請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61265
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李慧梅 | |
dc.contributor.author | Guan-Yi Lin | en |
dc.contributor.author | 林冠沂 | zh_TW |
dc.date.accessioned | 2021-06-16T10:56:56Z | - |
dc.date.available | 2018-08-14 | |
dc.date.copyright | 2013-08-14 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-08 | |
dc.identifier.citation | 1. Agency for toxic Substances & Disease Registry, “Toxicological profile for toluene,” USA (2000).
2. Agency for toxic Substances & Disease Registry, “Medical Management Guidelines for Xylene,” USA (2007). 3. Altshuller, A. and I. Cohen, “Application of diffusion cells to production of known concentration of gaseous hydrocarbons,” Analytical Chemistry, 32(7), 802-810 (1960). 4. Ao, C. H., S. C. Lee, J. Z. Yu and J. H. Xu, “Photodegradation of formaldehyde by photocatalyst TiO2: effects on the presences of NO, SO2 and VOCs,” Applied Catalysis B-Environmental, 54(1), 41-50 (2004). 5. Avila, P., A. Bahamonde, J. Blanco, B. Sanchez, A. I. Cardona and M. Romero, “Gas-phase photo-assisted mineralization of volatile organic compounds by monolithic titania catalysts,” Applied Catalysis B-Environmental, 17(1-2), 75-88 (1998). 6. Barratt, R. S., “The preparation of standard gas mixtures,” Analyst, 106, 817-849 (1981). 7. Baulch, D., R. Cox, R. Hampson Jr, J. Kerr, J. Troe and R. Watson, “Evaluated kinetic and photochemical data for atmospheric chemistry: supplement II. CODATA task group on gas phase chemical kinetics,” Journal of physical and chemical reference data, 13(4), 1259 (1984). 8. Bernstein, J. A., N. Alexis, H. Bacchus, I. L. Bernstein, P. Fritz, E. Horner, N. Li, S. Mason, A. Nel, J. Oullette, K. Reijula, T. Reponen, J. Seltzer, A. Smith and S. M. Tarlo, “The health effects of nonindustrial indoor air pollution,” Journal of Allergy and Clinical Immunology, 121(3), 585-591 (2008). 9. Blondel, A. and H. Plaisance, “Screening of formaldehyde indoor sources and quantification of their emission using a passive sampler,” Building and Environment, 46(6), 1284-1291 (2011). 10. Bourgeois, P. A., E. Puzenat, L. Peruchon, F. Simonet, D. Chevalier, E. Deflin, C. Brochier and C. Guillard, “Characterization of a new photocatalytic textile for formaldehyde removal from indoor air,” Applied Catalysis B-Environmental, 128,171-178 (2012). 11. Brooks, B. O., G. M. Utter, J. A. Debroy and R. D. Schimke, “Indoor air pollution: an edifice complex,” Journal of Toxicology-Clinical Toxicology, 29(3), 315-374 (1991). 12. Dibble, L. A. and G. B. Raupp, “Fluidized-bed photocatalytic oxidation of trichloroethylene in contaminated airstreams,” Environmental Science & Technology, 26(3), 492-495 (1992). 13. Dong, S. and P. K. Dasgupta, “Solubility of gaseous formaldehyde in liquid water and generation of trace standard gaseous formaldehyde,” Environmental Science & Technology, 20(6), 637-640 (1986). 14. Duan, X. D., D. Z. Sun, Z. B. Zhu, X. Q. Chen and P. F. Shi, “Photocatalytic decomposition of toluene by TiO2 film as photocatalyst,” Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 37(4), 679-692 (2002). 15. Duong, A., C. Steinmaus, C. M. McHale, C. P. Vaughan and L. P. Zhang, “Reproductive and developmental toxicity of formaldehyde: A systematic review,” Mutation Research-Reviews in Mutation Research, 728(3), 118-138 (2011). 16. Fogler, H. S., “Elements of chemical reaction engineering,” 3rd Ed., Prentice Hall International, Inc., New Jersey, USA (1999). 17. Fox, M. A. and M. T. Dulay, “Heterogeneous Photocatalysis,” Chemical Reviews, 93(1), 341-357 (1993). 18. French Agency for Environmental and Occupational Health Safety, “Indoor air quality guidelune value proposals,” (2007). 19. Fujishima, A. and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature, 238, 37-38 (1972). 20. Gratzel, M., “Photoelectrochemical cells,” Nature, 414, 338-344 (2001). 21. Guo, H., N. H. Kwok, H. R. Cheng, S. C. Lee, W. T. Hung and Y. S. Li, “Formaldehyde and volatile organic compounds in Hong Kong homes: concentrations and impact factors,” Indoor Air, 19(3), 206-217 (2009). 22. Hager, S., R. Bauer and G. Kudielka, “Photocatalytic oxidation of gaseous chlorinated organics over titanium dioxide,” Chemosphere, 41(8), 1219-1225 (2000). 23. Hansch, C., A. Leo and D. Hoekman, “Exploring QSAR, Hydrophobic, Electronic, and Steric Constants,” American Chemical Society, Washington DC, USA (1995). 24. Hashimoto, K., K. Wasada, M. Osaki, E. Shono, K. Adachi, N. Toukai, H. Kominami and Y. Kera, “Photocatalytic oxidation of nitrogen oxide over titania-zeolite composite catalyst to remove nitrogen oxides in the atmosphere,” Applied Catalysis B-Environmental, 30(3-4), 429-436 (2001). 25. Heroux, M. E., N. Clark, K. Van Ryswyk, R. Mallick, N. L. Gilbert, I. Harrison, K. Rispler, D. Wang, A. Anastassopoulos, M. Guay, M. MacNeill and A. J. Wheeler, “Predictors of indoor air concentrations in smoking and non-smoking residences,” International Journal of Environmental Research and Public Health, 7(8), 3080-3099 (2010). 26. Hines, A. L.,K. G. Tushar, K. L. Sudarshan and C. W. Jr. Richand, “Indoor Air: Quality and Control, ” PTR Prentice Hall Englewood Cliffs, New Jersey, USA (1993). 27. Hoffmann, M. R., S. T. Martin, W. Y. Choi and D. W. Bahnemann, “Environmental applications of semiconductor photocatalysis,” Chemical Reviews, 95(1), 69-96 (1995). 28. Howard, P.H., “Handbook of Fate and Exposure Data for Organic Chemicals. Vol. I Large Production and Priority Pollutants,” Lewis Publishers, Chelsea, Michigan, USA (1989). 29. Hung, C. H. and B. J. Marinas, “Role of chlorine and oxygen in the photocatalytic degradation of trichloroethylene vapor on TiO2 films,” Environmental Science & Technology, 31(2), 562-568 (1997). 30. Institute of Environmental Epidemiology Ministry of the Environment, “guidelines for good indoor air quality in office premises,” Singapore (1996). 31. International Organization of Standardization, “ ISO Guide 35:2006 Reference materials-General and statistical principles for certification,” Geneva, Switzerland (2006). 32. International Agency for Reasch on Cancer, “Formaldehyde, 2-butoxyethanol and 1-tert-butoxypropan-2-ol,” (2006) 33. Jacoby, W. A., D. M. Blake, J. A. Fennell, J. E. Boulter, L. M. Vargo, M. C. George and S. K. Dolberg, “Heterogeneous photocatalysis for control of volatile organic compounds in indoor air,” Journal of the Air & Waste Management Association, 46(9), 891-898 (1996). 34. Jarnstrom, H., K. Saarela, P. Kalliokoski and A. L. Pasanen, “Reference values for indoor air pollutant concentrations in new, residential buildings in Finland,” Atmospheric Environment, 40(37), 7178-7191 (2006). 35. Kabir, E. and K. H. Kim, “An investigation on hazardous and odorous pollutant emission during cooking activities,” Journal of Hazardous Materials, 188(1), 443-454 (2011). 36. Kim, S. B. and S. C. Hong, “Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst,” Applied Catalysis B: Environmental, 35(4), 305-315 (2002). 37. Klamt, A., “Estimation of gas-phase hydroxyl radical rate constants of oxygenated compounds based on molecular orbital calculations,” Chemosphere, 32(4), 717-726 (1996). 38. Klepeis, N. E., W. C. Nelson, W. R. Ott, J. P. Robinson, A. M. Tsang, P. Switzer, J. V. Behar, S. C. Hern and W. H. Engelmann, “The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants,” Journal of exposure analysis and environmental epidemiology, 11(3), 231-252 (2001). 39. Ku, Y., C. M. Ma and Y. S. Shen, “Decomposition of gaseous trichloroethylene in a photoreactor with TiO2-coated nonwoven fiber textile,” Applied Catalysis B-Environmental, 34(3), 181-190 (2001). 40. Langmuir, I., “The adsorption of gases on plane surfaces of glass, mica and platinum,” Journal of the American Chemical Society, 40(9), 1361-1403 (1918). 41. Lee, S. C., W. M. Li and L. Y. Chan, “Indoor air quality at restaurants with different styles of cooking in metropolitan Hong Kong,” Science of the Total Environment, 279(1-3), 181-193 (2001). 42. Legan, R. W., “Ultraviolet-light takes on cpi role,” Chemical Engineering, 89(2), 95-100 (1982). 43. Lewandowski, M. and D. F. Ollis, “Extension of a two-site transient kinetic model of TiO2 deactivation during photocatalytic oxidation of aromatics: concentration variations and catalyst regeneration studies,” Applied Catalysis B-Environmental, 45(3), 223-238 (2003). 44. Li, Y. T., Y. T. Wu, H. Y. Chen, M. H. Hsu, J. C. S. Wu, L. M. Chang and J. Huan, “The efficiency of UV/H2O on photocatalytical oxidation for removing volatile organic compound of clean room in semiconductor fab,” 6th Biennial International Conference on Materials for Advanced Technologies, Singapore, Paper JJ-PO3-2 (2011). 45. Lide, D. R., “Handbook of Chemistry and Physics,” 84th Edition, CRC Press, Boca Raton, Florida, USA (2003). 46. Liang, W. J., J. Li and Y. Q. Jin, “Photo-catalytic degradation of gaseous formaldehyde by TiO2/UV, Ag/TiO2/UV and Ce/TiO2/UV,” Building and Environment, 51, 345-350 (2012). 47. Liu, H., Z. Lian, X. Ye and W. Shangguan, “Kinetic analysis of photocatalytic oxidation of gas-phase formaldehyde over titanium dioxide,” Chemosphere, 60(5), 630-635 (2005). 48. Liu, Q. C., L. Q. Yang, C. M. Gong, G. H. Tao, H. Y. Huang, J. J. Liu, H. M. Zhang, D. S. Wu, B. Xia, G. H. Hu, K. P. Wang and Z. X. Zhuang, “Effects of long-term low-dose formaldehyde exposure on global genomic hypomethylation in 16HBE cells,” Toxicology letters, 205(3), 235-240 (2011). 49. Maira, A. J., K. L. Yeung, J. Soria, J. M. Coronado, C. Belver and C. Y. Lee, “Gas-phase photo-oxidation of toluene using nanometer-size TiO2 catalysts,” Applied Catalysis B-Environmental, 29(4), 327-336 (2001). 50. Marchand, C., B. Buillot, S. Le Calve and P. Mirabel, “Aldehyde measurements in indoor environments in Strasbourg (France),” Atmospheric Environment, 40(7), 1336-1345 (2006). 51. Matsunaga, I., Y. Miyake, T. Yoshida, S. Miyamoto, Y. Ohya, S. Sasaki, K. Tanaka, H. Oda, O. Ishiko and Y. Hirota, “Ambient formaldehyde levels and allergic disorders among Japanese pregnant women: baseline data from the Osaka maternal and child health study,” Annals of epidemiology, 18(1), 78-84 (2008). 52. McKinley, J., “Permeation tubes: A simple path to very complex gas mixtures,” Gases & Instrumentation, 22-26 (2008). 53. Mills, A., R. H. Davies and D. Worsley, “Water purification by semiconductor photocatalysis,” Chemical Society Reviews, 22(6), 417-425 (1993). 54. Mills, A. and S. LeHunte, “An overview of semiconductor photocatalysis,” Journal of Photochemistry and Photobiology A-chemistry, 108(1), 1-35 (1997). 55. Ministry of Health, Labour and Welfare, “Committee on comfortable and healthy houses,” (1997). 56. Mitchell, G. D., “A review of permeation tubes and permeators,” Separation and Purification Methods, 29(1), 119-128 (2000). 57. Mo, J. H., Y. P. Zhang, Q. J. Xu, J. J. Lamson and R. Y. Zhao, “Photocatalytic purification of volatile organic compounds in indoor air: A literature review,” Atmospheric Environment, 43(14), 2229-2246 (2009). 58. National Industrial Chemicals Notification and Assessment Scheme, “Priority existing chemical assessment report NO. 28,” (2006). 59. Nojgaard, J. K., K. B. Christensen and P. Wolkoff, “The effect on human eye blink frequency of exposure to limonene oxidation products and methacrolein,” Toxicology letters, 156(2), 241-251 (2005). 60. O'Keeffe, A. E. and G. C. Ortman, “Primary Standards for Trace Gas Analysis,” Analytical Chemistry, 38(6), 760-763 (1966). 61. Obee, T. N. and R. T. Brown, “TiO2 photocatalysis for indoor air applications effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1,3-butadiene,” Environmental Science & Technology, 29(5), 1223-1231 (1995). 62. Obee, T. N. and S. O. Hay, “Effects of moisture and temperature on the photooxidation of ethylene on titania,” Environmental Science & Technology, 31(7), 2034-2038 (1997). 63. Okamoto, K., Y. Yamamoto, H. Tanaka, M. Tanaka and A. Itaya, “Heterogeneous photocatalytic decomposition of phenol over TiO2 powder,” Bulletin of the Chemical Society of Japan, 58(7), 2015-2022 (1985). 64. Ou, H. H. and S. L. Lo, “Photocatalysis of gaseous trichloroethylene (TCE) over TiO2 : The effect of oxygen and relative humidity on the generation of dichloroacetyl chloride (DCAC) and phosgene,” Journal of Hazardous Materials, 146(1), 302-308 (2007). 65. Peral, J. and D. F. Ollis, “Heterogeneous photocatalytic oxidation of gas-phase organics for air purification - acetone, 1-butanol, butyraldehyde, formaldehyde, and meta-xylene oxidation,” Journal of Catalysis, 136(2), 554-565 (1992). 66. Pichat, P. , “Photocatalytic Degradation of Pollutants in Water and Air: Basic Concepts and Applications,” In: Tarr, M.A., (Ed.) “Chemical Degradation Methods for Wastes and Pollutants Environmental and Industrial Applications,” Marcel Dekker,Inc., NEW YORK, U.S.A., pp. 77-120 (2003). 67. Qi, H., D. Z. Sun and G. Q. Chi, “Formaldehyde degradation by UV/TiO2/O3 process using continuous flow mode,” Journal of Environmental Sciences, 19(9), 1136-1140 (2007). 68. Raillard, C., V. Hequet, P. Le Cloirec and J. Legrand, “Kinetic study of ketones photocatalytic oxidation in gas phase using TiO2-containing paper: effect of water vapor,” Journal of Photochemistry and Photobiology a-Chemistry, 163(3), 425-431 (2004). 69. Rhoderick, G. C. and W. L. Zielinski, “Preparation of accurate multicomponent gas standards of volatile toxic organic compounds in the low-parts-per-billion range,” Analytical Chemistry, 60(22), 2454-2460 (1988). 70. Rodgman, A., and T. A., Perfetti, “The chemical components of tobacco and tobacco smoke, ” 1st Ed., CRC Press, Boca Raton, Florida, USA (2008). 71. Sauer, M. L. and D. F. Ollis, “Acetone oxidation in a photocatalytic monolith reactor,” Journal of Catalysis, 149(1), 81-91 (1994). 72. Sclafani, A. and J. M. Herrmann, “Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions,” Journal of Physical Chemistry, 100(32), 13655-13661 (1996). 73. Sclafani, A., L. Palmisano and M. Schiavello, “Influence of the preparation methods of TiO2 on the photocatalytic degradation of phenol in aqueous dispersion,” Journal of Physical Chemistry, 94(2), 829-832 (1990). 74. Serpone, N. and E. Pelizzetti, “Photocatalysis : fundamentals and applications,” 1st Ed., John Wiley & Sons ,New York, USA (1989). 75. Shang, J., Y. G. Du and Z. L. Xu, “Photocatalytic oxidation of heptane in the gas phase over TiO2,” Chemosphere, 46(1), 93-99 (2002). 76. Sofuoglu, S. C., G. Aslan, F. Inal and A. Sofuoglu, “An assessment of indoor air concentrations and health risks of volatile organic compounds in three primary schools,” International Journal of Hygiene and Environmental Health, 214(1), 38-46 (2011). 77. Sun, S., J. Ding, J. Bao, C. Gao, Z. Qi and C. Li, “Photocatalytic oxidation of gaseous formaldehyde on TiO2 : an in situ DRIFTS study,” Catalysis Letters, 137(3-4), 239-246 (2010). 78. Takeuchi, M., J. Deguchi, S. Sakai and M. Anpo, “Effect of H2O vapor addition on the photocatalytic oxidation of ethanol, acetaldehyde and acetic acid in the gas phase on TiO2 semiconductor powders,” Applied Catalysis B-Environmental, 96(1-2), 218-223 (2010). 79. U.S. Environment Protection Agency, “Definition of Volatile Organic Compounds (VOC),” (2009). 80. Wang, K. H., H. H. Tsai and Y. H. Hsieh, “The kinetics of photocatalytic degradation of trichloroethylene in gas phase over TiO2 supported on glass bead,” Applied Catalysis B-Environmental, 17(4), 313-320 (1998). 81. Weast, R.C., “CRC Handbook of Chemistry and Physics,” 63rd Edition, CRC Press, Boca Raton, Florida, USA (1982–83). 82. Weschler, C. J., A. T. Hodgson and J. D. Wooley, “Indoor chemistry ozone, volatile organic compounds, and carpets,” Environmental Science & Technology, 26(12), 2371-2377 (1992). 83. Wolkoff, P. and G. D. Nielsen, “Non-cancer effects of formaldehyde and relevance for setting an indoor air guideline,” Environment International, 36(7), 788-799 (2010). 84. World Health Organization, “Exposure to benzene: a major public health concert,” (2010). 85. World Health Organization International Agency for Research on Cancer, “Volume Formaldehyde, 2-Buoxyethanol and 1-tert-Butoxypropan-2-ol,” (2006). 86. World Health Organization, “Air quality guidelines for Europe,” Copenhagen, WHO Regional Office for Europe (1987). 87. World Health Organization, “Indoor Air Quality: Organic Pollutants. Copenhagen, WHO Regional Office for Europe,” EURO Reports and Studies NO. 111 (1989). 88. Xu, W. Z., D. Raftery and J. S. Francisco, “Effect of irradiation sources and oxygen concentration on the photocatalytic oxidation of 2-propanol and acetone studied by in situ FTIR,” Journal of Physical Chemistry B, 107(19), 4537-4544 (2003). 89. Yang, L. P., Z. Y. Liu, J. W. Shi, Y. Q. Zhang, H. Hu and W. F. Shangguan, “Degradation of indoor gaseous formaldehyde by hybrid VUV and TiO2/UV processes,” Separation and Purification Technology, 54(2), 204-211 (2007). 90. Yang, R., Y. Zhang, Q. Xu and J. Mo, “A mass transfer based method for measuring the reaction coefficients of a photocatalyst,” Atmospheric Environment, 41(6), 1221-1229 (2007). 91. Yu, H., K. Zhang and C. Rossi, “Experimental study of the photocatalytic degradation of formaldehyde in indoor air using a nano-particulate titanium dioxide photocatalyst,” Indoor and Built Environment, 16(6), 529-537 (2007). 92. Yu, J.-G., H.-G. Yu, B. Cheng, X.-J. Zhao, J. C. Yu and W.-K. Ho, “The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition,” The Journal of Physical Chemistry B, 107(50), 13871-13879 (2003). 93. Yu, K. P., G. W. M. Lee, W. M. Huang, C. C. Wu and S. H. Yang, “The correlation between photocatalytic oxidation performance and chemical/physical properties of indoor volatile organic compounds,” Atmospheric Environment, 40(2), 375-385 (2006). 94. Zhang, L. P., L. E. B. Freeman, J. Nakamura, S. S. Hecht, J. J. Vandenberg, M. T. Smith and B. R. Sonawane, “Formaldehyde and leukemia: epidemiology, potential mechanisms, and implications for risk assessment,” Environmental and Molecular Mutagenesis, 51(3), 181-191 (2010). 95. 中國國家環境保護總局,“室內空氣質量標準 ”,2002。 96. 香港特別行政區政府室內空氣質素管理小組,“辦公室及公眾場所室內空氣質素管理指引”,2003。 97. 高濂、鄭珊、張青紅著/陳憲偉校訂,“奈米光觸媒”,五南圖書公司,2004。 98. 余國賓,“以紫外光/臭氧程序增進光觸媒對室內揮發性有機物去除效率之研究”,國立台灣大學環境工程學研究所,博士論文,2006。 99. 李俊賢,“負載銀二氧化鈦光觸媒分散及其光催化反應之研究”,國立清華大學化學工程學系,碩士論文,2004。 100. 周文傑,“燃燒金紙與拜香所產生氣態污染物及飛灰中金屬成分之分布”,國立成功大學環境工程學系,碩士論文,2007。 101. 洪安傑,“以蜂巢狀光觸媒載體處理室內生物源揮發性有機物之研究”,國立台灣大學環境工程學研究所,碩士論文,2012。 102. 洪崇軒、李家偉、林秉毅、涂雅惠、蘇世昌,“應用艙室技術於室內空氣揮發性有機物排放係數之推求”,第十九屆空污研討會,2002。 103. 洪楨琳,“溫度與濕度對光催化分解苯蒸氣之影響研究”,國立中山大學環境工程研究所,碩士論文,2001。 104. 郭柏成,“應用真空濺鍍法製備複合型奈米TiO2/ITO薄膜光觸媒之丙酮分解研究”,國立中山大學環境工程研究所,碩士論文,2010。 105. 陳震宇,“室內木質建材甲醛逸散之研究”,國立台灣大學環境工程學研究所,碩士論文,2001。 106. 陳亭穆,“二氧化鈦光觸媒分解甲醛之催化動力學之研究”,國立清華大學化學工程學系,碩士論文,2005。 107. 陳志賢,“奈米可見光V/TiO2觸媒之合成與物性分析”,國立台灣大學化學工程學研究所,碩士論文,2002。 108. 陳正堯,“利用固相微萃取進行甲醛短時間暴露評估技術之研究”,行政院勞委會勞工安全衛生研究所,2004。 109. 陳佑誠,“以紫外光/二氧化鈦程序處理氣相苯及丙酮之研究”,國立台灣大學環境工程學研究所,碩士論文,2009。 110. 陳叡瑜,“室內空氣污染-合板釋 出甲醛問題之探討”,行政院國家科學委員會專題研究計畫成果報告,1996。 111. 黃國豪,“以紫外光/臭氧程序增進光觸媒對室內生物源揮發有機物去除效率之研究”,國立台灣大學環境工程學研究所,碩士論文,2008。 112. 黃倩芸、洪劍長、陳幸婷,“辦公建築室內裝修建材逸散物質對室內空氣品質影響之調查研究”,內政部建築研究所,1997。 113. 鄭蓉瑛、吳麗珠、陳正堯,“醫療院所甲醛暴露調查研究”,行政院勞工安全衛生研究所,2001。 114. 賴明俊,“以紫外光/臭氧程序增進光觸媒對室內揮發性有機物三氯乙烯去除效率之研究”,國立台灣大學環境工程學研究所,碩士論文,2009。 115. 劉僑育,“室內不同燈源對於Terpenes化合物與臭氧反應生成二次有機氣膠影響之研究”,國立高雄第一科技大學環境安全衛生研究所,碩士論文,2007。 116. 謝其德,“室內空氣清淨機去除甲醛之效能評估”,國立台北科技大學環境規劃與管理研究所,碩士論文,2004。 117. 蘇慧貞、李俊璋、李家偉,“建置室內空氣品質標準值暨室內空氣污染源調查及監測查驗制度(第一年)”,行政院環保署,2011。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61265 | - |
dc.description.abstract | 揮發性有機物(Volatile organic compounds, VOCs)為室內主要空氣污染物,與室內空氣品質(IAQ)有關,且被認為是引起病態大樓症候群(SBS)的原因之一。不同室內揮發性有機物來源有所差異,其中室內木質家俱、消費型產品,抽菸及烹飪等,會產生不同程度之甲醛逸散。甲醛對人體健康影響甚重,IARC將其列為第一類致癌物質,在台灣2012年11月公布之室內空氣品質管理法,對室內甲醛濃度進行規範(0.08 ppm),故本實驗選擇甲醛當作目標污染物。
本研究於光反應器中進行光催化反應,光反應器內部放置蜂巢狀載體,藉由蜂巢狀載體增加反應面積、觸媒批覆量,並搭配光纖作為導光通道,確保紫外光可以深入光反應器內激發光觸媒。實驗之紫外光燈管為8 W,波長為254 nm、光觸媒選用Degussa P25 TiO2商業光觸媒、溫度控制在25±1℃。實驗之影響因子包含HCHO進流濃度、相對濕度、氣體流率。 實驗將氣體流率控制在1400 ml/min,避免氣相質傳效應影響光催化反應速率。在相對濕度(30%、40%、70%),HCHO進流濃度由0.80 ppm至2.00 ppm時,光觸媒轉化效率隨濃度增加而上升;而在相對濕度(50%、60%),HCHO進流濃度由0.80 ppm至2.00 ppm時,光觸媒轉化效率一開始呈上升趨勢,但於1.40 ppm時轉化率下降,之後HCHO濃度增加,轉化率上升。光觸媒反應速率在相對濕度固定的情況下,隨HCHO進流濃度增加,光觸媒反應速率呈線性增加。 在甲醛進流濃度0.80 ppm至2.00 ppm時,不論在何種相對濕度(30%、40%、50%、60%、70%),光觸媒轉化效率皆可以維持在90%至95%,較佳相對濕度條件為40至50%。光觸媒反應中,相對濕度具有生成氫氧自由基及與反應物產生競爭吸附的作用,由實驗可知,相對濕度30%時,提高相對濕度有助於轉化率上升;相對濕度50%時,提高相對濕度會造成轉化率下降。 利用光催化反應雙分子競爭動力模式(Langmuir-Hinshelwood model)來進行模擬,可得在相對濕度30%下,HCHO與水分子之Langmuir吸附常數為0.03075與0.7432 ppm-1,HCHO之反應速率常數為0.04793 μmole/m2-s;相對濕度50%下,HCHO與水分子之Langmuir吸附常數為0.03221與0.7066 ppm-1,HCHO之反應速率常數為0.04503 μmole/m2-s;相對濕度70%下,HCHO與水分子之Langmuir吸附常數為0.5247與0.8923 ppm-1,HCHO之反應速率常數為0.00457 μmole/m2-s。 | zh_TW |
dc.description.abstract | Volatile organic compounds (VOCs) are the major indoor air pollutants, which are significantly related to indoor air quality (IAQ), and it is considered as a cause for sick building syndrome (SBS). Different indoor volatile organic compounds come from different sources. Sources of formaldehyde indoor include wooden furniture, consumer products, smoking and cooking, etc., and each of them will cause different levels of formaldehyde emission. Formaldehyde may cause health problems and the international agency for research on cancer (IARC) classified it as a human carcinogen. The Indoor Air Quality Management Act of Taiwan, which restricted indoor formaldehyde concentration to 0.08 ppm, so formaldehyde was chosen as the aim pollutant in this study.
In this study, formaldehyde was degraded by photocatalytic oxidation (PCO) in photocatalytic reactor, and placed a honeycomb monolith inside it, which can increase the reaction area and the amount of coated photocatalysts. The honeycomb monolith needs to be operated with optical fiber for UV light to excite photocatalysts. The UV light source was controlled at 254 nm and 8 W, controlling temperature at 25±1℃, and choosing Degussa P25 TiO2 for the catalyst in this study. The key factors of the formaldehyde removal efficiency including formaldehyde concentration, relative humidity and gas flow rate. The gas flow rate was controlled at 1400 ml/min, which avoided the gas phase mass transfer affecting photocatalytic reaction rate. Controlling HCHO inlet concentration from 0.80 ppm to 2.00 ppm at relative humidity of 30%, 40%, 70%, respectively, the photocatalytic conversion efficiency increased with the increasing inlet concentration. However, in the same inlet concentration gradient of HCHO, controlled the relative humidity of 50% and 60%, respectively, the photocatalytic conversion efficiency started an upward trend, but the efficiency decreased at 1.40 ppm. Then, the photocatalytic conversion efficiency increased with the increasing concentration. The photocatalytic reaction rate increases linearly with the increasing concentration at constant relative humidity. The conversion efficiency was maintained between 90% and 95% regardless of the relative humidity which was from 30% to 70% at inlet concentration of HCHO from 0.80 ppm to 2.00 ppm. Relative humidity may affect the production of hydroxyl radicals and the competitive adsorption in photocatalytic reaction. In this study, increasing relative humidity had an enhancement effect on conversion at humidity 30%; though the relative humidity 50% had an inhibition effect on conversion. The PCO kinetics fitted Langmuir-Hinshelwood model for biomoecular competitive adsorption form. The Langmuir adsorption constants of HCHO and water at relative humidity 30% is 0.03075 and 0.7432 ppm-1. The reaction rate constants of HCHO at relative humidity 30% is 0.04793 μmole/m2-s;The Langmuir adsorption constants of HCHO and water at relative humidity 50% is 0.03221 and 0.7066 ppm-1. The reaction rate constants of HCHO at relative humidity 30% is 0.04503 μmole/m2-s;The Langmuir adsorption constants of HCHO and water at relative humidity 70% is 0.5247 and 0.8923 ppm-1. The reaction rate constants of HCHO at relative humidity 30% is 0.00457 μmole/m2-s. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T10:56:56Z (GMT). No. of bitstreams: 1 ntu-102-R00541118-1.pdf: 2520354 bytes, checksum: 9bd7ceeffcb9fd418b2544fe38d6b379 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 摘要 I
Abstract III 目錄 VI 圖目錄 IX 表目錄 XI 符號說明 i 第一章 緒論 1 1-1 研究緣起 1 1-2 研究目的 3 1-3 研究內容與方法 3 1-4 研究流程 4 第二章 文獻回顧 5 2-1 揮發性有機物之定義、種類、來源與健康影響 5 2-1-1 揮發性有機物之定義與種類 5 2-1-2 常見室內揮發性有機物來源 7 2-1-3 室內VOCs對人體健康之影響 9 2-1-4 室內甲醛之健康影響、來源與各國規範 11 2-2 光觸媒催化反應 18 2-2-1 光觸媒催化反應之原理 18 2-2-2 光觸媒之種類與特性 21 2-2-3 光觸媒之製備 23 2-2-4 TiO2光觸媒應用 27 2-2-5 光觸媒處理甲醛反應途徑 28 2-3 光觸媒催化反應去除VOCs之相關研究 29 2-3-1 光催化反應速率之影響因子 29 2-3-2 光催化反應之動力模式 37 第三章 實驗設備與方法 45 3-1 實驗材料及儀器設備 45 3-1-1 實驗材料 45 3-1-2 儀器設備 46 3-2 實驗系統 48 3-2-1實驗系統 48 3-2-2 空氣供應系統 51 3-2-3 濕度控制系統 51 3-2-4 揮發性有機氣體產生系統 51 3-2-5 光觸媒反應系統 53 3-2-6 揮發性氣體採樣及分析系統 56 3-3 實驗條件因子 58 3-4 實驗程序 59 3-4-1實驗計算方法 60 第四章 結果與討論 61 4-1 甲醛通入時間與反應器甲醛出流濃度關係 61 4-2 甲醛濃度對光觸媒反應之影響 68 4-3 光催化反應速率常數與HCHO–OH反應常數之關係 75 4-4 氣體流率對光觸媒反應之影響 78 4-5 相對濕度對光觸媒反應之影響 80 4-6 蜂巢狀光觸媒催化處理HCHO與α-pinene之比較 84 第五章 結論與建議 86 5-1 結論 86 5-2 建議 88 參考文獻 89 附錄 104 | |
dc.language.iso | zh-TW | |
dc.title | 利用蜂巢狀光觸媒處理甲醛之研究 | zh_TW |
dc.title | Control of Formaldehyde by the Honeycomb Monolith Photocatalyst Reactor | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 曾昭衡,羅金翔,余國賓 | |
dc.subject.keyword | 揮發性有機物,甲醛,光觸媒,蜂巢狀載體,光纖, | zh_TW |
dc.subject.keyword | volatile organic compounds,formaldehyde,optical fiber,photocatalyst,honeycomb monolith, | en |
dc.relation.page | 107 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-08-08 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 2.46 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。