Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61265
標題: 利用蜂巢狀光觸媒處理甲醛之研究
Control of Formaldehyde by the Honeycomb Monolith Photocatalyst Reactor
作者: Guan-Yi Lin
林冠沂
指導教授: 李慧梅
關鍵字: 揮發性有機物,甲醛,光觸媒,蜂巢狀載體,光纖,
volatile organic compounds,formaldehyde,optical fiber,photocatalyst,honeycomb monolith,
出版年 : 2013
學位: 碩士
摘要: 揮發性有機物(Volatile organic compounds, VOCs)為室內主要空氣污染物,與室內空氣品質(IAQ)有關,且被認為是引起病態大樓症候群(SBS)的原因之一。不同室內揮發性有機物來源有所差異,其中室內木質家俱、消費型產品,抽菸及烹飪等,會產生不同程度之甲醛逸散。甲醛對人體健康影響甚重,IARC將其列為第一類致癌物質,在台灣2012年11月公布之室內空氣品質管理法,對室內甲醛濃度進行規範(0.08 ppm),故本實驗選擇甲醛當作目標污染物。
本研究於光反應器中進行光催化反應,光反應器內部放置蜂巢狀載體,藉由蜂巢狀載體增加反應面積、觸媒批覆量,並搭配光纖作為導光通道,確保紫外光可以深入光反應器內激發光觸媒。實驗之紫外光燈管為8 W,波長為254 nm、光觸媒選用Degussa P25 TiO2商業光觸媒、溫度控制在25±1℃。實驗之影響因子包含HCHO進流濃度、相對濕度、氣體流率。
實驗將氣體流率控制在1400 ml/min,避免氣相質傳效應影響光催化反應速率。在相對濕度(30%、40%、70%),HCHO進流濃度由0.80 ppm至2.00 ppm時,光觸媒轉化效率隨濃度增加而上升;而在相對濕度(50%、60%),HCHO進流濃度由0.80 ppm至2.00 ppm時,光觸媒轉化效率一開始呈上升趨勢,但於1.40 ppm時轉化率下降,之後HCHO濃度增加,轉化率上升。光觸媒反應速率在相對濕度固定的情況下,隨HCHO進流濃度增加,光觸媒反應速率呈線性增加。
在甲醛進流濃度0.80 ppm至2.00 ppm時,不論在何種相對濕度(30%、40%、50%、60%、70%),光觸媒轉化效率皆可以維持在90%至95%,較佳相對濕度條件為40至50%。光觸媒反應中,相對濕度具有生成氫氧自由基及與反應物產生競爭吸附的作用,由實驗可知,相對濕度30%時,提高相對濕度有助於轉化率上升;相對濕度50%時,提高相對濕度會造成轉化率下降。
利用光催化反應雙分子競爭動力模式(Langmuir-Hinshelwood model)來進行模擬,可得在相對濕度30%下,HCHO與水分子之Langmuir吸附常數為0.03075與0.7432 ppm-1,HCHO之反應速率常數為0.04793 μmole/m2-s;相對濕度50%下,HCHO與水分子之Langmuir吸附常數為0.03221與0.7066 ppm-1,HCHO之反應速率常數為0.04503 μmole/m2-s;相對濕度70%下,HCHO與水分子之Langmuir吸附常數為0.5247與0.8923 ppm-1,HCHO之反應速率常數為0.00457 μmole/m2-s。
Volatile organic compounds (VOCs) are the major indoor air pollutants, which are significantly related to indoor air quality (IAQ), and it is considered as a cause for sick building syndrome (SBS). Different indoor volatile organic compounds come from different sources. Sources of formaldehyde indoor include wooden furniture, consumer products, smoking and cooking, etc., and each of them will cause different levels of formaldehyde emission. Formaldehyde may cause health problems and the international agency for research on cancer (IARC) classified it as a human carcinogen. The Indoor Air Quality Management Act of Taiwan, which restricted indoor formaldehyde concentration to 0.08 ppm, so formaldehyde was chosen as the aim pollutant in this study.
In this study, formaldehyde was degraded by photocatalytic oxidation (PCO) in photocatalytic reactor, and placed a honeycomb monolith inside it, which can increase the reaction area and the amount of coated photocatalysts. The honeycomb monolith needs to be operated with optical fiber for UV light to excite photocatalysts. The UV light source was controlled at 254 nm and 8 W, controlling temperature at 25±1℃, and choosing Degussa P25 TiO2 for the catalyst in this study. The key factors of the formaldehyde removal efficiency including formaldehyde concentration, relative humidity and gas flow rate.
The gas flow rate was controlled at 1400 ml/min, which avoided the gas phase mass transfer affecting photocatalytic reaction rate. Controlling HCHO inlet concentration from 0.80 ppm to 2.00 ppm at relative humidity of 30%, 40%, 70%, respectively, the photocatalytic conversion efficiency increased with the increasing inlet concentration. However, in the same inlet concentration gradient of HCHO, controlled the relative humidity of 50% and 60%, respectively, the photocatalytic conversion efficiency started an upward trend, but the efficiency decreased at 1.40 ppm. Then, the photocatalytic conversion efficiency increased with the increasing concentration. The photocatalytic reaction rate increases linearly with the increasing concentration at constant relative humidity.
The conversion efficiency was maintained between 90% and 95% regardless of the relative humidity which was from 30% to 70% at inlet concentration of HCHO from 0.80 ppm to 2.00 ppm. Relative humidity may affect the production of hydroxyl radicals and the competitive adsorption in photocatalytic reaction. In this study, increasing relative humidity had an enhancement effect on conversion at humidity 30%; though the relative humidity 50% had an inhibition effect on conversion.
The PCO kinetics fitted Langmuir-Hinshelwood model for biomoecular competitive adsorption form. The Langmuir adsorption constants of HCHO and water at relative humidity 30% is 0.03075 and 0.7432 ppm-1. The reaction rate constants of HCHO at relative humidity 30% is 0.04793 μmole/m2-s;The Langmuir adsorption constants of HCHO and water at relative humidity 50% is 0.03221 and 0.7066 ppm-1. The reaction rate constants of HCHO at relative humidity 30% is 0.04503 μmole/m2-s;The Langmuir adsorption constants of HCHO and water at relative humidity 70% is 0.5247 and 0.8923 ppm-1. The reaction rate constants of HCHO at relative humidity 30% is 0.00457 μmole/m2-s.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61265
全文授權: 有償授權
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
2.46 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved