Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61205
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊哲人(Jer-Ren Yang)
dc.contributor.authorYu-Wei Laien
dc.contributor.author賴昱維zh_TW
dc.date.accessioned2021-06-16T10:53:00Z-
dc.date.available2020-07-22
dc.date.copyright2020-07-22
dc.date.issued2020
dc.date.submitted2020-07-02
dc.identifier.citation[1] H.I. Aaronson, C. Wells, Sympathetic Nucleation of Ferrite, JOM 8(10) (1956) 1216-1223.
[2] F. Caballero, H. Bhadeshia, K. Mawella, D. Jones, P. Brown, Design of novel high strength bainitic steels: Part 1, Materials Science and Technology 17(5) (2001) 512-516.
[3] C. Garcia-Mateo, C. FG, B. HKDH, Acceleration of low-temperature bainite, ISIJ international 43(11) (2003) 1821-1825.
[4] E. Kozeschnik, H. Bhadeshia, Influence of silicon on cementite precipitation in steels, Materials Science and Technology 24 (2008) 343-347.
[5] H.K.D.H. Bhadeshia, Geometry of crystals, Institute of Metals, London (1986).
[6] H.K.D.H. Bhadeshia, Some phase transformations in steels, Materials Science and Technology 15(1) (2013) 22-29.
[7] H.K.D.H. Bhadeshia, Very short and very long heat treatments in the processing of steel, Materials and Manufacturing Processes 25(1-3) (2010) 1-6.
[8] P.M.K.a.J. Nutting, The martensite transformation in carbon steels., Proceedings of the Royal Society of London. 259 (1960) 45-58.
[9] V. Igwemezie, P. Agu, Development of Bainitic Steels for Engineering Applications, International Journal of Engineering Research Technology (IJERT) 3 (2014) 2698-2711.
[10] E.S.D.a.E.C. Bain, Transformation of austenite at constant subcritical temperatures, Metallurgical and Materials Transactions 1 (1970) 3503-3530.
[11] H.K.D.H. Bhadeshia, Bainite in steels, The Institute of Materials (1992).
[12] A. Ali, H.K.D.H. Bhadeshia, Nucleation of Widmanstätten ferrite, Materials Science and Technology 6(8) (2013) 781-784.
[13] M. Hillert, Paradigm shift for bainite, Scr. Mater. 47(3) (2002) 175-180.
[14] A. Borgenstam, M. Hillert, J. Agren, Metallographic evidence of carbon diffusion in the growth of bainite, Acta Materialia 57(11) (2009) 3242-3252.
[15] H.K.D.H. Bhadeshia, Bainite : Overall Transformation Kinetics, Le Journal de Physique Colloques 43(C4) (1982) C4-443-447.
[16] E.D.V. Bhadeshia H.K.D.H., The mechanism of bainite formation in steels, Acta Metallurgica (1980) 1265-1273.
[17] E. KLBR, T. Lyman, The bainite reaction in hypoeutectoid steels, (1944).
[18] A. Cottrell, Tensile properties of unstable austenite and its low-temperature decomposition products, Journal of the Iron and Steel Institute 151(1) (1945) 93-104.
[19] F.G. Caballero, C. Garcia-Mateo, M.J. Santofimia, M.K. Miller, C. García de Andrés, New experimental evidence on the incomplete transformation phenomenon in steel, Acta Materialia 57(1) (2009) 8-17.
[20] H.K.D.H. Bhadeshia, A rationalisation of shear transformations in steels, Acta Metallurgica 29 (1981) 1117-1130.
[21] E.D.V. Bhadeshia H.K.D.H., The bainite transformation in a silicon steel, Metallurgical and Materials Transactions A 10A (1979) 895-907.
[22] G. Kurdjumov, G. Sachs, Crystallographic orientation relationship between α-and γ-Fe, Ann Phys 64 (1930) 325.
[23] Z. Nishiyama, X-ray investigation of the mechanism of the transformation from face centered cubic lattice to body centered cubic, Sci. Rep. Tohoku Univ. 23 (1934) 637.
[24] G. Wassermann, Influence of the α–γ transformation of an irreversible Ni steel onto crystal orientation and tensile strength, Arch. Eisenhüttenwes 16 (1933) 647-651.
[25] K. Verbeken, L. Barbé, D. Raabe, Evaluation of the crystallographic orientation relationships between FCC and BCC phases in TRIP steels, ISIJ international 49(10) (2009) 1601-1609.
[26] E.C. Bain, The alloying elements in steel, ASM International (1939).
[27] W.A. Johnson, R.F. Mehl, Reaction kinetics in processes of nucleation and growth, Transactions of the American Institute of Mining and Metallurgical Engineers 135 (1939) 416-442.
[28] S.J. Matas, R.F. Hehemann, THE STRUCTURE OF BAINITE IN HYPOEUTECTOID STEELS, Transactions of the Metallurgical Society of Aime 221(1) (1961) 179-185.
[29] F.G. Caballero, M.K. Miller, C. Garcia-Mateo, J. Cornide, M. Santofimia, Temperature dependence of carbon supersaturation of ferrite in bainitic steels, Scr. Mater. 67(10) (2012) 846-849.
[30] K.J. Irvine, F.B. Pickering, T. Gladman, GRAIN-REFINED C-MN STEELS, Journal of the Iron and Steel Institute 205 (1967) 161-+.
[31] S. Khare, K. Lee, H. Bhadeshia, Carbide-free bainite: compromise between rate of transformation and properties, Metallurgical and Materials Transactions A 41(4) (2010) 922-928.
[32] X.Y. Long, F.C. Zhang, J. Kang, Z.N. Yang, D.D. Wu, K.M. Wu, G.H. Zhang, Study on carbide-bearing and carbide-free bainitic steels and their wear resistance, Materials Science and Technology 33(5) (2017) 615-622.
[33] S. Sharma, S. Sangal, K. Mondal, Development of New High-Strength Carbide-Free Bainitic Steels, Metallurgical and Materials Transactions A 42 (2011) 3921-3933.
[34] H.K.D.H. Bhadeshia, Nanostructured bainite, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 466(2113) (2009) 3-18.
[35] A.J. Rose, F. Mohammed, A.W.F. Smith, P.A. Davies, R.D. Clarke, Superbainite: laboratory concept to commercial product, Materials Science and Technology 30(9) (2014) 1094-1098.
[36] F.G. Caballero, M.J. Santofimia, C. Capdevila, C. García-Mateo, C.G. De Andrés, Design of advanced bainitic steels by optimisation of TTT diagrams and T0 curves, ISIJ international 46(10) (2006) 1479-1488.
[37] H.K. Bhadeshia, High performance bainitic steels, Materials Science Forum, Trans Tech Publ, 2005, pp. 63-74.
[38] D. Ludwigson, J.A. Berger, Plastic behaviour of metastable austenitic stainless steels, J Iron Steel Inst 207(1) (1969) 63-69.
[39] H. Aoyama, The recent development of stainless steel sheets, JJST Plasticity 33 (1992) 357.
[40] Y. Tomita, T. Iwamoto, Constitutive modeling of TRIP steel and its application to the improvement of mechanical properties, International Journal of Mechanical Sciences 37(12) (1995) 1295-1305.
[41] B.C. De Cooman, Structure–properties relationship in TRIP steels containing carbide-free bainite, Current Opinion in Solid State and Materials Science 8(3-4) (2004) 285-303.
[42] C. GARCIA-MATEO, F. Caballero, Ultra-high-strength bainitic steels, ISIJ international 45(11) (2005) 1736-1740.
[43] C. Garcia-Mateo, F. Caballero, H. Bhadeshia, Low temperature bainite, Journal de Physique IV (Proceedings), EDP sciences, 2003, pp. 285-288.
[44] H. Huang, M.Y. Sherif, P.E.J. Rivera-Díaz-del-Castillo, Combinatorial optimization of carbide-free bainitic nanostructures, Acta Materialia 61(5) (2013) 1639-1647.
[45] A. Mertens, P.J. Jacques, J. Sietsma, F. Delannay, Relative Influences of Aluminium and Silicon on the Kinetics of Bainite Formation from Intercritical Austenite, steel research international 79(12) (2008) 954-959.
[46] A. Mertens, P.J. Jacques, L. Zhao, S.O. Kruijver, J. Sietsma, F. Delannay, On the influence of aluminium and silicon contents on the kinetics of bainite transformation of intercritical austenite, Journal de Physique IV (Proceedings), EDP sciences, 2003, pp. 305-308.
[47] H. Aaronson, H. Domian, Partition of alloying elements between austenite and proeutectoid ferrite or bainite, AIME MET SOC TRANS 236(5) (1966) 781-796.
[48] R. Cochrane, Phase transformations in microalloyed high strength low alloy (HSLA) steels, Phase transformations in steels, Elsevier2012, pp. 153-212.
[49] K. Zhu, C. Mager, M. Huang, Effect of substitution of Si by Al on the microstructure and mechanical properties of bainitic transformation-induced plasticity steels, Journal of Materials Science Technology 33(12) (2017) 1475-1486.
[50] J. Tian, G. Xu, M. Zhou, H. Hu, X. Wan, The Effects of Cr and Al Addition on Transformation and Properties in Low‐Carbon Bainitic Steels, Metals 7(2) (2017) 40.
[51] M. Zhou, G. Xu, J. Tian, H. Hu, Q. Yuan, Bainitic transformation and properties of low carbon carbide-free bainitic steels with Cr addition, Metals 7(7) (2017) 263.
[52] F.G. Caballero, C. GarcíA-Mateo, J. Chao, M.J. Santofimia, C. Capdevila, C.G. De Andres, Effects of morphology and stability of retained austenite on the ductility of TRIP-aided bainitic steels, ISIJ international 48(9) (2008) 1256-1262.
[53] C. Garcia-Mateo, F. Caballero, J. Chao, C. Capdevila, C.G. De Andres, Mechanical stability of retained austenite during plastic deformation of super high strength carbide free bainitic steels, Journal of materials science 44(17) (2009) 4617-4624.
[54] C. Hofer, F. Winkelhofer, H. Clemens, S. Primig, Morphology change of retained austenite during austempering of carbide-free bainitic steel, Materials Science and Engineering: A 664 (2016) 236-246.
[55] O. Muransky, P. Horňak, P. Lukáš, J. Zrnik, P. Šittner, Investigation of retained austenite stability in Mn-Si TRIP steel in tensile deformation condition, Journal of Achievements in Materials and Manufacturing Engineering 14(1-2) (2006) 26--30.
[56] E. Jimenez-Melero, N. Van Dijk, L. Zhao, J. Sietsma, S. Offerman, J. Wright, S. Van der Zwaag, Characterization of individual retained austenite grains and their stability in low-alloyed TRIP steels, Acta Materialia 55(20) (2007) 6713-6723.
[57] A. Kozlowska, A. Janik, K. Radwanski, A. Grajcar, Microstructure Evolution and Mechanical Stability of Retained Austenite in Medium-Mn Steel Deformed at Different Temperatures, Materials (Basel) 12(18) (2019).
[58] H.K.D.H. Bhadeshia, S.A. David, J.M. Vitek, R.W. Reed, Stress induced transformation to bainite in Fe–Cr–Mo–C pressure vessel steel, Materials Science and Technology 7(8) (2013) 686-698.
[59] H. Bhadeshia, E. Keehan, L. Karlsson, H.-O. Andrén, Coalesced bainite, Transactions of the Indian Institute of Metals 59(5) (2006) 689-694.
[60] U.P. Singh, B. Roy, S. Jha, S.K. Bhattacharyya, Microstructure and mechanical properties of as rolled high strength bainitic rail steels, Materials Science and Technology 17(1) (2013) 33-38.
[61] M.N. Yoozbashi, S. Yazdani, Mechanical properties of nanostructured, low temperature bainitic steel designed using a thermodynamic model, Materials Science and Engineering: A 527(13-14) (2010) 3200-3205.
[62] S. Talebi, M. Jahazi, H. Melkonyan, Retained Austenite Decomposition and Carbide Precipitation during Isothermal Tempering of a Medium-Carbon Low-Alloy Bainitic Steel, Materials 11(8) (2018).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/61205-
dc.description.abstract無碳化物析出變韌鐵可以藉由在鋼鐵中添加1.5wt%的矽並經過適當的熱處理得到。此種結構主要是由束狀變韌肥粒鐵及高碳含量的殘量沃斯田鐵所組成,且具有良好的強度及韌性。些許塊狀的麻田散鐵/沃斯田鐵混和相亦存在於結構中,於降溫的階段時有可能會由沃斯田鐵分解成麻田散鐵相。此種塊狀麻田散鐵會對機械性質造成嚴重的影響。因此,沃斯田鐵的穩定性在提升鋼鐵性質中扮演一個很重要的角色。
在本篇研究中,著重於低溫的沃斯回火熱處理,我們發現由於TRIP效應的原因,含有變韌鐵組織的中碳鋼相對於低碳鋼,能在不犧牲材料伸長量的前提下,擁有更高的強度。後續則藉由XRD、EBSD及TEM技術來研究沃斯田鐵的穩定性及在材料塑性變形時的顯微結構演變。可以得知含有較高碳含量的鋼鐵具有更好的沃斯田鐵穩定性。塊狀沃斯田鐵也可以在中碳的變韌鐵組織裡面被保留到室溫。
zh_TW
dc.description.abstractCarbide-free bainite can be obtained by alloying over 1.5 wt% silicon (Si) in steels with appropriate heat treatments. This structure comprises of bainitic ferrite and carbon-enriched retained austenite, which possesses great combination of strength and toughness because of the TRIP effect. Some blocky martensite-austenite constituents also exist in the matrix, which might decompose into martensite at the cooling stage. Blocky martensite has detrimental effect to the mechanical properties. Therefore, the stability of retained austenite in the microstructure plays an important role in enhancing the quality of steels.
In this research, low austempering temperature heat treatments were conducted. We discovered that the medium-carbon bainitic steels possess better tensile strength than low-carbon bainitic steels without sacrificing the elongation because of noticeable TRIP effect. Further investigations on the stability of austenite and the microstructure evolution during plastic deformation were also conducted by XRD, EBSD and TEM techniques. We found that the stability of austenite increases as the carbon content of steels increases. Blocky austenite can also be retained to the ambient temperature in medium-carbon bainitic steels.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:53:00Z (GMT). No. of bitstreams: 1
U0001-3006202015272500.pdf: 14747011 bytes, checksum: 7bc148b803a6ed5a92ee97162921b72e (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES xii
Chapter 1 Introduction 1
Chapter 2 Literature Review 2
2.1 Bainite Transformation 2
2.1.1 Phase Transformations in Steels 2
2.1.2 Introduction to Bainite 4
2.1.3 Nucleation 6
2.1.4 Growth 9
2.1.5 Orientation Relationship 12
2.2 Types of Bainite 15
2.2.1 Traditional Bainite 15
2.2.2 Carbide-Free Bainite 19
2.3 TRIP Steel 22
2.3.1 Introduction 22
2.3.2 Alloying Design 23
2.3.3 Retained Austenite in TRIP Steels 26
Chapter 3 Experimental Procedure 29
3.1 Experimental materials 29
3.2 Specimen 30
3.2.1 Specimen Size 30
3.2.2 Specimen Preparation for OM and SEM 31
3.2.3 Specimen Preparation for EBSD 31
3.2.4 Specimen Preparation for XRD 31
3.2.5 Specimen Preparation for TEM 32
3.3 Instruments 33
3.3.1 Dilatometer 33
3.3.2 Optical Microscope (OM) 33
3.3.3 Scanning Electron Microscope (SEM) 34
3.3.4 Transmission Electron Microscope (TEM) 34
3.3.5 Electron Back-Scattered Diffraction (EBSD) 34
3.3.6 X-Ray Diffractometer (XRD) 34
3.3.7 Vickers Hardness Tester 35
3.3.8 Tensile Testing Machine 35
3.4 Experimental Design 36
3.4.1 Different Austempering Temperatures for Bainite 36
3.4.2 Near-Ms Austempering Process 37
Chapter 4 Different Austempering Temperatures for Bainite 39
4.1 Dilatometric Study 39
4.2 Mechanical Behavior 41
4.3 Overall Morphology 43
4.4 XRD Analysis 48
4.5 Thickness Statistics 50
Chapter 5 Near-Ms Austempering Process 52
5.1 Overall Morphology 52
5.2 Mechanical Behavior 55
5.3 XRD and EBSD Analysis 60
5.4 Thickness Statistics 65
5.5 TEM Observation 69
5.5.1 Microstructures 69
5.5.2 Microstructure Evolution 78
Chapter 6 Conclusion 87
Chapter 7 Future work 89
Reference 90
dc.language.isoen
dc.subject變韌鐵zh_TW
dc.subject沃斯回火zh_TW
dc.subject穿透式電子顯微鏡zh_TW
dc.subject相變誘導塑性 (TRIP)zh_TW
dc.subject結構演變zh_TW
dc.subject相變化zh_TW
dc.subjectPhase Transformationen
dc.subjectAustemperingen
dc.subjectBainiteen
dc.subjectTransmission Electron Microscopyen
dc.subjectTRIP effecten
dc.subjectMicrostructure Evolutionen
dc.title低溫沃斯回火對無碳化物析出變韌鐵顯微結構的演變及機械性質之影響
zh_TW
dc.titleEffects of Low Temperature Austempering on the Microstructure Evolution and Mechanical Properties of Carbide-Free Bainiteen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee葉均蔚(Jien-Wei Yeh),王星豪(Shing-Hoa Wang),王樂民(Le-Min Wang),陳志遠(Chih-Yuan Chen)
dc.subject.keyword變韌鐵,沃斯回火,穿透式電子顯微鏡,相變誘導塑性 (TRIP),結構演變,相變化,zh_TW
dc.subject.keywordBainite,Austempering,Transmission Electron Microscopy,TRIP effect,Microstructure Evolution,Phase Transformation,en
dc.relation.page93
dc.identifier.doi10.6342/NTU202001210
dc.rights.note有償授權
dc.date.accepted2020-07-03
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
U0001-3006202015272500.pdf
  未授權公開取用
14.4 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved