Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6149
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳榮河(Rong-Her Chen)
dc.contributor.authorTe-An Wangen
dc.contributor.author王得安zh_TW
dc.date.accessioned2021-05-16T16:21:56Z-
dc.date.available2017-08-14
dc.date.available2021-05-16T16:21:56Z-
dc.date.copyright2013-08-14
dc.date.issued2013
dc.date.submitted2013-07-25
dc.identifier.citation1. 沈哲緯 (2005)。蜂巢格網加勁土壤之力學特性。碩士論文,國立臺灣大學土木工程學研究所。
2. 郭存鴿、楊有海、劉永河 (2010)。有限元素強度折減法對加勁路堤邊坡特性分析。路基工程,第148卷,101-103頁。
3. 陳榮河、黃奉琦 (2012)。蜂巢格網於大地工程上之應用。地工技術,第134期,7-14頁。
4. 黃渝紋 (2012)。三軸壓縮試驗探討蜂巢格網的圍束效應。碩士論文,國立臺灣大學土木工程學研究所。
5. 張家豪 (2004)。地工蜂巢格網加勁於砂土路基之承載能力研究。碩士論文,私立中原大學土木工程學研究所。
6. 張勇慧、李紅旭、盛謙、鄔凱、李志勇、岳志平 (2010)。基於表面位移的公路滑坡監測預警研究。岩土力學,第31卷第11期,3671-3677頁。
7. 魏照榮 (2009)。地工合成物包裹砂柱試體之尺寸效應探討。碩士論文,私立淡江大學土木工程學研究所。
8. Alamshahi, S., Hataf, N. (2009). Bearing capacity of strip footings on sand slopes reinforced with geogrid and grid-anchor. Computers and Geotechnics, Vol. 27. pp. 217-266.
9. ASTM D5321-08. (2012). Standard test method for determining the coefficient of soil and geosynthetic or geosynthetic and geosynthetic friction by the direct shear method. ASTM International, West Conshohocken, PA, USA.
10. Basudhar, P. K., Dixit, P.M., Gharpure, A., Deb, K. (2008). Finite element analysis of geotextile-reinforced sand-bed subjected to strip loading. Geotextiles and Geomembranes, Vol. 26, pp. 91-99
11. Bathurst, R. J., Jarrett, P. M. (1988). Large – scale model tests of geocomposite mattresses over peat subgrades. Transportation Research Record, Vol. 1188, pp. 28-36.
12. Bathurst, R. J., Karpurapu, R. (1993). Large scale triaxial compression test of geocell-reinforced granular soil. ASTM Geotechnical Testing Journal, Vol. 16, pp. 296-303.
13. Bathurst, R. J., Crowe, R. E. (1994). Recent case histories of flexible geocell retaining walls in North America. Proceedings of Symposium on Recent Case Histories of Permanent Geosynthetic-Reinforced Soil Retaining Wall, Tokyo, Japan, A. A. Balkema, pp. 17.
14. Bergadoa, D. T., Teerawattanasuk, Chairat. (2008). 2D and 3D numerical simulations of reinforced embankments on soft ground. Geotextiles and Geomembranes, Vol. 26, pp. 39-55.
15. Bolton, M. D. (1986). The strength and dilatancy of sands. Geotechnique, Vol. 36, No. 1, pp. 65-78.
16. Brinkgreve, R. B. J., Swolfs, W. M., Engin, E. (2011). PLAXIS 2D 2011 Reference Manual. Plaxis bv P. O. Box 572, 2600 AN DELFT, Netherlands.
17. Brinkgreve, R. B. J., Swolfs, W. M., Engin, E. (2011). PLAXIS 2D 2011 Material Manual. Plaxis bv P. O. Box 572, 2600 AN DELFT, Netherlands.
18. Brinkgreve, R. B. J., Swolfs, W. M., Engin, E. (2011). PLAXIS 2D 2011 Scientific Manual. Plaxis bv P. O. Box 572, 2600 AN DELFT, Netherlands.
19. Chen, R. H., Huang, Y. W., Huang, F. C. (2013). Confinement effect of geocells on sand samples under triaxial compression. Geotextiles and Geomembranes, Vol. 37, pp. 35-44.
20. Duncan, J. M., Byrne P., Wong K.S., Phillip M. (1980). Strength, stress-strain and bulk modulus parameters for finite element analyses of stresses and movements in soil masses. Collage of Engineering Office of Research Services, University of California Berkeley, California.
21. Emersleben, A., Meyer, N. (2008). The use of geocells in road constructions over soft soil: vertical stress and falling weight deflectometer measurements. EuroGeo4 Paper, Vol. 132, pp. 1-8.
22. Emersleben, A., Meyer, N. (2009). Interaction between hoop stresses and passive earth resistance in single and multiple geocell structures. GIGSA GeoAfrica 2009 Conference.
23. Henkel, D. J., Gilbert G. D. (1952). The effect of the rubber membrane on the measured triaxial compression strength of clay samples. Geotechnique, Vol. 3, No. 1, pp. 20-29
24. Hinchberger, S. D., Rowe, R. K. (2003). Geosynthetic reinforced embankments on soft clay foundations: predicting reinforcement strains at failure. Geotextiles and Geomembranes, Vol. 21, pp. 151-175.
25. Hong, Y. S. (2012). Performance of encased granular columns considering shear-induced volumetric dilation of the fill material. Geosynthetics International, Vol. 19, No. 6, pp. 438-452.
26. Iizukaa, A., Kawai, K., Kim, E. R., Hirata, M. (2004). Modeling of the confining effect due to the geosynthetic wrapping of compacted soil specimens. Geotextiles and Geomembranes, Vol. 22, pp. 329-358.
27. Latha, G. M., Rajagopal, K. (2007). Parametric finite element analyses of geocell – supported embankments. Canadian Geotechnical Journal, Vol. 44, pp. 917-927.
28. Lu, M., McDowell, G. R. (2007). The importance of modelling ballast particle shape in the discrete element method. Granular Matter, Vol. 9, pp. 69-80.
29. Leshchinsky, B., Ling, H. I. (2013). Numerical modeling of behavior of railway ballasted structure with geocell confinement. Geotextiles and Geomembranes, Vol. 36, pp. 33-43.
30. Leshchinsky, B., Ling, H. I. (2013). Effects of geocell confinement on strength and deformation behavior of gravel. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 139, pp. 340-352.
31. Pokharel, S. K., Han, J., Leshchinsky, D., Parsons, R. L., Halahmi, I. (2010). Investigation of factors influencing behavior of single geocell – reinforced bases under static loading. Geotextiles and Geomembranes, Vol. 28, pp. 570-578.
32. PRS Company, http://www.prs-med.com
33. Presto Product Company, http://www.prestogeo.com/.
34. Racana, N., Gourves, R., Grediac, M. (2003). Experimental study of the mechanical behaviour of soil reinforced by geocells. Transport research Laboratory, pp.1349-1352.
35. Rajagopal, K., Krishnaswamy, N. R., Latha, G. M. (1999). Behaviour of sand confined with single and multiple geocells. Geotextiles and Geomembranes, Vol. 17, pp. 171-184.
36. Sheng, D., Westerberg, B., Mattsson, H., Axelsson, M. K. (1997). Effects of end restraint and strain rate in triaxial tests. Computers and Geotechnics, Vol. 21, No. 3, pp. 163-182.
37. Schanz, T., Vermeer, P. G. (1999). The hardening soil model: Formulation and verification. Computational Geotechnics, pp. 1-16.
38. Webster, S. L. (1979). Investigation of beach sand trafficability enhancement using sand-grid confinement and membrane reinforcement concepts. Report GL-79-20(1), Geotechnical Laboratory, US Army Engineer Waterways Experiment Station, Vicksburg, USA.
39. Webster, S. L. (1981). Investigation of beach sand trafficability enhancement using sand-grid confinement and membrane reinforcement concepts. Report GL-79-20(2), Geotechnical Laboratory, US Army Engineer Waterways Experiment Station, Vicksburg, USA.
40. Wesseloo, J., Visser, A. T., Rust, E. (2009). The stress – strain behavior of multiple cell geocell packs. Geotextiles and Geomembranes, Vol. 27, pp. 31-38.
41. Wu, C. S., Hong, Y. S. (2009). Laboratory tests on geosynthetic - encapsulated sand columns. Geotextiles and Geomembranes, Vol. 27, pp. 107-120.
42. Wu, C. S., Hong, Y. S., Lin, H. C. (2009). Axial stress – strain relation of encapsulated granular column. Computers and Geotechnics, Vol. 36, pp. 226-240.
43. Yang, X., Han, J., Pokharel, S. K., Manandhar, C., Parsons, R. L., Leshchinsky, D., Halahmi, I. (2012). Accelerated Pavement Testing of unpaved roads with geocell-reinfoced sand bases. Geotextiles and Geomembranes, Vol. 32, pp. 95-103.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6149-
dc.description.abstract蜂巢格網於國內外應用的案例雖然不少,但關於其對整體土壤加勁效果的影響仍未盡了解,此皆肇因於蜂巢格網不易於實驗室進行試驗,因此設計分析此類型的加勁結構時,如何適切地選取力學參數常讓人困惑。
本研究使用有限元素軟體PLAXIS分析蜂巢格網的加勁行為。首先,以蜂巢格網加勁砂土試體之三軸壓縮試驗結果為依據,針對土壤參數、加勁材參數與邊界條件設置等進行驗證與比對,藉以驗證數值模式的正確性。而後針對格室尺寸、形狀,以及格室外圍是否有未加勁區等因素進行探討,並求得多格室與單格室之壓縮強度的關係。
在數值驗證上,蜂巢格網材料的接縫強度十分重要。根據分析結果得知:格室直徑對加勁土壤的摩擦角影響不大,但與視凝聚力呈一乘冪關係;直徑越小時,視凝聚力越大。而格室不論原始形狀為何,受三軸壓縮後皆會趨近圓柱形,而格室變形的難易會干擾加勁材張力的發揮,進而對視凝聚力造成影響。若形狀有角隅;如六角柱,則會使得加勁土壤的摩擦角提升。格室外圍有未加勁之砂土時,則可透過公式修正得到有蜂巢格網加勁區的壓縮強度。
最後利用固定格室尺寸並增加格室數量的方式,得到多格結構之壓縮強度與單格壓縮強度之倍數關係,且該關係隨著格室的高徑比而改變。
zh_TW
dc.description.abstractGeocells have been widely applied to geotechnical engineering, but their reinforcement effects are still not fully understood. Such difficulties are primarily due to geocells not to be easily tested in the laboratory. Thus, selecting appropriate parameters for designing geocell-reinforced structures remains a difficult task.
This study analyzed sand reinforced with geocells by the finite element software PLAXIS. In the beginning, verification of the numerical model was based on the triaxial compression test results of geocell-reinforced sand samples, with material parameters, boundary conditions, and strength parameters appropriately selected. After that, the numerical model was used to investigate the effects of size and shape of geocell as well as the effect of soil surrounding the geocells. Furthermore, the relationship of the compressive strength between multiple cells and single cell was found.
From the verification of the numerical model, it has been found that the elastic modulus of the seam strengths of cell junction is very important. The analytical results show that the apparent cohesion of reinforced soil is closely related to the diameter of geocell; the cell with smaller diameter induces more apparent cohesion. Nevertheless, the friction angle of reinforced soil seems to be insignificantly affected. In addition, geocell under triaxial compression tends to become cylindrical shape, irrespective of its original shape. The deformation of geocell therefore has effect on the development of the tensile strength of the reinforcement, e.g., hexagonal packs showed the highest friction angle since their shape has many corners. Further, if there is soil surrounding cells, the compression strength of the sample can be obtained through the proposed modification equation. Finally, the relationship between the strengths of multiple cells and single cell was obtained, and it was found to be dependent on the aspect ratio of the geocell.
en
dc.description.provenanceMade available in DSpace on 2021-05-16T16:21:56Z (GMT). No. of bitstreams: 1
ntu-102-R00521125-1.pdf: 9823433 bytes, checksum: e3266578e955497506395b2c3261b409 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents誌謝 I
摘要 II
Abstract III
目錄 IV
表目錄 VI
圖目錄 VII
符號說明 XI
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 1
1.3 研究方法 2
1.4 研究內容 2
第二章 文獻回顧 6
2.1 加勁土壤 6
2.1.1 加勁原理 6
2.1.2 加勁土壤之優點 6
2.2 蜂巢格網之應用 7
2.2.1 簡介 7
2.2.2 特性 8
2.2.3 各項應用 8
2.3 蜂巢格網之室內實驗 9
2.3.1 三軸壓縮試驗 9
2.3.2 無圍壓縮試驗 12
2.3.3 環向加壓試驗 13
2.4 蜂巢格網加勁路基之研究 13
2.4.1 蜂巢格網承載力和耐用性之重要影響因子 13
2.4.2 加勁後之承載比 14
2.4.3 地盤反力係數 14
2.4.4 靜態載重試驗 15
2.4.5 APT(Accelerated pavement testing) 15
2.4.6 蜂巢格網加勁之數值分析 16
2.5 研究方向 16
第三章 數值模型介紹與建構 34
3.1 軟體簡介 34
3.1.1 土壤材料性質的模擬 34
3.1.2 PLAXIS內建結構元素 38
3.2 數值模型之建立 39
3.2.1 土壤元素 39
3.2.2 蜂巢格網 42
3.2.3 土壤與蜂巢格網之界面 43
3.3 未加勁與蜂巢格網加勁之三軸儀模型建構 44
第四章 數值模擬驗證 59
4.1 數值分析之驗證 59
4.1.1 應力應變曲線與應力路徑圖 59
4.1.2 體積應變曲線 61
4.2 蜂巢格網影響因子探討 62
4.2.1 格室直徑之影響 62
4.2.2 格網外圍砂土之影響 63
4.2.3 格室形狀之影響 64
4.2.4 蜂巢格網格數效益 65
第五章 討論與分析 98
5.1 單格加勁砂土三軸壓縮模擬結果與討論 98
5.1.1 格室直徑之影響 98
5.1.2 格網外圍砂之影響 100
5.1.3 格室形狀之影響 101
5.2 多格效益 102
5.2.1 代表性之格數 102
5.2.2 土壤應力與位移分布 103
5.2.3 加勁材張力分布 103
5.2.4 單元高徑比之影響 103
第六章 結論 116
參考文獻 117
附錄A 122
附錄B 論文口試紀錄 123
作者簡歷 127
dc.language.isozh-TW
dc.title蜂巢格網圍束效應之數值分析zh_TW
dc.titleNumerical Analysis on Confinement Effect of Geocellsen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林三賢(San-Shian Lin),洪勇善(Yung-Shan Hong)
dc.subject.keyword蜂巢格網,圍束效應,數值分析,三軸壓縮試驗,zh_TW
dc.subject.keywordgeocells,confining effect,numerical analysis,compression test,en
dc.relation.page127
dc.rights.note同意授權(全球公開)
dc.date.accepted2013-07-25
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf9.59 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved