請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61311
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉致為 | |
dc.contributor.author | Shang-Chun Lu | en |
dc.contributor.author | 呂尚濬 | zh_TW |
dc.date.accessioned | 2021-06-16T13:00:55Z | - |
dc.date.available | 2013-09-15 | |
dc.date.copyright | 2013-08-09 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-08 | |
dc.identifier.citation | 1. Takagi, S., N. Taoka, and M. Takenaka, Interfacial Control and Electrical Properties of Ge MOS structures. ECS Transactions, 2009. 19(2): p. 67-85.
2. Broqvist, P., A. Alkauskas, and A. Pasquarello, Defect levels of dangling bonds in silicon and germanium through hybrid functionals. Physical Review B, 2008. 78(7): p. 075203. 3. E. H. Poindexter, G.J.G., M.‐E. Rueckel, P. J. Caplan, N. M. Johnson, and D. K. Biegelsen Electronic traps and Pb centers at the Si/SiO2 interface: Band‐gap energy distribution Journal of Applied Physics, 1984. 56(10). 4. Yen-Chun, F., et al. High mobility high on/off ratio C-V dispersion-free Ge n-MOSFETs and their strain response. in Electron Devices Meeting (IEDM), 2010 IEEE International. 2010. 5. Houssa, M., et al., Ge dangling bonds at the (100)Ge/GeO(2) interface and the viscoelastic properties of GeO(2). Applied Physics Letters, 2008. 93(16). 6. Moore, G.E., Cramming More Components Onto Integrated Circuits. Proceedings of the IEEE, 1998. 86(1): p. 82-85. 7. C. Auth, C.A., A. Blattner, D. Bergstrom, M. Brazier, M. Bost, M. Buehler, V. Chikarmane, T. Ghani, T. Glassman, R. Grover, W. Han, , et al. A 22nm High Performance and Low-Power CMOS Technology Featuring Fully-Depleted Tri-Gate Transistors, Self-Aligned Contacts and High Density MIM Capacitors in VLSI. 2012. 8. Colinge, J.P., Multi-gate SOI MOSFETs. Microelectronic Engineering, 2007. 84(9-10): p. 2071-2076. 9. Lin, C.-H., Compact Modeling of Nanoscale CMOS, in Electrical Engineering and Computer Sciences2007, University of California at Berkeley. 10. Houssa, M., et al., Electronic properties of (100)Ge/Ge(Hf)O2 interfaces: A first-principles study. Surface Science, 2008. 602(4): p. L25-L28. 11. Choong Hyun, L., et al., High-Electron-Mobility Ge/GeO2 n-MOSFETs With Two-Step Oxidation. Electron Devices, IEEE Transactions on, 2011. 58(5): p. 1295-1301. 12. Matsubara, H., et al., Evidence of low interface trap density in GeO(2)/Ge metal-oxide-semiconductor structures fabricated by thermal oxidation. Applied Physics Letters, 2008. 93(3). 13. Chi On, C., F. Ito, and K.C. Saraswat, Nanoscale germanium MOS Dielectrics-part I: germanium oxynitrides. Electron Devices, IEEE Transactions on, 2006. 53(7): p. 1501-1508. 14. Bellenger, F., et al., High FET Performance for a Future CMOS GeO2-Based Technology. Electron Device Letters, IEEE, 2010. 31(5): p. 402-404. 15. Kuzum, D., et al., The Effect of Donor/Acceptor Nature of Interface Traps on Ge MOSFET Characteristics. Electron Devices, IEEE Transactions on, 2011. 58(4): p. 1015-1022. 16. Materials Studio Release Note, Release 5.5. 2010. 17. Kohn, W. and L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 1965. 140(4A): p. A1133-A1138. 18. Roothaan, C.C.J., New Developments in Molecular Orbital Theory. Reviews of Modern Physics, 1951. 23(2): p. 69-89. 19. Ceperley, D.M. and B.J. Alder, Ground State of the Electron Gas by a Stochastic Method. Physical Review Letters, 1980. 45(7): p. 566-569. 20. Hamann, D.R., M. Schlüter, and C. Chiang, Norm-Conserving Pseudopotentials. Physical Review Letters, 1979. 43(20): p. 1494-1497. 21. Kresse, G. and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 1999. 59(3): p. 1758-1775. 22. Perdew, J.P., K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple. Physical Review Letters, 1996. 77(18): p. 3865-3868. 23. Wright, A.C., et al., Neutron amorphography. Journal of Non-Crystalline Solids, 1982. 49(1–3): p. 63-102. 24. Clark, S.J., et al., First principles methods using CASTEP. Zeitschrift für Kristallographie - Crystalline Materials, 2005. 220(5-6-2005): p. 567-570. 25. Houssa, M., et al., First-principles study of the structural and electronic properties of (100)Ge/Ge(M)O(2) interfaces (M=Al, La, or Hf). Applied Physics Letters, 2008. 92(24). 26. Li, H., et al., Atomic bonding and disorder at Ge:GeO2 interfaces. Microelectronic Engineering, 2011. 88(7): p. 1564-1568. 27. Afanasev, V.V., Y.G. Fedorenko, and A. Stesmans, Interface traps and dangling-bond defects in (100)Ge/HfO2. Applied Physics Letters, 2005. 87(3): p. 032107-032107-3. 28. Taoka, N., et al., Nature of interface traps in Ge metal-insulator-semiconductor structures with GeO2 interfacial layers. Journal of Applied Physics, 2011. 109(8). 29. The International Technology Roadmap for Semiconductors 2012 update. 30. Houssa, M., et al., First-principles study of Ge dangling bonds in GeO2 and correlation with electron spin resonance at Ge/GeO2 interfaces. Applied Physics Letters, 2011. 99(21). 31. Dimoulas, A., et al., HfO2 high-κ gate dielectrics on Ge (100) by atomic oxygen beam deposition. Applied Physics Letters, 2005. 86(3): p. 032908-032908-3. 32. Brews, E.H.N.a.J.R., MOS (Metal Oxide Semiconductor) Physics and Technology. 1982, New York: Wiley. 33. Deng, S.R., et al., Effective reduction of fixed charge densities in germanium based metal-oxide-semiconductor devices. Applied Physics Letters, 2011. 99(5). 34. Bellenger, F., et al., Passivation of Ge ( 100 ) / GeO2 / high-κ Gate Stacks Using Thermal Oxide Treatments. Journal of The Electrochemical Society, 2008. 155(2): p. G33-G38. 35. Delabie, A., et al., Effective electrical passivation of Ge(100) for high-k gate dielectric layers using germanium oxide. Applied Physics Letters, 2007. 91(8). 36. Kutsuki, K., et al., Germanium oxynitride gate dielectrics formed by plasma nitridation of ultrathin thermal oxides on Ge(100). Applied Physics Letters, 2009. 95(2). 37. Kuzum, D., et al., Ge-Interface Engineering With Ozone Oxidation for Low Interface-State Density. Electron Device Letters, IEEE, 2008. 29(4): p. 328-330. 38. Oshima, Y., et al., Hafnium oxide/germanium oxynitride gate stacks on germanium: Capacitance scaling and interface state density. Applied Physics Letters, 2009. 94(18). 39. Xie, Q., et al., Ultrathin GeOxNy interlayer formed by in situ NH3 plasma pretreatment for passivation of germanium metal-oxide-semiconductor devices. Applied Physics Letters, 2010. 97(22). 40. Hai-Yan, J. and N.W. Cheung, Forming Gas Annealing Characteristics of Germanium-on-Insulator Substrates. Electron Device Letters, IEEE, 2008. 29(7): p. 674-676. 41. Dimoulas, A., et al., Fermi-level pinning and charge neutrality level in germanium. Applied Physics Letters, 2006. 89(25). 42. Lange, T., et al., Physical properties of thin GeO2 films produced by reactive DC magnetron sputtering. Thin Solid Films, 2000. 365(1): p. 82-89. 43. Van de Walle, C.G. and J. Neugebauer, First-principles calculations for defects and impurities: Applications to III-nitrides. Journal of Applied Physics, 2004. 95(8): p. 3851-3879. 44. Weber, J.R., A. Janotti, and C.G. Van de Walle, Dangling bonds and vacancies in germanium. Physical Review B, 2013. 87(3): p. 035203. 45. J Lento, J.-L.M.a.R.M.N., Charged point defects in semiconductors and the supercell approximation. J. Phys.: Condens. Matter, 2002. 14: p. 2637. 46. Weber, J.R., A. Janotti, and C.G. Van de Walle, Native defects in Al2O3 and their impact on III-V/Al2O3 metal-oxide-semiconductor-based devices. Journal of Applied Physics, 2011. 109(3). 47. Janotti, A. and C.G. Van de Walle, Oxygen vacancies in ZnO. Applied Physics Letters, 2005. 87(12). 48. Anderson, P.W., Model for the Electronic Structure of Amorphous Semiconductors. Physical Review Letters, 1975. 34(15): p. 953-955. 49. Baraff, G.A., E.O. Kane, and M. Schlüter, Theory of the silicon vacancy: An Anderson negative-U system. Physical Review B, 1980. 21(12): p. 5662-5686. 50. Feng, Y.P., A.T.L. Lim, and M.F. Li, Negative-U property of oxygen vacancy in cubic HfO2. Applied Physics Letters, 2005. 87(6). 51. Martinez, E., et al., Band offsets of HfO2/GeON/Ge stacks measured by ultraviolet and soft x-ray photoelectron spectroscopies. Applied Physics Letters, 2007. 90(5). 52. Hisamoto, D., et al., FinFET-a self-aligned double-gate MOSFET scalable to 20 nm. Electron Devices, IEEE Transactions on, 2000. 47(12): p. 2320-2325. 53. Verdonckt-Vandebroek, S., et al., SiGe-channel heterojunction p-MOSFET's. Electron Devices, IEEE Transactions on, 1994. 41(1): p. 90-101. 54. Leitz, C.W., et al., Hole mobility enhancements and alloy scattering-limited mobility in tensile strained Si/SiGe surface channel metal-oxide-semiconductor field-effect transistors. Journal of Applied Physics, 2002. 92(7): p. 3745-3751. 55. Spitzer, W.G. and H.Y. Fan, Determination of Optical Constants and Carrier Effective Mass of Semiconductors. Physical Review, 1957. 106(5): p. 882-890. 56. Uchida, K., A. Kinoshita, and M. Saitoh. Carrier Transport in (110) nMOSFETs: Subband Structures, Non-Parabolicity, Mobility Characteristics, and Uniaxial Stress Engineering. in Electron Devices Meeting, 2006. IEDM '06. International. 2006. 57. Esseni, D., et al., Physically based modeling of low field electron mobility in ultrathin single- and double-gate SOI n-MOSFETs. Electron Devices, IEEE Transactions on, 2003. 50(12): p. 2445-2455. 58. Esseni, D., On the modeling of surface roughness limited mobility in SOI MOSFETs and its correlation to the transistor effective field. Electron Devices, IEEE Transactions on, 2004. 51(3): p. 394-401. 59. Fischetti, M.V. and S.E. Laux, Band structure, deformation potentals, and carrier mobility in strained Si, Ge, and SiGe alloys. Journal of Applied Physics, 1996. 80(4): p. 2234-2252. 60. Van de Walle, C.G. and R.M. Martin, Theoretical calculations of heterojunction discontinuities in the Si/Ge system. Physical Review B, 1986. 34(8): p. 5621-5634. 61. Takagi, S., et al., On the universality of inversion layer mobility in Si MOSFET's: Part II-effects of surface orientation. Electron Devices, IEEE Transactions on, 1994. 41(12): p. 2363-2368. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61311 | - |
dc.description.abstract | 由於互補式金氧半元件的尺寸不斷微縮,為了讓摩爾定律繼續延續下去,使用新穎材料已是無法避免的趨勢。在諸多已被提出的新材料中,鍺被認為極有可能取代矽成為下一世代p通道金氧半元件的製造材料。然而,要付諸大量生產,鍺仍有問題待解決,其中之一,便是鍺與介電材料的介面品質不佳。在許多解決方法之中,使用熱氧化法成長的二氧化鍺,由於可以有效降低鍺元件的介面缺陷密度,因此受到了許多關注。但鍺與二氧化鍺介面也還有未解的問題─過去的模擬結果顯示,在使用含有無缺陷鍺次級氧化物的氧化鍺與鍺所建立的介面模型中,並沒有發現任何介面帶隙能態,意味著單純的鍺次級氧化物並不是造成元件特性降低的來源。因此,在本論文中,我們決定採取第一原理密度泛函的方法來建立具有懸浮鍵的鍺/二氧化鍺介面模型,進一步探討介面上處在不同氧化態的鍺原子─也就是鍺次級氧化物中的鍺原子─之上的懸浮鍵所造成的帶隙能態能量位置的差異,還有不同氧化態對能量位置的影響,藉以提出能帶中不同位置之帶隙能態的可能來源,同時我們也解釋了在二氧化鍺中的氧化層固定電荷來源。此外,由於預期高介電常數金屬氧化物在未來極有可能被運用在鍺元件上,我們也研究了高介電材料內的金屬離子對鍺/二氧化鍺介面上帶隙能態可能產生的影響,並提出方法來幫助選擇適用於鍺元件的高介電氧化物。
本論文的第二部份,我們把焦點轉移到另一種可以幫助維持摩爾定律的技術─鰭式場效電晶體(FinFET)。我們模擬了在不同鍺/矽濃度比例下,矽鍺鰭式場效電晶體之電子遷移率變化。在我們的模擬中考慮了三種電子散射機制:聲子散射、粗糙表面散射以及矽鍺合金散射,矽鍺合金的散射位能井我們由似合實驗數據得到。此外,我們也討論了沿著鰭式通道的寬度和通道方向施加應力造成的電子遷移率上升變化。我們的計算結果對於如何選擇適當的應力施加方向來最佳化矽鍺鰭式場效電晶體的電子遷移率提供了策略。 | zh_TW |
dc.description.abstract | Due to the aggressive scaling of CMOS technology, applying high mobility materials to channel of metal-oxide-semiconductor field-effect transistors (MOSFETs) is an important way to preserve the validity of Moore's Law. Among all the choices, Ge has been regarded as a promising candidate for p-channel device. However, an important issue concerning Ge MOSFETs is the electrical condition of the germanium/dielectric interface. As a result, germanium oxide (GeO2) is used as the potential passivation layer since the densities of interface states (Dit) can be reduced effectively by the methods of thermal oxidation. Nevertheless, one of the remaining puzzles is that the electronic structure of Ge/GeO2 interface models including a defect-free suboxide transition region did not reveal any gap states within the Ge band gap, suggesting that the suboxide itself should not be invoked as the cause of any electrical degradation. Therefore, in this work, by employing first-principle density functional theory (DFT) method, we investigate the electronic structure of Ge/GeO2 with Ge dangling bonds at different oxidation states to show the origin of the defect states at different energy locations and the shift of defect states within the bandgap due to higher oxidation state, and also explain the source of the positive fixed charges in defective GeO2 for the first time by calculating formation energy. Expecting the future high-k dielectric integration with Ge MOSFET, we also take a look at the impact of several kinds of high-k metal impurities on the gap states at Ge/GeO2 interface. This helps pave a way to find the optimal high-k oxides for Ge transistors.
In the second phase of this work, we switch the focus to another approach which can also keep Moore's law going: FinFET. We simulate the electron mobility of SiGe FinFETs with different [Ge]/[Si] ratios, while taking into account three scattering mechanisms: phonon scattering, surface roughness scattering, and SiGe alloy scattering. We extract the alloy scattering potential from experimental data. In addition, the enhancement of mobility under stress along fin-width and channel direction as well as the fin-width effect on mobility are also investigated. Our results demonstrate a possible strategy to optimize the mobility of SiGe FinFETs via strain engineering at certain Ge concentration. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T13:00:55Z (GMT). No. of bitstreams: 1 ntu-102-R99941068-1.pdf: 6853498 bytes, checksum: 3cb5d22c0516f9aee7a1e23a15f73b0f (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 摘要 I
ABSTRACT III CONTENTS V LIST OF FIGURES VIII LIST OF TABLES XII Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 3 Chapter 2 Atomistic modeling of Ge/GeO2 interface 5 2.1 Introduction 5 2.2 Computational Approach 6 2.2.1 CASTEP 6 2.2.2 Density functional theory 6 2.2.3 Pseudopotential 9 2.2.4 Approximations of exchange-correlation 9 2.2.5 Geometry Optimization 10 2.2.6 Density of states and partial density of states 11 2.3 Modeling of Ge/GeO2 interface 11 2.3.1 Si/SiO2 counterpart 12 2.3.2 Methodology for Ge/GeO2 interface modeling 16 2.3.3 Results and discussion 18 2.4 Modeling of high-k metal doped Ge/GeO2 interface 26 2.4.1 Results and discussion 26 Chapter 3 Theoretical investigation of the oxygen vacancy in GeO2 32 3.1 Introduction 32 3.2 Methodology 33 3.2.1 Modeling an oxygen vacancy in GeO2 with charges 33 3.2.2 Formation energy and transition levels 37 3.3 Results and discussion 41 Chapter 4 Mobility calculation in SiGe FinFETs 43 4.1 Introduction 43 4.2 Simulation methodology 45 4.2.1 1-D Poisson-Schrödinger solver 45 4.2.2 Derivation of physical model and scattering mechanisms 48 4.3 Results and discussion 56 4.3.1 Stress effect on bulk SiGe conduction band and fitting of scattering parameters 56 4.3.2 Analysis of mobility in 7 nm and 15 nm (110) SiGe FinFETs with different Ge content 60 Chapter 5 Summary and Future Work 69 5.1 Summary 69 5.2 Future work 70 Reference 71 | |
dc.language.iso | en | |
dc.title | 鍺/二氧化鍺介面及二氧化鍺塊材之第一原理探討以及矽鍺鰭式場效電晶體之電子遷移率計算 | zh_TW |
dc.title | First-principles Study of Ge/GeO2 Interface and Bulk GeO2 and Calculation of Electron Mobility in SiGe FinFETs | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蘇彬,連振炘,李清庭 | |
dc.subject.keyword | 密度泛函,鍺/二氧化鍺,懸浮鍵,介面缺陷密度,氧化層固定電荷,矽鍺,鰭式場效電晶體, | zh_TW |
dc.subject.keyword | Density functional theory,Ge/GeO2,dangling bonds,Dit,fixed charge,SiGe,FinFET, | en |
dc.relation.page | 77 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-08-08 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 6.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。