € [0,1/\/5].
Now it’s easy to see that for any u € A and v € I" we have
H(ylul) = [V[ul[* + V]ul* + fo|ul*,

which is independent of . Obviously, H(v|u|) < H(u). It remains to show that
u € G (and hence E[vy|u|] = E[u]) implies u = ~|u| for some v € I". The proof is

almost the same as before and we omit it. O]

In contrast to the above result, the following corollary of Theorem 3.3 shows that

SMA is almost never the case when M > 0.

Corollary 3.5. Assume 51 > 0and 0 < M < 1, thenu € G N Ay implies u; and u_,

are constants. Moreover, such u exists only if V' is a constant.

Proof. By Theorem 3.3, the Euler-Lagrange system (2.4) is reduced to the following

two-component system:

(1 + Nuy = Lug + 2B8uy (uf — u? )
(3.12)
(p—Nu_y = Lu_y + 2B1u_1(u*; —uf),

where £ = —A + V + 25y (u? + u?,).
Since 0 < M < 1,forj=1,—1,u; > 0. Sou € A, implies u_; = Ku; for some

constant 0 < xk < 1. The system (3.12) then gives the following two equations for u;:

(+ Nup = —Auy + Vg + 26o(1 + KQ)u‘I’ + 261 (1 — Hz)uil)’, (A)

(= Nup = —Auy + Vg + 280(1 + 55w + 28, (k* — 1)us. (B)
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Now

! ((A) — (B)) = Ay = 261(1 — x%)ud.

2
B \
R VSN

In particular u; and u_; = kuy are constants. Hence Au; = 0. Then,

Since u; > 0, we get

S(A)+ (B)) = e = Vi + 260(1+ w2,

from which we get

Vo= — 2Bo(1 + K*)ui.

And hence V is also a constant.
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Chapter 4

Some Further Properties

Now that we have proved the two simplified characterizations in the situation without
external magnetic field, in the remaining of this thesis (except Chapter 8) we shall,
more or less, focus on the bifurcation phenomenon. For convenience, we will thus
only consider 3; > 0, despite the fact that some assertions hold also for 8; < 0. Also,
we will, of course, not always assume g = 0.

In this chapter, we use the notations A s, Gy, and E (M, q) to specify the values
of M and gq. We will establish some more results for elements in G,;,. Most of
the results are directly relevant to the proof of the bifurcation phenomenon. Some of
them however are just given for completeness or serving as illustrations of using the

redistribution technique.

4.1 Continuity and monotonicity of F,(, q)

In this section we prove that E, ()M, ¢) is continuous and increasing in each variable.

Since the two variables are of quite different natures, we treat them separately.

4.1.1 L, as a function of M

In this subsection we fix a ¢ € [0, 00) and consider E(-, ¢). The proof of continuity
will rely on the monotonicity, and hence we prove the latter first. For this we need the

following lemma.

Lemma 4.1. £ is bounded on Uy<pr<1Gy 4.
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Proof. The assertion is equivalent to say that we can choose for every M € [0, 1]
an f € A/, such that £[fM] is uniformly bounded in M. This is easy to do. For

example, let f be any nonnegative function in H* N L%, N L* such that [ f* = 1. Then

for each M € [0,1], let £ = ((LLX)12 1,0, (1:5M)1/2 F). We have £ € Ay, and
EfM] = / {|Vf|2 + V24 Boft + BIMPf + Q}v

which is bounded above by the finite number E[f!]. O

Proposition 4.2. E,(-, q) is strictly increasing on [0, 1].

Proof. Letu € Gy, We first consider 0 < M < 1. For small § > 0, let u(d) be the

redistribution of u defined by

;

u1(6)? = (1 — &)uj
uo(6)? = ud + dut + du?,

u_1(6)* = (1 —6)u?,.

Then u(d) € Aq—25)m. Since u(d) is a redistribution of u, Eyip[U(6)] < Exin[u]. One

can also check by direct computation that

Ezeelt] — Ezeelu(0)] = qé/(u% +u*,) >0,

and
Eu] — &u(d)] = Bﬁ/(ul - u_1)2[2u8 + dugu_q + §(ug — u_l)Q} >0. 4.1

Moreover, if § > 0, strict inequality holds in (4.1). To see this, for 0 < M < 1,
note that u;u_; > 0 (Corollary 2.3) and that (u; — u_1)? can not be identically zero
(otherwise M = 0). While for M = 1, only u; > 0, and the positivity of (4.1) is

obvious. Thus we obtain
Ey((1—20)M,q) < EMu(d)] < E[u] = E,(M, q)
for each small § > 0, which shows E(-, ¢) is strictly increasing on (0, 1].
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It remains to show that E,(-, ¢) is strictly increasing at 0. Let { M, } be a sequence
in (0, 1) such that M,, — 0". And let u™ € Gy, , for each n. By Lemma 4.1, £[u"] is
uniformly bounded, and hence Lemma 2.2 implies there is a subsequence {u™*} of

{u"} such that u™® — u*> weakly in B for some u™ € A,. Moreover,

< %] < Tim i n(B)] — i _ ‘
E;0,q9) < &[u ]_hlglllolgfé'[u ] h}ggngg(Mn(k),q) 0<1]13[f§1Eg(M,q)

The last equality is due to the just proved monotonicity of E,(-,¢) on (0,1]. Thus
E,0,q) < E,(M,q) for every M € (0, 1]. To see why strict inequality must hold, as-
sume E,(0, q) = E,(M, q) for some M > 0. Then since E,(-, ¢) is strictly increasing

on (0, 1], we have E (M /2,q) < E4(0, ¢), a contradiction. O
Proposition 4.3. E,(-, q) is continuous on [0, 1].

Proof. The ideas of proving the left continuity and the right continuity are different.
We first prove the right continuity. Let u € G, for some 0 < M < 1. For small

9 >0, let u(9) be the redistribution of u defined by

(

u1(6)? = u? + dul + du?,

w(8)? = (1 - )3

u_1(6)* = (1 —6)u?,.

Let’s use M; to denote M[u(d)]. Then Ms = M + 6 [(uj + 2u? ;). Since M < 1, ug
and u_; cannot both vanish, and hence Ms > M for § > 0. Obviously Ms — M™ as

d — 0. Now since E,(-, ¢) is strictly increasing, we have
0 < Ey(Ms,q) — E,(M, q) 4.2)

for 6 > 0. On the other hand, since u € G, while u(d) need not lie in G, ,, we

have E,(Ms, q) — E,(M, q) < E[u(d)] — E[u]. Thus

Ey(Ms, q) = Eg(M, q) < (&:[u(0)] — & fu]) + (Ezce[u(d)] = Ezeelu])  (4.3)
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from (2.5) and (2.6). It’s easy to check that the right-hand side of (4.3) tends to zero as

0 — 0T, and hence we obtain

lim sup(E,(Ms,q) — E4(M, q)) <O.

50+
This together with (4.2) imply the right continuity of £,(-,¢) on [0, 1).

For the left-continuity on (0, 1], we prove by contradiction. Let M € (0,1]. As-
sume there is a sequence {M,, } in (0, 1) such that M, — M ~, and E,(M,, q) doesn’t
converge to E (M, q). By choosing a suitable subsequence, we can assume without

loss of generality that the sequence { M, } itself satisfies
E,M,q) — E,(M,,q) >¢ foreach n, forsome ¢ > 0.

Now for each n choose one u” € Gy, ,. Lemma 2.2 implies that there is a subse-

quence {u™®}2  such that u"*) — u* for some u™ € A,;. Moreover, we have
E,(M,q) < £[u] < liminf E[uw®] = lim inf (Mo q,q) < Fy(M,q) — <,

a contradiction. O
Proposition 4.3 implies the following approximation result.

Corollary 4.4. For any M € [0,1], we can find a sequence 0" € Gy, , such that
M, € [0,1], M,, = M, M,, # M for each n, and u™ — u* in the norm of B for some

u*® e GM,q-

Proof. Let { M, } be a sequence in [0, 1] such that M,, — M and M,, # M for each n.
Then let u™ € Gy, , for each n. By definition we have AV [u”] = 1 and M[u"] — M.
Since £[u"] = E,(M,, q), by continuity of E,(-,q) we also have E[u”| — E,(M, q).
Thus by Lemma 2.2, {u"} has a subsequence {u™®}*  such that u"®) — u*>
strongly in B for some u® € G,;,. The sequence u"* ¢ G,y g thus satisfies

the assertion to be proved. 0

26



Remark 4.1. Suppose we have uniqueness of element in G,y ,, and let u™ be the
unique element in Gy, ,. Then Corollary 4.4 simply says the map M +— u™ is contin-
uous from [0, 1] into B. In particular, let’s here write z*/ for z to specify the dependence
on M explicitly. Then we have the corollary that M — z* is continuous from [0, 1]
into B. (We’ll use this fact in §5.2.2.) To be rigorous, this is true since z is the
unique element in Gy for 0 < M < 1, and as M — 07, the limit of zM in B, which
should lie in Gg o by Corollary 4.4, must be z°. Of course, we might as well just prove
the analogue of Corollary 4.4 for the “two-component world”, and the continuity of

M s zM follows Theorem 2.4 directly.

4.1.2 L, as a function of ¢

Now we consider the function £, (M, -) for fixed M € [0, 1]. For u € B, let’s here
write £[u, ¢ instead of £[u] to indicate the value of ¢. The proofs of monotonicity and
continuity of £,(M, -) are much easier than those of E,(-, q) above, and the proof of
continuity doesn’t rely on the monotonicity. We put the assertions in a single proposi-

tion.

Proposition 4.5. For fixed M € [0, 1], E,(M,-) is an increasing and continuous func-

tion on [0, o). Moreover, it’s strictly increasing if M > 0.
Proof. Letq, > g2 > 0and u € G,y4,. We have

Ey(M,q1) — E¢(M, ¢2) > E[u, 1] — E[u, ¢o]
4.4)
= (Q1 - Q2) /(U% + U2_1) >0,

which implies E, (), -) is an increasing function on [0, co). If M > 0, we have u; > 0,
and hence the last inequality in (4.4) is strict, which proves the strict monotonicity .
We next prove the continuity. Given any g1, g > 0, letu® = (uf, uf, u*,) € Gy,

for k = 1,2. Since E[u', 1] = E,(M, ¢:1) and E[u', ¢o] > E,(M, ¢2), we have

(@ - @) / ((u)? + (u1,)?) = E, ] — E[u’, o]

S Eg(Ma QI) - EQ(M7 q2)

4.5)
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Similarly,
Ey(M,q1) — Ey(M, g) < E[?, 1] — E[u®, ¢o)]
(@ -a) [ (@4 2P).

From (4.5) and (4.6), and the fact [ ((u})* 4+ (u*,)?) < N[u*] = 1fork = 1,2, we

(4.6)

find

|Eg(M, q1) — Eg(M, ¢2)| < g1 — gl
and hence £, (M, -) is continuous. O

Remark 4.2. E,(0, -) is not strictly increasing. Indeed, by Proposition (4.7) below, for
g > 0, u € Gy, satisfies u; = u_; = 0. Such one-component ground state, as the
two-component z, is unique and independent of ¢. This is easily obtained by imitating
the proof of Theorem 2.4). Thus E,(0, -) is a constant function on (0, co), and hence

on [0, c0) by continuity.

With the continuity of E,(M, -), we can show the following analogue of Corollary
4.4. The proof is the same as that of Corollary 4.4 by changing the roles of M and ¢,

and hence we omit it.

Corollary 4.6. For any q € [0,00), there is a sequence u" € Gy, such that g, €
[0,00), ¢ — q, gn # q for each n, and 0™ — u™ in the norm of B for some u™ €

G g

4.2 u_qisno larger than v,
The goal in this section is indicated by the title. The relevant assertions are Proposition
4.7 (and Remark 4.3 following it), Proposition 4.8, and Proposition 4.11.
Proposition 4.7. Suppose ¢ > 0 andu € G, (i.e. M = 0). We have u; = u_; = 0.
Proof. Letv = (v, vp,v_1) be the element in A, defined by

U% = Uzl = (u% + U2—1>/2

UOZUO.
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Then E[u] — E[v] = (Erin[u] — Ekin[v]) + &1]u]. Since v is a redistribution of u,
Ekin[0] — Ekin[v] > 0. Also, & [u] > 0, and hence E[u] — E[v] > 0. Nevertheless, u €
Go,4> so we must have E[u] — £[v] = 0. Thus actually E;,[u] — Ein[v] = E1[u] = 0.
In particular the term (u? — u*,)? in Hy(u) is zero, which implies u; = u_;. To see
why they must vanish, note that now we have

elul = [{ S 19wl + Vel + sl + atu + a2}
j @7

> [{9half+ v + gl = €10, ful.0)]
Again since u € Gg, and (0, |u|,0) € Ay, we must have E[u] = £](0, |ul,0)]. Thus
the inequality in (4.7) is equality, which implies u = (0, [ul,0) since ) [Vu;|* >
|V|ul|? and ¢ > 0. O

Remark 4.3. From Theorem 3.4, for M = ¢ = 0, we also have u; = u_;, while
u; = u_1 = 0 corresponds to only one possibility. This together with Proposition 4.7
provide satisfactory descriptions of the degenerate situation M/ = 0. Also, on the other
extreme M = 1, only u; > 0. Therefore, there is no need to consider the bifurcation

phenomenon for M = 0, 1.
Proposition 4.8. For every 0 < M < 1and q > 0, u € Gy 4 satisfies u_; < u;.

Proof. Let v be defined by v; = max(uj,u_1), v_; = min(uj,u_1), and vg = uy.
Then we have £[v] = £[u]. To check this equality, for the kinetic part £;,, one can use

the formula

1 ‘
vj = 5 (g + u—y + jluy — u—y])
for j = 1, —1. Then direct computation gives
Vol + [Vo_y 2 = %{|Vu1]2 VU + 29 - Vs, + 2|V —u[*}.
And |Vo; > + [Vu_1|? = |Vuy|? + |Vu_1|* is obtained by applying the fact

|V|f|I? = |Vf|* ae. forevery f of class H'.
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The equalities of the other parts are obvious. Thus, we have
E,(M[v],q) < E[v] = £[u] = E,(M.q).
Since E,(-, q) is strictly increasing, we thus obtain
M|[v] < M. (4.8)
On the other hand, it’s also obvious by definition that

v — vt >l -t 4.9)

(4.8) and (4.9) imply v — v?| = u? — u? |, thatis v — u? = v?, — u?,, of which the

left-hand side is nonnegative while the right-hand side is nonpositive by definition of

v. Thus we really have v; = u; and v_; = u_1, which means u_; < u;. O

Proposition 4.8 can be used to improve itself. Precisely, we shall prove that strict
inequality u_; < u; holds when M > 0, by using the strong maximum principle. In

doing so, the knowledge of the non-strict inequality itself is needed.

Lemma 4.9. Let f € L'(R3 R3) be such that the distributional divergence V - f €

L'(R®). Then [V -f = 0.

Proof. For R > 0, let o5 : R® — R be defined by

1, lz] < R
er(r)=¢ R+1—Jz|, R<|z|<R+1
0, R+1 <zl

Then it’s obvious that

R—o0

lim (v-f)@RZ/v-f.

On the other hand,

[ en=- o F) (o),

where n(z) = x/|z|. Thus [ (V- f)¢r — 0 as R — oo, which proves the assertion.

]
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Corollary 4.10. Let u € Gy If 0 < M < 1, the Lagrange multiplier \ in the GP

system (2.4) is positive.
Proof. (2.4a) multiplied by ©_; minus (2.4c¢) multiplied by u; gives

2 uu_1 =V - (—u_1Vuy + w1 Vu_q) + 261 (u] — u? ) (ug + 2uiu_y).
By Lemma 4.9, [ V- (—u_1Vu; +u;Vu_;) = 0, and hence

A/ulu_l =5 /(u% —u? ) (uf + 2ugu_y). (4.10)

Now wju_; > 0 by Corollary 2.3, and hence f uyu_1 > 0. On the other hand, by
Proposition 4.8 we have u? — u?, > 0, which cannot be identically zero since M > 0.

Thus we also have [(uf — u?,)(ud + 2uqu_q) > 0, and (4.10) implies A > 0. O
Proposition 4.11. For 0 < M < 1and q > 0, u € Gy, satisfies u_y < uy.

Proof. If M = 1, wehave uy > 0 =wu_;. For0 < M < 1, letw = uy — u_y. Then

(2.4a) minus (2.4c) gives
Aw + Quw = —ANuy +u_y) — pw, (4.11)
where
Q=—-V —2Bul* — 26 [2uf + (u1 +u_1)’] —q.

Since A > 0 and w > 0, by subtracting |u|w from both sides of (4.11), we obtain
Aw + Quw < 0, where Q = Q — || is locally bounded. By Corollary 8.11, either
w > 0 everywhere or w = 0. But w = 0 means u; = wu_y, contradicting to the

assumption M > 0. Thus w > 0, which is what we want to show. O]

Remark 4.4. The subtraction of |x|w in the proof above is indeed not necessary since
we also have > 0 for 0 < M < 1. This is easy to obtain by using (2.4b) when

up > 0, and by using (2.4c) when uy = 0. We omit the details.

Recall the definition of z from Theorem 2.4. Since z € G (forany 0 < M < 1),

we have the following corollary.
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Corollary 4.12. For0 < M <1, z_1 < z.

Remark 4.5. Although z is independent of ¢, it’s dependent on M. To be precise we
shall sometimes write z = (27,0, 2M) to specify this dependence. For notational

simplicity, we will however not do so when such explicitness is not really necessary.

4.3 Exponential decay of ground states

In this section we prove the exponential decay of ground states with the aid of Propo-
sition 4.8, The approach of using the fundamental solution of Helmholtz equation is

exactly taken from [14], Lemma A.S.

Proposition 4.13. Let u € Gy g, for arbitrary 0 < M < 1 and q > 0. For any a > 0,

there exist constants Uj(a) (j = 1,0, —1) such that uj(z) < Uj(a)e~ I,
Proof. (2.4b) can be arranged as (—A + a®)ug = Qoug, where
Qo=a’+p—V —2Bul* = 28 (u; — u_r)*. (4.12)
Thus
wlir) = (Y (Quuo)) (o) = [ Yo = ) Qu(wunlu)

where Y, () = e~ /(47|x|) is the fundamental solution of the operator —A + a2.
(Y, is also referred to as the Yukawa potential. See [13], 6.23.) By the assumption
(A1), Qo < 0 outside a bounded set, say B(Ry), the open ball centered at the origin

with radius Ry. Thus we obtain

ww < [ v —y@wua = [ g
ly|<Ro ly|<Ro m|r —y|
Thus ug(z) < Up(a)e™"!, where (see also Lemma 4.14 below)
pallz—la—y|)
Uia) = sup /| o QW < oo (4.13)

For u;, j = 1, —1, we similarly have
(A +a®)u; = Qju; — 2B1ug(u; — u-j)

32



from (2.4a) and (2.4c), where
Qj = a*+ i+ A=V = 280|u* = 26, (u? —u2)) — g.
Now since u_; < uq, @ is also negative outside B(R;) for some radius R;, and

w(z) = / Yo — 9)[Q1(y)ur(y) — 2800y (s (y) — u_s(9))]dy
< /Ya(:v—y)Ql(y)ul(y)dy
Y. (x — 1(y)uq(y)dy.
< / | Yele @)y

As above we conclude that u; (z) < U;(a)e~*l, where U, (a) is given by (4.13) with
all the indices O replaced by 1. In contrast, the fact u_; < u; makes it difficult to apply

the same argument to u_;. Nevertheless, also since u_; < uq, at least we can choose

U_l(CL) :Ul(a). U]
For our next result, we give the following estimate of U, (a).

Lemma 4.14. For j = 1 and 0,

1/2
aR; . 2
<y ([ Q0
AT pers ly|<R; ’.7} - y’

Proof. Since |z| — |z — y[ < |y, we have for j = 1,0

eallzl=lz—y]) ef
/| —— 1 Qi(W)u;(y)dy < / Qi y)dy

y<r, dmlz—y| wi<r, 4mlz —y|

_ eaRj /| Q](y) U (y)dy

47T y\<Rj |‘r - y| ’

1/2
(ZRj . 2
S e / Q] (y) 2dy 7
Ar \ Jyi<r, 17—l

where the last inequality is obtained by Holder’s inequality and the fact

Jowr< [lup=1

We thus obtain the assertion of the lemma. ]
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The assertion of exponential decay is indeed far stronger than what we need. On the
other hand, we will consider sequences {u"} of ground states corresponding to differ-
ent values of ¢, and hence different Lagrange multipliers, where estimates independent

of n are required. We give what we really need in the following.

Corollary 4.15. Given a sequence u™ = (u},ug,u” ) € Gury,. Let 1, and A, be the
Lagrange multipliers corresponding to u". If the sequences {ji,,} and {\,} are both
bounded, then for any € > 0, there is r; > 0 (5 = 1,0, —1) independent of n such that

u;(z) < e for x| > ;.

Proof. The assertion is easily seen by repeating the proof of Proposition 4.13 for u”.
It suffices to give U} (a) (the analogue of U;(a) for u™) an upper bound independent of
n. Take Uj'(a) for example. By assumption, there is ¢ > 0 such that yu,, < c for every

n. From (4.12) we have

Q= a* + pn — V = 2Bp[u”* = 261 (u} — u”y)?
S (12 +un -V

<at+c—V.

Hence we can find R, independent of n so that Qf < 0 outside B(Ry). Then, by

Lemma 4.14, we have

n et Qi (y)* )é
Ulla) < u d
0( ) < sup </| Y

AT pegrs yl<Ro |z —y[?

1
aR() 2 _v 2 2
([ v,
47 z€R3 ly|<Ro ’x - y’

which is independent of n. U}'(a) can be estimated similarly, and again for U™, (a) we

IA

use the fact U™, (a) < Uj'(a). O
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Chapter 5

The Bifurcation Phenomenon

We begin our proof of the bifurcation phenomenon. According to Remark 4.3, it suf-
fices to consider 0 < M < 1.

Our main theorem is the following.

Theorem 5.1. For fixed 0 < M < 1, there is a q. > 0 such that for ¢ > q., u € G4

satisfies uy > 0, while for 0 < q < q., z is the unique element in Gy 4.

Remark 5.1. We do not know what happens at the critical g.. Since £, is continuous
with respect to ¢, z is of course an element in G,,,,. However, since we do not prove
the uniqueness of ground state, we are not sure if it’s possible that there are other

three-component ground states at .. We give more detailed discussions in §7.1.

The proof idea of Theorem 5.1 is to use (2.7) to derive some conditions on the
situation fo be excluded. More precisely, to prove that u € G, , cannot have some
property, we assume the opposite, then exploit the fact that any redistribution v € A,
of u (in particular those not having the property) satisfy (2.7). How this idea works
will be clear in the proof.

We regard M as a fixed number in (0, 1) in the following. The proof is divided into

three claims.
Claim 1. For q large enough, z is not an element in Gy 4.

Proof. Assume z € G, for some M, g. Since z is independent of ¢, it’s quite easy to

prove the claim by (2.7). For example, consider v to be the redistribution of z defined
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§ vy =0z + 2% (5.1)

where 0 = (1 — M) /(1 + M), which is just the constant making v € A ;. Then (2.7)

implies
Egeelz] — Ezec|v] < E1]V] — &1]2]. (5.2)

It’s easy to check that the left-hand side of (5.2) equals (1 — M)g. In contrast, the
right-hand side, no matter what it is, is independent of ¢q. Thus, since M < 1, (5.2)

gives an upper bound of ¢. That is there is an upper bound of ¢ for z to be in Gys,. [

Since three-component elements in G, in general depend on ¢, it’s far more
difficult to prove that there is a positive lower bound of ¢ for the existence of u € G4
with uy > 0. We leave this to the last claim. We shall first give the observation that
the two-component regime and the three-component regime are really separated by a
specific ¢.. That is, we exclude by the next claim the possibility that two-component
and three-component ground states will alternately be the case (in any range on the

q-axis).

Claim 2. Assume for some q there exists u € Gy, with ug > 0, then for every ¢’ > ¢,

VA ¢ GM,q’-

Proof. Let’s here write £[u, ¢ instead of E[u] to specify the value of ¢. Since u €

Garg €[u, q] < [z, q]. Thus, by the assumption vy > 0, for ¢ > ¢ we have

Elu, ¢ =e[u,q}+<q'—q)/(u§+u31)
< E&lz,q] + (Q’—Q)/(zf +22)) = €[z, q).

Hence z ¢ Gy . O
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Now define

g = inf {g | z ¢ Gy for ¢ >q}.

From Claim 1, ¢. < oo. By definition of ¢, for any ¢ > ¢. and v € G, ,, we have
vy > 0. Moreover, Claim 2 implies that for any 0 < ¢ < ¢, z is the unique element
in Gy 4. To complete the proof of Theorem 5.1, it remains to show ¢. > 0. That is we

have to prove the following assertion.
Claim 3. There exists ¢ > 0 such that z € Gy ,.

Since the proof of Claim 3 requires much more effort, we give it in a separate

section.

5.1 Proof of Claim 3

Let u € G4 To give a restriction on the presence of ug, we consider the redistribu-

tion v € A, of u defined by

B =0 (53)

Then (2.7) implies

q/ug > 2B1/ug(u1 —u_1)*. (5.4)

From (5.4), it’s easy to see up = 0 if ¢ = 0 (we can not have u; — u_; = 0 since
M > 0). This is exactly the argument used in the proof of Theorem 3.3. For ¢ > 0,
however, no matter how small it is, whether 1y = 0 is not so obvious. We shall prove
that, for ¢ small enough, there does exist a positive constant ¢ independent of ¢, such
that the right-hand side of (5.4) is no less than ¢ [ 3, and hence obtain a lower bound

of q for uy > 0. This is made possible by the assertions of the following lemma.
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Lemma 5.2. Given g € [0,00). Let u" € Gy, and u™ € Gy, be as claimed in

Corollary 4.6, then the following assertions hold.

(a) There exists a large enough R such that

1
- / (up)* < / (ug)? forall n, (5.5)
2 B(R)
where B(R) = {z € R?*| |z| < R}.
(b) u™ — u®> uniformly.
We first prove Claim 3 by this lemma.

Proof of Claim 3. Letu” = (u},uf,u",) € Gy, be as claimed in Corollary 4.6 for
¢ = 0. Then u" — z in B since z is the unique element in G, for 0 < M < 1. For
this sequence, let R be the corresponding radius asserted in (a) of Lemma 5.2, and let
k = infp(r)(21 — 2_1). Note that & > 0 by Corollary 4.12. Now by (b) of Lemma 5.2,
u" — z uniformly, and hence (u} — u™;) > k/2 on B(R) for n large enough. From

this fact and (5.5) we obtain

[ -z [ g2 -y

R)
/{32
> T (up)? (5.6)
B(R)
k2 "
> g (%)2

for n large enough. On the other hand, for any n, (5.4) implies
n [ 2 280 [ (@R ) 5.7

Since g, — 0, (5.6) and (5.7) imply u; = 0 for n large enough, which completes the

proof. 0

Now we prove Lemma 5.2. The proofs of both assertions need the following ob-

servation.
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Lemma 5.3. Given ¢ € [0,00). Let u" € Gy, and u™ € Gy, be as claimed
in Corollary 4.6, then the Lagrange multipliers [i,, \,, corresponding to u™ converge

respectively to those corresponding to u™, denoted by [is0, Aoo-

Proof. Multiply (2.4a) by u; and multiply (2.4c) by u_;, and take integration, we

obtain

et iN [ = Fwg) for j=1.-1, 8
where
B = [ {9+ vid + 2l
+ 20 [uguy(uy — u—y) +uj(uf — u? ;)] + qu?}'

If [u?and [ 2, are positive, we can solve (5.8) for y and A, and obtain

5.9)
A= [Fl(ua Q)/(f u%) - F—l(u7 Q)/fuzl} /2'

Now since we consider M as being fixed in (0,1), [(u})* and [(u3°)* (j = 1, —1) are
bounded away from zero. Thus (5.9) applies for p,, A\, and oo, Ao, and it’s easy to

see that 1, — 1o and A, — A\, follow the fact u™ — u* in B. O

Proof of Lemma 5.2 (a). From the above lemma, p,, — i, and in particular {z,} is
a bounded sequence, say p,, < C' for some constant C' > 0. Multiply (2.4b) for u” by

ug, and take integration, we obtain
o [ @5 = [ {1V + V@) + 20t P+ 281 () — a7,
which implies

[ vy <u [wyr<c [ (5.10)

On the other hand, by the assumption (A1), there exists R > 0 such that V' (z) > 2C

for |x| > R, and hence

Jremrs [ verzoc [ e e
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From (5.10) and (5.11), we obtain [(uf)? > 2 fB(R)C(u’(})?, which is easily checked to

be equivalent to (5.5). [

Proof of Lemma 5.2 (b). The idea is that, if the GP system (2.4) for u” tends to that
for u™ in a suitable sense, then uniform convergence can be obtained by the global
boundedness result for elliptic operators. We take (2.4a) for example.

Let v = u} — u$°. Subtract (2.4a) for u™ from (2.4a) for u", we obtain
Avt = V(x)v] = P, — P + S5, — Seos (5.12)
where

Pn = _<:U’n + )\n - Qn>u?7

Sn = 200 u" [*uf + 261 [(ug)* (w) — uy) + uff ((u7)* — (u4)?)],

and P, and S, are given by the same expressions with n replaced by 0o (¢ is under-
stood to be q). Apply global boundedness theorem for elliptic operators (see e.g. [8],
Theorem 8.16) to (5.12), we obtain for every » > 0
sup [0 < sup |[v]| + C||Py — Ps + Sy — Saoll 22, (5.13)
B(r) dB(r)
where C' > 0 depends only on the radius r and supp,) V. Now since ¢, — ¢, pn, —
Loos An — Aso (by Lemma 5.3), and u” — u™ in B, we see B, — Py, — 01in L?.
Also, S,, — So. — 0in L? since H' is continuously embedded in LS. On the other
hand, p1, — peo and A, — A also implies fi,, Ay, oo and A, all lie in a bounded
set. By Corollary 4.15, given € > 0, we can find 7; such that each u7 as well as u$° are

bounded above by ¢ outside B(r). In particular, we have

sup |vf(z)| <2e forall n. (5.14)

|z[>71

Let r = 71 in (5.13), and let n — oo, we obtain

limsup( sup |Uln(m)]> < 2e. (5.15)

n—o0 xEB(ﬁ)
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From (5.14) and (5.15) we have

sup |vy(z)] < 3¢ for n large enough.
z€R3

Since ¢ > 0 is arbitrary, we conclude that v?* — 0 uniformly on R?. Similarly v} and

v™, converge to zero uniformly, which complete the proof. [

5.2 What remains

We have completed the proof of our main theorem. Some remarks are however worth

mentioning.

5.2.1 Estimates of ¢. from the proof

Although our statement of Theorem 5.1 is a qualitative one, our proof does provide
some quantitative information. For example, as the proof of Claim 1 says, (5.2) gives
an upper bound of g for z € G, 4, which is hence an upper bound of ¢g.. Similarly, (5.4)
provides a lower bound of ¢.. In view of the fact that z can be obtained by minimizing
& over the two-component class A%%° (instead of the much larger A ), and the fact that
z is independent of ¢, the upper bound, which is expressed in terms of z, is particularly
useful. Since we will need this upper bound in §5.2.2 below, we now compute it out.

Let v be as in the proof of Claim 1. The right-hand side of (5.2) is

&ilv] = &7
=0 [{ o = o+ - 7] - - 207
= 6, / { 2022+ 22,)(1— o) + (- o)1) = [ - z21)2]}
_51/{:20(1 o)+ (1) - 1},21 + [2(1 —0) —1—2]212 X 24_1}
_@1/{ — 0%t 4 (4 —20)2322 — 24 ),

where 0 = (1 — M) /(1 + M). Thus (5.2) gives

< 1_ M { —20)222%, — 241}. (5.16)
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As to such quantitative consideration, it is then of interest to find as sharp inequal-
ities as possible from redistribution. However, for a u € Gy, it’s not quite clear
which redistribution v € A, is the best one in that (2.7) gives the sharpest inequal-
ity. It turns out that, instead of choosing a specific redistribution in (2.7), a better
way to derive sharp inequalities might be by using “redistributional perturbations”

u(0) = (uy(0), up(0),u_1(0)). We’ll consider this in Chapter 6.

5.2.2 The boundedness of ¢. with respect to M/

Let’s here write g.(M) to specify its dependence on M. We are interested in the
behavior of the curve ¢.(M) in the (M, g)-plane. Numerical simulations show that

q.(M) is continuous and increasing in of M, with

lim g.(M) = 0. (5.17)

M—0t

We recommend [?], Figure 5 for a clear diagram of the curve. Note that from Proposi-
tion 4.7, (5.17) is quite natural. Unfortunately, it seems not easy to prove the continuity
and the monotonicity from our method. Nevertheless, one fact that is not quite clear
numerically can be settled. That is, as M — 1~, whether ¢.(M) tends to infinity or

some finite number. The following theorem says that it’s the latter that is the case.
Theorem 5.4. q.(M) is uniformly bounded for 0 < M < 1.

Proof. Let’s write zM for z. From (5.16) we obtain

won) < T2 [{ = G -2 (7 (4= ()
< A2 [y ()?
< AR 2D e [ ()

Since [ (zl_”l)Q = (1— M)/2, we get

Ge(M) < Bi(2 = o)||21" ||~
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Now o = (1 — M)/(1 + M) is bounded for 0 < M < 1, and it remains to show
the boundedness of ||2}|| . From Remark 4.1, M + z™ is continuous from [0, 1]
into B. With this result, we can in fact prove that M ~ z™ is also continuous from
[0, 1] into L, in the same spirit as the proof of the assertion (b) of Lemma 5.2. This

completes the proof. O

Remark 5.2. It might be surprising that, by the same argument, we have trouble to
prove that M +— 2z is also continuous from [0, 1] into L. Indeed, the problem only

occurs at M = 1, where z™ is equal to zero. See §7.2 for discussion of such problem.
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Chapter 6

Redistributional Perturbation in a
Fixed Admissible Class

Let u € G,;,. We have seen it’s sometimes useful to construct a “redistributional
perturbation” u(9) of u, where § > 0 is a small parameter, and u(0) = u. In pre-
vious examples (namely proofs of Proposition 4.2 and Proposition 4.3), the u(9) are
so constructed to be in different A/, in order to compare ground states with differ-
ent magnetizations. In this chapter we consider similar constructions lying in a fixed
admissible class. Thus E[u] < £[u(d)]. By letting 1(6) = E[u(d)], 6 = 0 is then an

endpoint minimum of /. Hence
o) >0, (6.1)

where I'(0") is the right derivative of I at 0. It turns out that the existence of such
derivative needs some verification. We will give two examples, Proposition 6.1 and
Proposition 6.2, as more delicate treatments of (5.1) and (5.3) respectively. We remark
that o will always denote a nonnegative parameter, which is small enough so that all

involved expressions make sense.

6.1 Inequality from redistributional perturbation

For convenience we give some notations and remarks first.
1. As above, whenever a construction of u(9) is considered, we write 1(d) for £[u(d)].

Similarly 4, (), I;(9) and Iz () stand for the corresponding parts. Note that /()
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and [y(9) are constant functions, and hence (6.1) says
L (07) + 11(07) + I (07) > 0. (6.2)
As I7,,.(07), if exists, must be nonpositive since u(d) are redistributions of u, we have
[13n(07) + 1,(07) 2 0. (6.3)

Using (6.3) for a construction of u(d) is much of the same spirit as using (2.7) for
a specific choice of v, which has the advantage of involving only algebraic expres-
sions of u. Nevertheless, in this chapter we aim to gain as complete information from
redistribution as possible, and hence we will use the full inequality (6.2).

2. When a construction of u(d) is considered, we write

for small § > 0. Dy, (u(0)), Di(u(9)) and Dz..(u(9)) are similarly defined. Thus

6—0t

I'0%) = lim | D(u(s)) = / —~H(u(9))

if differentiation under the integral sign is valid.

3. For u € Gjy,4, we write (as in Section 8.1)

S(UZ‘,UJ‘> = |UZVU] - ujVui|2.

When computing Dy, (u(d)), we will use the following fact:

e Whenever > | ; aju§ > 0 for some nonnegative constants a; (7 = 1,0, —1), we

have

2 e anaS (g, ug)

B Zj aju?

3 )|V \v\/zaju;
J J

This formula is just (8.1) with f = (\/a1uq, /aguo, \/a_1u_1).

We now give our examples of (6.1).
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Proposition 6.1. For 0 < M < 1and 0 < q < q.(M) (so that z € Gy4), we have

TS(Zl, Z,1>

43, /zlz_l(zl —z ) (1221 — 1) > q(14+ M) —I—/ EALER PN (6.4)
where T = (1 4+ M)/(1 — M).
Proof. Consider the redistribution u(d) of z defined by
( u(0)? = (1 —6)z3
ug(0)? = 027 + 7022, (6.5)
u_1(6)? = (1 —16)22,.

\

It’s easy to check u(0) € Ay, for each small 6 > 0. We compute I'(07) as follows.

First,

_TS(Zl,Z_l)

2 2
Z1+ 71224

Y

Dyin(u(8)) = %{|Vuo(5)|2 — (6]Val? + 75|vz_1|2>} —

which is independent of 9, and hence

I (0%) = _/TS(Zl,Z_l).

2 2
Z1+ 71224

Second,

Hi(u(0)) = 51{25(zf +722) (VI ba — V1™ 7521)2
+ [(1 —6)z; — (1 — 75)221}2}.

It’s not hard to see that % H; (u(¢)) is a homogeneous polynomial of z with degree 4,

and for ¢ > 0 in a fixed small neighborhood of 0, we have

%Hl(u(é))‘ < Clz|* e L'

for some constant C' independent of 6. Thus it’s valid to differentiate /;(J) under the

integral sign, which gives

I1(07) =28 / {(zf + 722 ) (21 — 20)% + (2 — 22) (=2 + mil)}
v /zlz_l(zl ) (e — ).
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Finally,
Hzeo(u(0)) = q[(1 = )} + (1 = 70)2%, ],
and we obviously have
1. (07) —q( / —7‘/ ) q(1+ M).
(6.4) now follows I'(0") = I, (0%) + I;(0T) + 17, (0%) > 0. O
Proposition 6.2. For 0 < M < 1and q > 0, every u € G, satisfies
q/u% > ﬂl/ué(ul —uy)? (2+ u:f_l) +%/jz_ W (6.6)

Proof. Let u(d) be defined by

up(0)? = (1 — 20)ul (6.7)

It’s easy to see u(d) € A, for each small § > 0. Now
Hzee(u(d)) = q (ui +u?; + 26ug) ,

and it’s also obvious that

109 =24 [

On the other hand,
2
\va+&ﬁ — |V ? + 6| Vo [?)
7 0 J
Dian(u(®) = 3 -
j=1,—1 (6.8)
. S(uj, uo)
= 2 27
Pl dug

and it’s not clear if |Dy;,(u(d))|, for small § > 0, is bounded by an L' function

independent of . Hence the operation

1,0 = [ Jim Dt = - [ 37 )

7j=1,—-1
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is not valid immediately. Similar problem occurs with /] (07). Precisely,
Hy (w(6)) = By [2(1 = 26)ud (11 (8) — w1 (8)) + (= u2.)*]

By using the fact (Ju;/96)(6) = u3/(2u;(0)) for j = 1, —1, we have

0
55 ()

=&[—@%wm®—u4®»2

+2(1 — 20)ug - 2 (ur(6) — u_1(6)) (2;(&5) - Zuq_lf((;)) } (6.9)

(1—20)u? }
u1(5)u,1(5) ’

and we are not sure if | % [ (u())|, for small § > 0, can be bounded by an L' function

= —2B1u (u1(6) — u_l(é))2 [2 +

independent of §. This prevents us from computing ;(0") by differentiation under the
integral. To be rigorous, we avoid these problems as follows.

Since [ D(u(d)) > 0 ford > 0,

[ Drta@) = - [ Dit(s) [ Drin(u(d)). (6.10)

Now Dyin(u(d)) < 0 since u(d) is a redistribution of u. Also, from the result of
(6.9), ZHi(u(d)) < 0for § > 0, and hence we also have D;(u(6)) < 0 for small
d > 0. Thus, after taking limit inferior as 6 — 0%, we can apply Fatou’s lemma to the

right-hand side of (6.10), and we obtain

, )
2 [ [~ 5o

0
~ 3¢ inU5

6.11)

=07+

From (6.8) and (6.9), we see (6.11), after divided by 2, gives (6.6). L]

Remark 6.1. Now that the terms of the right-hand side of (6.11) are finite, we have

S(w. 4 — u_ 2
—(u];u[)) cL' (j=1,-1) and Uo(tn — )"
Uj U1U—-1

e L.

We can obviously use them to find suitable L' bounds of | D, (u(6))| and | Z Hy (u(6))]

independent of 0. Hence [}, (0") and [](0") can really be obtained by differentiation
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under the integrals. One might suspect that such operations of taking differentiation
should be valid for all similar constructions of u(d). This is probably true. However,
there are cases of which the validity are still open. See §7.3 for for an example and

discussions.

6.1.1 Comparison with previous results

(6.5) and (6.7) can be regarded respectively as perturbation versions of (5.1) and (5.3).
For the relation between (6.5) and (5.1), note that o = (1 — M) /(1 + M) = 1/7, and
we claim that we can in fact replace (6.5) by the following to get the same inequality

(6.4):

;

u1(6)? = (1 — 06)z}

uo(8)? = 0627 + 622,

u_1(6)* = (1 —96)22,.

\

We omit the easy verification of the claim. Note however that this should be quite
natural, since the true point of this construction is to share parts of z; and z_; to
the middle component. The ratio of the amounts shared is totally determined by the
constraint M = M and is not a controllable parameter.

We have promised in §5.2.1 that it might be better to use redistributional perturba-
tions to get inequalities. Let’s now examine if this claim is true. For Proposition 6.2,
the inequality (6.6) is obviously sharper than (5.4), since the right-hand side of (5.4) is
only a part of the right-hand side of (6.6). We will see in the next section that (6.6) is
indeed the sharpest possible inequality, in that it’s really an equality.

As for Proposition 6.1, things are not so obvious. Whether (6.4) is sharper than
(5.16) cannot be answered from their appearances. (Of course, we have to compare
them after omitting (or adding) the contributions of the kinetic part for both of them.)

To see this, let’s write (5.16) as ¢. < Uj[z]. And similarly (6.4) gives q. < Us[z],
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where

4

Us|z] = : 4%\4 212-1(z1 — 2.10) (7221 — 21)
4

= 1 _ﬁﬁw 212,1(21 — 271)(2’,1 — O'Zl).

For (6.4) to be better than (5.16), we must have Us[z] < U, [z]. Direct calculation gives

A

Uhfe] — Uhfe) = 2

3 4
{a 2 =402 + 602522 —An2d |+ 2_1},

of which the integrand, as a polynomial, is not identically positive or negative. It’s
interesting, however, that from some numerical simulations, the integrand is really a
negative function when we take z to be the two-component ground state, and hence the
inequality from redistributional perturbation wins again. We don’t know how to prove
this fact rigorously, but there is an intuitive reason. To see this, we claim that, although
we have shown in Corollary 3.5 that z in general doesn’t obey the SMA, numerical
results show that they are not far from SMA. If we are willing to take the assumption

21 = Kz, where it’s easy to check that x must be o'/2, then

Uslz] — Uylz] = ( >/{ — 4032 4 60% — 403/24—02}2;1

/803/2 1/2 )

Thus the integrand is negative.

6.2 From the viewpoint of the GP system

There is another point of view on what we did above, which leads us to find (6.6) is
really an equality but not merely an inequality. We discuss it in the following.

At any rate, a redistributional perturbation u(d) is a kind of perturbation, and it’s
natural to ask whether the results above could also be obtained from the GP system
(2.4), which, by its derivation, consists of information from general perturbations. The
only obstruction is that (2.4) is obtained from smooth perturbation, while u(¢) is kind

of singular at 9 = 0. Indeed, using chain rule formally we have
d
1% = e = Eulw(07),

0=0*t
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and one expects (6.1) might be a consequence of testing (2.4) by u/(0™). To carry out
this idea rigorously, however, we have to take care of the problem that u’(0") may not
be good enough (precisely in B) so that £'[u](u’(07)) makes sense. It turns out that we
can follow the idea for u(9) defined by (6.7), and find that the equality holds in (6.6).
While in our argument the inequality itself plays a critical role. For u(9) defined by

(6.5), the same idea doesn’t work directly. We’ll discuss the problem in §6.2.2

6.2.1 Validity of the equality of (6.6)

We first give a computational result.

Lemma 6.3. Assume f,g € C' and f,g > 0, then

o(-32) (e () ()

in the sense of distribution.

2

(6.12)

Proof. Assume f,g € C*and f, g > 0, then

Af Ag _gAf—-FfAg _

F V (fVg—gVf)

L (>)
%{ ( (fﬂ)) 2V (f) V(?)}
{6 )0}

Thus (6.12) holds. It’s then very natural to expect that (6.12) also holds in the sense of

distribution when f, g are only of class C!. That is

/{ —Vf-v(g;so> +Vg-V(gso)} 2
) e e G

for every smooth function ¢ with compact support. Rigorous justification can be done

(6.13)

by the following observations:
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1. We can arrange (6.13) into the form

[{a7.0.94.99)¢ + A1.9.95.¥9) - ¥} 0.
where « is a scalar function and A is a vector function.
2. Given f,g € C', f,g > 0. By mollifying f and g, we get smooth functions f.

and g. such that f. — f,Vf. = Vf, g. — ¢,and Vg. — Vg uniformly on any

compact set.
We omit the routine details. 0
Theorem 6.4. The inequality (6.6) is an equality.

Proof. If ug = 0, the assertion is trivial. So assume uy > 0. The discussion before

Lemma 6.3 suggests we test the GP system by

(0" = (u3/(2ur), —ug, 3/ (2u_y))

That is computing

2

2
(2.4a) x (27“‘—51) + (2.4b) x (—ug) + (2.4¢) x (2501) .

After some rearrangement, the result is

u? 1 Au Au
qug = ﬁlug(ul — u,l)2 <2 + 0 ) + 5 ug ( S _ —0) (6.14)
UU_1 Pty Uy Uo

By Lemma 6.3, for j = 1, —1 we have

ul <% — %> =-V- (UOU]'V (@)) + |u;V (@) (6.15)
U, () U Uj
Note that
2
U, S(u;,u
S
j j

which lies in L' by (6.6). Also by (6.6) we have u2(u; —u_1)* (2 + u2/(uju_y)) € L',

Jr (wn(3)) -

This is true by Lemma 4.9. To see why uou;V (ug/u;) € L'(R3 R?), note that uy €

and it remains to show

L2, and u;V (up/u;) € L*(R?,R?) by (6.16). O
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Remark 6.2. To eliminate the unwanted term V - (uou; V (ug/u;)), in the proof above
we use the inequality (6.6) to guarantee its integrability. It looks somewhat pedantic,
but seems unavoidable. Similar problems happen when we try to prove equalities from
other constructions of u(d). Thus the inequalities obtained from redistribution are not
direct consequences of the GP system. This declaration however may be overthrown if
we can prove some comparison results of the decaying rates of the three components.

See §7.3 for discussion.

6.2.2 Discussions on (6.4)

We’d like to prove the same thing for (6.4). However, note that since z is independent
of g, it’s impossible that (6.4) be an equality for varied ¢. Indeed, following the above

idea, we get a trouble at the very beginning: With u(d) defined by (6.5), we have

w(6) = 1 -2z 22+ 722, —TZ4
2\V1-6" /02 + 782, V1i—76 )
Thus

w'(0%) = (—21/2,+00, —T2_1/2),

which suggests we multiply (2.4b) for z, i.e. the trivial equation 0 = 0, by infinity.
And if we ignore this part and just using (2.4a) and (2.4c), the result is really far from
(6.4).

This problem can be avoided if there is a sequence u" € Gy, 4, such that ug > 0,
M, — M € (0,1), ¢, = q.(M), and u" — z € Gyq4 () in B. Note that the
existence of such sequence is not proved. Using Corollary 4.4 and Corollary 4.6, it’s
only guaranteed that there exists such u” that converges to some u® € Gy q.(ar)s
and, as pointed out in Remark 5.1, we have no reason to say u>™ = z. Since anyway
such sequence may really exist, we still illustrate how we can use it to avoid the above
problem in the following.

The idea is to consider the same construction as (6.5) for u € Gy, with ug > 0.
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Precisely, for such u we consider u(9) defined by

;

ur(0)* = (1 - 0)ui

up(6)? = ug + dui + Tuéu?,

u_1(0)? = (1 — 1u6)u?
where 7, = ([ u})/([ u%,), the constant making u(§) € A, We claim without
proof that, by using this redistributional perturbation, and following the idea of proving

Theorem 6.4, we have the following result.

Theorem 6.5. Let M € (0,1) and ¢ > q.(M). u € Gy, satisfies
43, /ulu_l(ul —u_1)(Tgu_1 —uy) + 20 /ug(ul —u_1)(Tqu_1 — uq)

= [+ mazy ¢ [t Sl

2
Ug

Now assume there exists u” € Gy, where M € (0,1) and ¢, — ¢.(M)™, such
that u” — z. Define 7,, = 7y». Note that 7,, — 7 = (1 + M)/(1 — M). By applying
Theorem 6.5 to u”, and letting n — 0o, we obtain

461 /2121<21 — 271)<TZ,1 - Zl>

+ 7S (ug, uy) @17

(ug)?

This is the equality corresponding to (6.4). To see how (6.17) implies (6.4), we have

S n n
=(1+ M)q.+ lim/ (ug, ui)
n—oo

the following result.

Lemma 6.6. For general positive functions vy,vy,v_; € C*, we have the following
identity:
S(vg,v1) + S(vg,v_1) s o Ve Vo +u Vo P Sy, v_)
v} = (4o vo vi 402, v+
Proof. Letf = Vuy/vy. We have

S(vg,v1) + S(vg,v-1)

2
Vo

= |V’Ul - Ulf|2 + |VU_1 - U_1f|2

= (V2 + 02> = 2(1Voy + v Vo) -+ [Vor|? + [Vo_y|?

~uVur vV, 2 n S(v1,v_1)

9 | 9
= (vi + v, |f :
1+,

vi 402, v} + 02,
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Thus, by letting v; = uf, vo = vy, and v_; = /7,u”,, we obtain

S(ug, up) + TS (ug, uy) _ S(uf,uty)

(ug)? (uf)? + 7 (uy)*

(6.18)
Since u” — z in B, there is a subsequence u™®) of u™ such that
u"® 5z and Vu"® — Vz almost everywhere.

u"® — z and Vu™®) — Vz almost everywhere. Applying Fatou’s lemma to (6.18),

we finally obtain

n(k n(k n(k n(k
lim S(Uo( )7U1( )) + Tk S(Uo( )vu—(l)) > / 78(21,2-1) (6.19)

)
b (up™)? Fraly

And hence (6.17) implies (6.4).

Open Problem. It’s very interesting to know if the equality of (6.19) holds, which is
equivalent to the equality of (6.4) at ¢ = ¢.. Were this true, (6.4) doesn’t only provide
an upper bound of ¢., but a characterization. From Lemma 6.6, the gap is provided by

the limiting behavior of

2
2 2 VUO u1Vu1 + Tuu_1Vu_1
(ui + TauZ ;) - 3 D) )
Ug Uy + TauZ

asu — Z.
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Chapter 7

Discussions of some Open Problems

We discuss some open problems arising from this study. They are categorized into

three sections.

7.1 Uniqueness

Uniqueness is a standard and prominent problem to be settled in variational problems.
Even in this thesis, although it’s not essential for our main considerations, the lack of
it causes troubles in some places. Examples are given by Remark 4.1 and Remark 5.1,
which also haunt the discussion in §6.2.2.

We have mentioned in Remark 2.2 that our energy functional £ doesn’t have the
suitable convexity property due to the term ;. Let’s also consider only 3; > 0 here.
Then, more precisely, it’s the term 23,u(u; — u_1)? appearing in H;(u) that causes

problem. As to remedy this difficulty, there are two natural ideas:

(a) Although £ is not convex on B, it might be convex on a fixed Aj;, which is

sufficient to prove uniqueness.

(b) In this paper there is no assumption on the magnitude of 3, while for real spin-1
BECs it’s very small compared to /3y, and hence &; contributes to a rather in-
significant amount of the whole energy. If we are willing to take this fact into
consideration, maybe the convexity of other parts will outweigh the nonconvex-

ity of 51 .
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Unfortunately, these ideas do not work since there are u, v € A, such that

Efu] + V]
2

—epw) = AN g <,

where w € Ay, as in the proof of Theorem 2.4, is defined by w? = (u? + v7)/2 for
each j. We give an example below.

Let f, g, h be any three nonnegative functions in ' N L2, N L* such that
(1) f, g and h are supported on disjoint sets,
2 [(f*+¢*+h*)=1,and
3) [¢>=[h*>0and [(f*—g°) =M.

Then letu = (f,g,h) and v = (f, h,g). We have u, v, w € A,,. It’s easy to see

g[u] —;—S[V] . E[W] _ gl[u] ;gl[v] . gl[W]
To check that it is negative, note that
Hl(u) —;— Hl(V) _ Hl(W)
[P P (PR (S = g + ()
= A 2 * 2

—(92+h2)(f_ 92+h2)2_ (fQ_M)2}.
2 2
Let Qy = supp(f), {2y = supp(g) and €2, = supp(h), then we have
Hl(u) + Hl(V) B f4 f4 -
/{ 2 _Hl(w)}‘Bl/gf{?+7‘0‘f4}—0,
Hl(u) + Hl(V) B g4 94 g4 - 51
/Q{ 2 _HI(W)}_ﬁl/szg{o+?_§_Z}__Z/g4v

g

[P e} = [ {Fro-F-2h--2 [

Thus, no matter how small (3; is, £ doesn’t have the desired convexity property on

Ay, Of course, the u and v above are far from ground states, especially due to the
assumption that the supports of their components are disjoint. We can go on to sus-

pect £ might satisfy the convexity property when u, v € A, are “similar to” ground
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states. Anyway, uniqueness for our model, if holds, can not be easily obtained from
the standard method.

On the other hand, it’s also not quite clear whether uniqueness holds from numeri-
cal simulations. The trickiest part lies on the bifurcation point ¢.(M ). To have a better
understanding of the problem, remember that the “nonuniqueness” point (M, q) =

(0,0) connects two boundary regimes which sharply contrast each other:

For0 < M <1landq =0, u € Gy has vy = 0, while for M = 0 and
g > 0, ug is the only nonvanishing component of u € Gy, (Proposition

4.7).

It’s observed in numerical simulations that such sharp contrast also occurs at g.(M)
for 0 < M < 1, and it’s not easy to tell whether w, shrinks to zero rapidly as ¢ —
q.(M)*, or indeed there are both two-component and three-component ground states
at g.(M). In [15], the latter (nonuniqueness) is claimed to be the case. However,
in other simulations by using numerical continuation method (Not published private
discussions. See [7] for related study.), it looks possible to track the changes of ground
state from three-component profiles to the two-component one as ¢ — g.(M)*, and

hence ground state is unique (for (M, q) # (0,0)).

7.2 Uniform convergence at boundary regimes

We have stated the bifurcation phenomenon in terms of varying ¢ and fixed M. This
choice is physically natural as the value of ¢ can be tuned by modifying the applied
magnetic field. From a mathematical point of view, we might as well consider the
bifurcation with respect to other parameters. Somewhat unexpectedly at first sight,
there are two difficulties to imitate the proof of Theorem 5.1 if we consider M as the
varying parameter. The first one is that we lack an analogue of Claim 2 in Chapter 5.
That is, we do not know how to prove that if for some M € (0, 1) there is u € Gy,
with ug > 0, then every v € Gy, with 0 < M’ < M must have vy > 0, or

equivalently z* € G, implies M ¢ G g for 1 > M’ > M. Thus, we can’t prove
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that there exists a number M,.(q) which definitely separates the two-component regime
and the three-component one.

The second problem, which is more fundamental, is that we are not sure whether
the Lagrange multipliers will converge as M tends to 1~ or 0". Note that in either
case [u?, — 0 for u € Gy, and we can not use the formula (5.9) directly. As a
consequence, we can’t obtain uniform convergence when M — 17! or 0" as in Lemma
5.2. Despite of this, we remark that in either situation it’s known that the component
which is not tending to zero does converge uniformly. For example, let M,, — 1~ and
u” € Gy, 4 converges in B to the unique element in G, 4, which we denote here also
by u® = (u$°,0,0), then we have u} — u$° uniformly. This is because we can still
prove i, + A, converges by using (2.4a), and (2.4a) for u” tends to (2.4a) for u*.
What really left open is whether g and u”; converge to zero uniformly. This lack of
uniform convergence (of u", precisely) then prevents us from imitating the proof of
Claim 3 in Chapter 5 to conclude that uj = 0 for large n. Similarly, when M — 0%,
we only know wug converges uniformly but not for u; and u_;. (Of course, this is
sufficient to conclude that ug > 0 when M is close to zero.) As we have mentioned in
the remark after Theorem 5.4, such problem also occurs for zM when M — 1—, where

zM converges to zero in B, and we don’t know if it converges uniformly.

7.3 Comparison of the decaying rates

We are not sure whether I'(0") exists for some constructions of redistributional per-

turbation u(d). An example is given by

(

u1(6)? = (1 — §)ui + ryou?,

ug(0)* = ug

|§

—

—~
(=)

~—
)
[

Su? + (1 — 1ud)u? |,

where u € G, is such that u; > 0 for each j, and 7, = ([ u?)/([u?,) is the

constant making u(é) € A,;. Since ug(d) = wg for each small § > 0, to compute
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I' it suffices to compute ;,;, and 7, of which we do not know the existence of both.

Indeed, if we differentiate them formally under the integral signs, we obtain

/{THS(ul,u_l) S(u_l,ul)}
2 + 2
uy u-q

<26 /(u% —u? ) (rqu? | — u?) ( s + 2) ,

UiuU_1

(7.1)

which might be an equation saying oo < co. Note that for the left-hand side of (7.1),

we know

2

S(uy,u_1) c

U1
= [Vu_, — —Vu,

since u_1 < uy, and it’s S(ug,u_q)/ uz,l that causes trouble. The problem here is very
similar to that mentioned in Remark 6.2. Roughly speaking, they are all due to the fact
that we do not have a comparison of the decaying rates of different components. To be

precise, we remark directly that some numerical results show that
up(z) <u_1(r) <wuy(z) for |z| large. (7.2)
In fact it looks like
up(z) = o(u_1(x)) and w_q1(z) =o(ui(z)) as |z|— oc.

If (7.2) can be proved, then the right-hand side of (7.1) is finite, and we can justify the
differentiation by Fatou’s lemma as in the proof of Proposition 6.2. Also, one can see
that all the integrability to be justified in the proof of Theorem 6.4 are obvious, and

Theorem 6.4 can be obtained from the GP system (2.4) without using Proposition 6.2.
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Chapter 8

Appendices

This chapter contains results which are not the main focuses of the thesis, while are
used or at least relevant.

We give some remarks on the notation.
e By a domain in R? we mean a connected open subset of R

e We use A CC B to denote the fact that A is a compact subset of I, where Ais

the closure of A.

8.1 Convexity inequality for gradients

In the following, let ) be a domain in R%. Let f = (fi, fo, ..., fa), where each com-

ponent is a real-valued function in H'((2).

Theorem 8.1. |f| € H'(Q), and

HVit+...+ [V
VIt = £]
0 on where |f| = 0.

on where |f| >0

We omit the proof of this theorem, which is a direct generalization of Theorem
6.17 of [13].
Let S(f, f¢) denote | fxV fo — f¢V fi|?. From Theorem 8.1, it’s easy to check that

> ke S(frs fo)
Z IV fil? = [VIE|]? = |£]2
i

0 on where |f| =0.

on where |f| >0

8.1)

61



Hence

IVIEI® <) VAL (82)
k
And the condition of equality given in §7.8 of [13] can also be generalized as follows.

Theorem 8.2. If f,, > 0 and is locally bounded away from zero, i.e. infg f,, > 0 for
every K CC (), then equality of (8.2) holds a.e. iff there are constants ¢y, cs, ..., Cp_1

such that f,, = cpf, a.e. fork=1,2,...,n— 1.
For uses in this thesis, we give a simple generalization.

Corollary 8.3. If |f| is locally bounded away from zero, then equality of (8.2) holds

a.e. iff there are constants ¢, ca, . . . , ¢, such that fi, = ci|f| for each k.

Proof. Letg = (g1, gns1) = (f1, fo, -, [, [f]). Then |g| = v/2|f|, and it’s easy

to see that
n+1 n
Vil =) IVal* iff  [VIE[* =D VAl
k=1 k=1
Thus, by applying Theorem 8.2 to g, we obtain the assertion of the corollary. [

8.2 Equivalence of the u-model and the V-model
Define
u’ = ([¢ul, [vol, [¥-a])  for ¥ € B,
and, for a fixed triple (61, 6y, 0_;) of real constants satisfying (2.2),
UY = (e upe® u_1e”-1) for u € B,.
We have the following observation.

Lemma 8.4. If U is a ground state, then u¥ € G. Conversely, if u € G, then % is a

ground state.
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Proof. We have known from Section 2.1 that E[¥] > £[u”] for every ¥ € B, and
E[u] = E[WY] for every u € B,. Thus, for the first statement, given any v € A, we

have

Elv] = E[W'] > E[¥] > £[u”].

)\

Hence u¥ € G. Similarly, for the second statement, for any & € B satisfying the

constraints N'[®] = 1 and M[P] = M,
E[®] > E[u®] > E[u] = E[¥Y].
And hence U" is a ground state. [

Corollary 8.5. The assertion “Every ground state V has 1)y = 07 is equivalent to

“Everyu € G has uy = 0.

Proof. Assume the first assertion. Then for any u € G, the fact U" is a ground state
implies uge® = 0. Hence uo = 0. Conversely, assume the second assertion. Then for

any ground state U, the fact u? € G implies |1y = 0, that is 1)y = 0. O]

Therefore, using the original W-model is equivalent to using the u-model for study-
ing the bifurcation phenomenon. For the SMA, one direction of the implications is still

obvious.

Corollary 8.6. The assertion “Every ground state obeys the SMA” implies “Every

element in G obeys the SMA”.

Proof. Assume the first statement. Let u € G, then

U = (1, 09, 7-1¢)
for some constants ; and some function ¢ € H*(R*) N L (R?) N L*(R?). That is
u= (e "y, e ey, e 1),

the form of the SMA. L]
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For the converse, we need the following result. (See relevant discussions after

Corollary 8.8.)
Lemma 8.7. Let V be a ground state, then
U= ([eale™, [thole™, [p_i]e)
for some real constants 1y, 1y and 1_1.
Proof. Since W is a ground state, the fact E[¥] > £[u?] = E[¥""] implies
E[V] = E[u”)]. (8.3)

From the derivation of the reduction in Section 2.1, the validity of (8.3) implies

IV;| = |V|¢;||  for each j. (8.4)

Now since u? € G, for each j, [1;] = 0 or |¢);| > 0 everywhere. For some fixed j,
if |¢;| = 0, we can choose 7, to be any real constant. On the other hand, if [¢;| > 0,
the fact that |¢;| € C"! implies |1, is locally bounded away from zero. Thus, applying

Corollary 8.3 for f = (Re(¢);), Im(¢;)), we find the equality (8.4) is equivalent to

V; = alb;] 4+ ib|y;| = [¥;](a + ib)

for some real constants a and b. Obviously |a + ib| = 1, and hence a + ib = " for

some constant 7);. 0

Corollary 8.8. The assertion “Every element in G obeys the SMA” implies “Every

ground state obeys the SMA”.
Proof. Assume the first assertion. Then let W be a ground state, we have

u? = (J¢u], [Yol, [v-1]) = (mu, vou, v-1u),

for some constants ; and some function v € H* N L} N L*. By Lemma 8.7, we then

have
U = (" yu, €™ you, €y qu)
for some real constants 77;. Hence ¥ obeys the SMA. 0
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Discussion 1

One might think, naturally, that the constants 7; in Lemma 8.7 should satisfy (2.2), i.e.

cos(m — 2mo + n—1) = —sgn(5), (8.5)

as is indicated by the reduction. This is not exactly true. Indeed, from the reduction in

Section 2.1, The equality (8.3) holds iff (8.4) holds and

o || [¢0—1] cos(m — 2nm0 + 1—1) = —sgn(B1)[Yo|*|¢1 [|1-1].

Hence (8.5) is required only when ¢; # 0 for each j. While if one of the 1; vanishes,
its phase plays no role and in principle can be arbitrary. And the phase(s) correspond-

ing to nonvanishing component(s) can be arbitrary real constant(s).
Discussion 2

There is a more intuitive, and frequently adopted, way to see why the phases of the
components of a ground state should be constants. That is by directly differentiating
the polar form of ;. To see this, we again let ¢; = |¢;|e", of which 7, is not yet

known to be a constant. Then we have

Vi = eV |y;] + ilys]e™ Vi, (8.6)
from which

[V[* = VI + [Vl

Hence |V);|* > | V|1,

2, and the equality holds if |¢;|?|Vn;|> = 0. From this result,
we obtain the same conclusion that 7; is a constant for nonvanishing ;.

The differentiation (8.6) is however somewhat formal. There is no problem for
|;], which lies in H* as long as v); does. Nevertheless, the differentiability of 7; is not
automatically ensured, even if we have known that ¢»; € C"'. For example, iz (z € R)
is a smooth function, while its phase 6(z) satisfies

oy _ | i ife>0
—i if 2 <0.
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And hence #(x) must have a jump discontinuity at z = 0. This problem is resolved
again by the fact that |¢);] is either identically zero or positive everywhere. The proof
however relies on a nontrivial result asserting the possibility of “lifting” a S'-valued
function without losing regularity. Precisely, the validity of (8.6) for ground state W is

given by the following fact.

Lemma 8.9. Let Q C R? be a (smooth) bounded domain which is simply connected.
Let f € HY(Q,C) be such that |f| is bounded away from zero, then f = |f|e¥ for
some 6 € H'(Q, R).

Proof. Since |f| is bounded away from zero, f/|f| € H' (2, S1). Thus f/|f] = €
for some 6 € H'(Q,R) [4]. O

Remark 8.1. The 6 in the above proof is called a lifting of f/|f|. One can consult [5]

for more about assertions on the regularity of lifting.

8.3 Complements to Section 2.2

The main results in this section are Proposition 8.12 and Proposition 8.14. They con-

tain respectively the following assertions given in Section 2.2:
e the strict positivity of nonvanishing components of elements in G, and
e Proposition 2.2.
8.3.1 Positivity of nonvanishing components
We first give a special case of Theorem 8.19 (the strong maximum principle) of [8].

Proposition 8.10. Let Q) be a domain in R%. Suppose v € H'(Q, R) satisfies (in the

sense of distribution)

Av+d(xz)v >0 in Q
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for some measurable function d(x) which is bounded and nonpositive. Then, if for

some ball B CC QQ we have

supv =supwv > 0,
B Q

the function v must be constant in ).

Corollary 8.11. Let ) be a domain in R%. Suppose u : 0 — [0, 00) is of class C. If

u satisfies
Au+d(z)u <0 in Q

for some d(x) € L72.(S2), then either u =0 oru > 0 on S

loc

Proof. Assume u(xy) = 0 for some z, € 2. We want to prove u = 0. Let 2; be a

loc

subdomain of 2 such that zy € 2, CC Q. Since d(z) € L2 (), d(z) is bounded on

(2. Let ¢ be a positive constant such that d(z) := d(xz) — ¢ < 0on €. Then v := —u

satisfies

Av + d(z)v = —(Au+ d(z)u) + cu > 0 in Q.
Thus we can apply Proposition 8.10 to v, and v = 0 (i.e. u = 0) follows the fact
supv = supv = v(xg) = 0,
B o
for arbitrary ball B satisfying zo € B CC §2;. [

Proposition 8.12. Let u € G. Then for each u;, either u; = 0 or u; > 0 everywhere.

Proof. (2.4b) can be arranged as
Aug + do(z)ug = 0,

where

do(x) = p— V(z) — 2Bo|ul?® — 26 (ug — sgn(By)u_y)”.

67



Similarly, from (2.4a) and (2.4c) we have, for j = 1, —1,
Au; + dj(r)u; = —2Bsgn(By)ugu_; <0,
where

d;(z) =+ A=V = 23ul* - 25 (ug+u§ —u? ) —q.

—J

By the fact that u € C' and the assumption (A1), d;(x) is locally bounded for each

j = 1,0, —1. The assertion of the proposition thus follows Corollary 8.11 [

8.3.2 Proof of Proposition 2.2

We next prove Proposition 2.2. Note that we write H' for H!(R?, C), and similarly
for L% and L*. A sequence {(u7,ud,u™,)} in (H')? is said to be (weakly) convergent
in H' if it is (weakly) convergentin (H')?> = H' ® H' @ H' = H'(R? R?), which is
equivalent to say {uy} is (weakly) convergent in H' for each j = 1,0, —1. The same
convention applies to (weak) convergence in L} and in L*.

We’ll use without proof the following facts.

1. B is a reflexive Banach space, in which weak convergence is equivalent to weak

convergence in H', in L?,, and in L* separately.

2. Since B, is a convex and closed subset of B, B is a weakly closed subset of B

(Mazur’s theorem).

3. H', L%, and L* are uniformly convex.

Remark 8.2. For our purpose, we can in fact “define” weak convergence in B to be
weak convergence in H', in L?, and in L*, without knowing that this definition is really
equivalent to weak convergence in the Banach space B. Some arguments should then
be modified, for example the reason B is weakly closed in B. This, though works, is

of course very unsatisfactory.
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Remark 8.3. Although these facts are well-known, some of them usually do not ap-
pear in standard courses. Indeed, I myself got the answer of the first claim from
mathoverflow.net (Thanks Dr. William B. Johnson), and the uniform convexity of gen-
eral Sobolev spaces (but not only Lebesgue spaces) was found on a page of

math.stackexchange.com (asked by Tomds and answered by martini).
We’ll also need the following observation.

Lemma 8.13. For $; < 0 (and |p1| < By by the assumption (A2)), we have for every

ucA

2

ol + E4lu) = (B + 1) [ ful’ = 51 [ (u = 2unu)?

In particular,

Eolul + E1lu] = (50 -+ 1) [ Jul"
Proof. The assertion is a direct consequence of the following identity:

ul' = [2ud(n +ua)” + (= )] = (f —2uu)’. BT

Remark 8.4. Identity (8.7) is also used in the proof of Theorem 3.1 (equation 3.5).
For convenience we restate Proposition 2.2 below.

Proposition 8.14. Let {u"} be a sequence in B,. Suppose N'u"] — 1, M[u"| —
M, and E[u"] is uniformly bounded in n, then {u"} has a subsequence {u™*}°
converging weakly to some u™® € A, which satisfies £[u™®] < liminf;_,., E[u"®]. If

we assume further that E[u"] — E,, then u® € G, and u"*) — u™ in the norm of B.

Proof. We first remark that with the norm defined by (2.1), B is a reflexive Banach
space, in which weak convergence is equivalent to weak convergence in H', in L},

and in L* separately. We omit the verifications of these standard facts. Moreover, since
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B, is a convex and closed subset of B, B, is a weakly closed subset of B (Mazur’s
theorem).

Note that the uniform boundedness of £[u”] implies {u™} is a bounded sequence
in B. This is obvious if §; > 0, and is also true for 5; < 0 by Lemma 8.13. Thus,
by the reflexivity of B, {u”} has a weakly convergent subsequence {u™*)}> , in B, of
which we denote the weak limit by u®. We have u®™ € B, since B, is weakly closed
in B.

To prove u™ € A, we shall prove

/(ujoo)2 = lim (u?(k)>2. (8.8)

k—o00

First, by the weak lower semi-continuity of a norm, we have

/ (u)” < liminf (u?(k)>2. (8.9)

k—o0

On the other hand, to give a suitable estimate of lim sup,, [ (u?(k))Q, we exploit the facts
that (i) (A1) implies (u}l(k))2 is very small outside a large enough bounded set, and that

(ii) on any bounded set, u?(k)

— u3° in L? by compact embedding H' — L. As to
(i), note that since {u"} is a bounded sequence, we have in particular [ V|u"®|? < C
for some C' > 0 independent of k. By the assumption (A1), for any € > 0, there exists

R. > 0 such that V(z) > C/e for |z| > R.. Thus we have

C > /V‘un(k)’2 2/ V|un(k)|2 > g/ |un(k)|27
B(Re)e € JB(Ro)e

and hence [, . u"®|2 < ¢ for each k. In particular

2
/ (u;‘(k)) <e foreach k€ Nand j =1,0,—1.
B(R.)°

From this fact and the strong convergence mentioned in (ii), we obtain

2 2 2
limsup/ (u?(k)> = lim sup (/ (uy(k)> +/ <u?(k)) )
k—o00 k—o0 B(R:)e B(R:)

< 5—1—/ (u)? (8.10)
B(R.)

§5+/(u§°)2.
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Since € > 0 is arbitrary, (8.9) and (8.10) implies (8.8), and hence u™ € A.
Next, the assertion £[u™] < lim inf, £[u™*)] follows a general weak lower semi-

continuity theorem. See e.g. Theorem 1.6 of [20]. Indeed, by that theorem we have

/‘Vu;?of < liminf/‘Vu?(k)
k—o0

2
/V < hmlnf V(z) (u?(k)> ,

)

and

/f u®, ug’, u <hm1nf/f , (f)) (8.11)

for every continuous function f : R* — [0, 00). As a consequence, we have
Erin[u™] < liminf &y, [un(’f)]
k—o0

Epor[1™] < lim inf E,p [u"P]
o (8.12)
50[1100] +& [uoo} < lilgn inf (50 [un(k)] + & [un(k)])

Ezee[u™] < liminf SZee[un(k)].

k—o0
Note carefully that (8.11) requires that f be nonnegative, and hence the assertion of
the weak lower semi-continuity of & + & in (8.12) also uses Lemma 8.13. It is then
clear that the limit inferiors in (8.12) must all be limits provided £[u"] tends to the

ground-state energy F,. Otherwise we get the contradiction

E, = lim Eu"™] > £[u™].

k—o0

Now Epin[u"®] — Eiin[u™] and (8.8) imply

Since H' is uniformly convex, (8.13) together with the fact u™*) — u> weakly in H'

u?(k) ‘

" [ (8.13)

imply u™*) — u® strongly in H'. Similarly we can prove u”*) — u* in L?, and in

L%, and hence u™*) — u in the norm of B. OJ
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