請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60857
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蔡豐羽(Feng-Yu Tsai) | |
dc.contributor.author | Pei-Chen Wu | en |
dc.contributor.author | 吳佩蓁 | zh_TW |
dc.date.accessioned | 2021-06-16T10:33:22Z | - |
dc.date.available | 2018-08-20 | |
dc.date.copyright | 2013-08-20 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-14 | |
dc.identifier.citation | [1] D. S. Jeong, R. Thomas, R. S. Katiyar, J. F. Scott, H. Kohlstedt, A. Petraru, and C. S. Hwang, “Emerging memories: resistive switching mechanisms and current status,” Reports Prog. Phys., vol. 75, no. 7, p. 076502, Jul. 2012.
[2] Y. Fujisaki, “Review of Emerging New Solid-State Non-Volatile Memories,” Jpn. J. Appl. Phys., vol. 52, p. 040001, Apr. 2013. [3] D. Panda and T.-Y. Tseng, “Growth, dielectric properties, and memory device applications of ZrO2 thin films,” Thin Solid Films, vol. 531, pp. 1–20, Mar. 2013. [4] R. Waser and M. Aono, “Nanoionics-based resistive switching memories,” Nat. Mater., vol. 6, no. 11, pp. 833–840, 2007. [5] H.-S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F. T. Chen, and M.-J. Tsai, “Metal-Oxide RRAM,” Proc. Ieee, vol. 100, no. 6, pp. 1951–1970, Jun. 2012. [6] K. M. Kim, D. S. Jeong, and C. S. Hwang, “Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook,” Nanotechnology, vol. 22, no. 25, p. 254002, Jun. 2011. [7] H. Akinaga and H. Shima, “Resistive Random Access Memory (ReRAM) Based on Metal Oxides,” Proc. Ieee, vol. 98, no. 12, pp. 2237–2251, Dec. 2010. [8] R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-Based Resistive Switching Memories - Nanoionic Mechanisms, Prospects, and Challenges,” Adv. Mater., vol. 21, no. 25–26, pp. 2632–2663, Jul. 2009. [9] K. Szot, R. Dittmann, W. Speier, and R. Waser, “Nanoscale resistive switching in SrTiO3 thin films,” Phys. Status Solidi Rrl – Rapid Res. Lett., vol. 1, no. 2, pp. R86–R88, 2007. [10] S. C. Chae, J. S. Lee, S. Kim, S. B. Lee, S. H. Chang, C. Liu, B. Kahng, H. Shin, D.-W. Kim, C. U. Jung, S. Seo, M.-J. Lee, and T. W. Noh, “Random Circuit Breaker Network Model for Unipolar Resistance Switching,” Adv. Mater., vol. 20, no. 6, pp. 1154–1159, 2008. [11] M. Lanza, G. Bersuker, M. Porti, E. Miranda, M. Nafria, and X. Aymerich, “Resistive switching in hafnium dioxide layers: Local phenomenon at grain boundaries,” Appl. Phys. Lett., vol. 101, no. 19, pp. 193502–193502–5, Nov. 2012. [12] J. Y. Son, D.-Y. Kim, H. Kim, W. J. Maeng, Y.-S. Shin, and Y.-H. Shin, “A HfO2 Thin Film Resistive Switch Based on Conducting Atomic Force Microscopy,” Electrochem. Solid-State Lett., vol. 14, no. 8, pp. H311–H313, Aug. 2011. [13] U. Celano, Y. Y. Chen, D. J. Wouters, G. Groeseneken, M. Jurczak, and W. Vandervorst, “Filament observation in metal-oxide resistive switching devices,” Appl. Phys. Lett., vol. 102, no. 12, p. 121602, 2013. [14] D.-H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X.-S. Li, G.-S. Park, B. Lee, S. Han, M. Kim, and C. S. Hwang, “Atomic structure of conducting nanofilaments in TiO2 resistive switching memory,” Nat. Nanotechnol., vol. 5, no. 2, pp. 148–153, Jan. 2010. [15] H.-S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F. T. Chen, and M.-J. Tsai, “Metal -Oxide RRAM,” Proc. Ieee, vol. 100, no. 6, pp. 1951–1970, 2012. [16] C. B. Lee, D. S. Lee, A. Benayad, S. R. Lee, M. Chang, M.-J. Lee, J. Hur, Y. B. Kim, C. J. Kim, and U.-I. Chung, “Highly Uniform Switching of Tantalum Embedded Amorphous Oxide Using Self-Compliance Bipolar Resistive Switching,” Ieee Electron Device Lett., vol. 32, no. 3, pp. 399–401, Mar. 2011. [17] S. Yu, B. Gao, H. Dai, B. Sun, L. Liu, X. Liu, R. Han, J. Kang, and B. Yu, “Improved Uniformity of Resistive Switching Behaviors in HfO2 Thin Films with Embedded Al Layers,” Electrochem. Solid-State Lett., vol. 13, no. 2, pp. H36–H38, Feb. 2010. [18] H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, C. H. Lien, and M.-J. Tsai, “Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM,” in Electron Devices Meeting, 2008. IEDM 2008. IEEE International, 2008, pp. 1–4. [19] W.-Y. Chang, C.-A. Lin, J.-H. He, and T.-B. Wu, “Resistive switching behaviors of ZnO nanorod layers,” Appl. Phys. Lett., vol. 96, no. 24, pp. 242109–242109–3, Jun. 2010. [20] W.-S. Kim, Y.-G. Jang, D.-H. Kim, H.-C. Kim, and S.-H. Hong, “Hetero-epitaxial growth of vertically-aligned TiO2 nanorods on an m-cut sapphire substrate with an (001) SnO2 buffer layer,” CrystEngComm, vol. 14, no. 15, p. 4963, 2012. [21] F. Zhang, X. Gan, X. Li, L. Wu, X. Gao, R. Zheng, Y. He, X. Liu, and R. Yang, “Realization of Rectifying and Resistive Switching Behaviors of TiO2 Nanorod Arrays for Nonvolatile Memory,” Electrochem. Solid-State Lett., vol. 14, no. 10, pp. H422–H425, 2011. [22] S. Yu, Y. Wu, Y. Chai, J. Provine, and H.-S. Wong, “Characterization of switching parameters and multilevel capability in HfOx/AlOx bi-layer RRAM devices,” in VLSI Technology, Systems and Applications (VLSI-TSA), 2011 International Symposium on, 2011, pp. 1–2. [23] X. Liu, S. M. Sadaf, M. Son, J. Shin, J. Park, J. Lee, S. Park, and H. Hwang, “Diode-less bilayer oxide (WO x –NbO x ) device for cross-point resistive memory applications,” Nanotechnology, vol. 22, no. 47, p. 475702, Nov. 2011. [24] Y. L. Song, Y. Liu, Y. L. Wang, M. Wang, X. P. Tian, L. M. Yang, and Y. Y. Lin, “Low Reset Current in Stacked AlOx/ WOx Resistive Switching Memory,” Ieee Electron Device Lett., vol. 32, no. 10, pp. 1439–1441, Oct. 2011. [25] D. Lee, J. Lee, M. Jo, J. Park, M. Siddik, and H. Hwang, “Noise-Analysis-Based Model of Filamentary Switching ReRAM With ZrOx/HfOx Stacks,” Ieee Electron Device Lett., vol. 32, no. 7, pp. 964–966, Jul. 2011. [26] D. Panda, A. Dhar, and S. K. Ray, “Nonvolatile Memristive Switching Characteristics of TiO2 Films Embedded With Nickel Nanocrystals,” Ieee Trans. Nanotechnol., vol. 11, no. 1, pp. 51–55, Jan. 2012. [27] M.-C. Wu, T.-H. Wu, and T.-Y. Tseng, “Robust unipolar resistive switching of Co nano-dots embedded ZrO2 thin film memories and their switching mechanism,” J. Appl. Phys., vol. 111, no. 1, pp. 014505–014505–6, Jan. 2012. [28] B. Gao, H. W. Zhang, S. Yu, B. Sun, L. F. Liu, X. Y. Liu, Y. Wang, R. Q. Han, J. F. Kang, and B. Yu, “Oxide-based RRAM: Uniformity improvement using a new material-oriented methodology,” in VLSI Technology, 2009 Symposium on, 2009, pp. 30–31. [29] S. M. Aspera, H. Kasai, H. Kishi, N. Awaya, S. Ohnishi, and Y. Tamai, “Realization of the Switching Mechanism in Resistance Random Access Memory (RRAM) Devices: Structural and Electronic Properties Affecting Electron Conductivity in Halfnium Oxide-Electrode System through First Principles Calculations,” Arxiv Prepr. Arxiv11122500, 2011. [30] S. Larentis, F. Nardi, S. Balatti, D. C. Gilmer, and D. Ielmini, “Resistive Switching by Voltage-Driven Ion Migration in Bipolar RRAM Part II: Modeling,” Ieee Trans. Electron Devices, vol. 59, no. 9, pp. 2468–2475, Sep. 2012. [31] H. Zhang, B. Gao, S. Yu, L. Lai, L. Zeng, B. Sun, L. Liu, X. Liu, J. Lu, and R. Han, “Effects of ionic doping on the behaviors of oxygen vacancies in HfO2 and ZrO2: A first principles study,” in Simulation of Semiconductor Processes and Devices, 2009. SISPAD’09. International Conference on, 2009, pp. 1–4. [32] H. Zhang, L. Liu, B. Gao, Y. Qiu, X. Liu, J. Lu, R. Han, J. Kang, and B. Yu, “Gd-doping effect on performance of HfO2 based resistive switching memory devices using implantation approach,” Appl. Phys. Lett., vol. 98, no. 4, pp. 042105–042105–3, Jan. 2011. [33] Z. Fang, H. Y. Yu, X. Li, N. Singh, G. Q. Lo, and D. L. Kwong, “HfOx/TiOx/HfOx/TiOx Multilayer-Based Forming-Free RRAM Devices With Excellent Uniformity,” Ieee Electron Device Lett., vol. 32, no. 4, pp. 566–568, Apr. 2011. [34] Y. Zhang, Z. Duan, R. Li, C.-J. Ku, P. Reyes, A. Ashrafi, and Y. Lu, “FeZnO-Based Resistive Switching Devices,” J. Electron. Mater., vol. 41, no. 10, pp. 2880–2885, Apr. 2012. [35] R. Mahapatra, A. B. Horsfall, and N. G. Wright, “Forming-Free Reversible Bipolar Resistive Switching Behavior in Al-Doped HfO2 Metal–Insulator–Metal Devices,” J. Electron. Mater., vol. 41, no. 4, pp. 656–659, Feb. 2012. [36] H.-C. Cheng, S.-W. Chen, and J.-M. Wu, “Resistive switching behavior of (Zn1−xMgx)O films prepared by sol–gel processes,” Thin Solid Films, vol. 519, no. 18, pp. 6155–6159, Jul. 2011. [37] C.-S. Peng, W.-Y. Chang, Y.-H. Lee, M.-H. Lin, F. Chen, and M.-J. Tsai, “Improvement of Resistive Switching Stability of HfO2 Films with Al Doping by Atomic Layer Deposition,” Electrochem. Solid-State Lett., vol. 15, no. 4, pp. H88–H90, 2012. [38] L. Chen, Y. Xu, Q.-Q. Sun, P. Zhou, P.-F. Wang, S.-J. Ding, and D. W. Zhang, “Atomic-Layer-Deposited HfLaO-Based Resistive Switching Memories With Superior Performance,” Ieee Electron Device Lett., Nov. 2010. [39] C. Kugeler, J. Zhang, S. Hoffmann-Eifert, S. K. Kim, and R. Waser, “Nanostructured resistive memory cells based on 8-nm-thin TiO2 films deposited by atomic layer deposition,” 2011, vol. 29, p. 01AD01. [40] C.-T. Chou, P.-W. Yu, M.-H. Tseng, C.-C. Hsu, J.-J. Shyue, C.-C. Wang, and F.-Y. Tsai, “Transparent Conductive Gas-Permeation Barriers on Plastics by Atomic Layer Deposition,” Adv. Mater., vol. 25, no. 12, pp. 1750–1754, Mar. 2013. [41] K. J. Yoon, S. J. Song, J. Y. Seok, J. H. Yoon, G. H. Kim, J. H. Lee, and C. S. Hwang, “Ionic bipolar resistive switching modes determined by the preceding unipolar resistive switching reset behavior in Pt/TiO2/Pt,” Nanotechnology, vol. 24, no. 14, p. 145201, Apr. 2013. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60857 | - |
dc.description.abstract | 本篇研究應用原子層沈積(ALD)製作電阻式記憶體(RRAM)的轉換材料。電阻式記憶體一直以來的問題是電阻轉換參數不夠集中,而這是由於導電燈絲的生成過於隨機。在薄膜裡面混摻不同元素已經被發現可以用於改善這問題,而原子層沈積只要透過控制混摻層層數比例就可以完美控制垂直混摻比例,所以被選用於製作混摻元素薄膜。然而,由於傳統的原子層沈積技術是層狀堆積結構,混摻層必須整層都是混摻元素,這限制了水平混摻的控制性。因此,我們提出了一種混和混摻製程可以製作出均勻混摻的薄膜。在這個製程裡,我們在同一次原子層沈積的週期內連續通入兩種有機金屬前軀物,形成了一個混和混摻層。應用這個混合混摻的技術,我們製作了三種不同混摻狀況的薄膜,分別是1:4整層混摻、1:9整層混摻以及1:4混合混摻的鋁混摻氧化鉿薄膜,並將其製備成電阻式記憶體元件;而混合混摻的證據可以透過X射線光電子能譜(XPS)量測的元素比例發現1:4混合混摻薄膜比起1:4整層混摻薄膜,的確有比較少的鋁元素比例。首先,根據燈絲理論,我們提出了示意圖來解釋導電燈絲在三種不同混摻狀況薄膜裡的狀況。接著,我們討論這三種不同導電燈絲的狀況對電阻轉換現象的影響,進而驗證我們的燈絲示意圖。這三種元件都是雙極性轉換,不一樣的是電阻轉換參數的集中性。1:4混合混摻薄膜製作的元件因為其混摻較均勻所以表現出較集中的參數;另外,再啟動電流(Reset current)也因為在此薄膜中混摻比例比較少而被有效地減小。在1:4混合混摻元件裡,因為其垂直混摻較1:9整層混摻多,但是每層混摻比例又比1:4整層混摻少,所以生成的燈絲又細又集中,所以接下來的燈絲斷裂及再生成也都比較不隨機,導致參數特別集中。最後,我們比較了三種元件的穩定性,分別是週期間穩定性,元件間穩定性以及持久性,1:4鋁混合混摻氧化鉿薄膜製作的元件都有傑出的表現。 | zh_TW |
dc.description.abstract | In this study, we used ALD to deposit the switching material of RRAM. RRAM has suffered from the randomness of conductive filaments which results in poor uniformity of resistive switching parameters. It has been proved that doping can overcome this problem, and ALD is a perfect process to control vertical doping by manipulating the doping layer ratio; however, due to the layer-by-layer nature, the conventional ALD process failed to control lateral doping. Here, we developed the mixed deposition process which pulses two organometallic precursors to the chamber consecutively in the same cycle, and thus created a mixed doping layer. By utilizing the mixed deposition process, we can conduct a homogeneously doped Al:HfO2 thin films with more uniform doping vertically but less doping laterally. Here, we deposited three kinds of RRAM devices with Al:HfO2 thin films of different doping distribution, which are 1:9 conventional doping, 1:4 conventional doping and 1:4 mixed doping, and the effect of doping distribution on resistive switching behavior is discussed. First, based on the filament model, hypothetical schematic images of filaments in three devices were sketched. In these images, CFs were the narrowest and most confined in the 1:4 mixed doped Al:HfO2 based device, whereas they were stronger in the 1:4 conventional doped Al:HfO2 based device and more random in the 1:9 conventional doped Al:HfO2 based device. The different shapes of CFs in three devices can explain the difference of resistive switching parameters. All three devices showed bipolar switching, and the uniformity of parameters is compared through the statistical distribution of switching parameters during 100 consecutive cycles. The 1:4 mixed doped Al:HfO2 based device displayed excellent uniformity of parameters due to homogeneous doping; besides, the reset current was also reduced due to less doping in this device. Finally, the stability of three devices was compared, and the 1:4 mixed doped Al:HfO2 based device showed excellent stability compared to the other two devices. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T10:33:22Z (GMT). No. of bitstreams: 1 ntu-102-R00527022-1.pdf: 5135304 bytes, checksum: 538dd10030e4ba7b8f167a4d2ec77218 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 誌謝 I
中文摘要 II Abstract III Contents V List of the Figures VII List of the tables X Chapter 1 1 Introduction and literature review 1 1.1 Developments of memories 1 1.1.1 Volatile memories 1 1.1.2 Nonvolatile memories 2 1.2 Basics of resistive random access memory (RRAM) 9 1.2.1 Structure and materials of RRAM 9 1.2.2 Principle of RRAM 11 1.3 Current progresses 22 1.3.1 Experimental evidence of the conductive filament model 22 1.3.2 Methods for improving the performance 25 1.4 Objective statement 42 Chapter 2 44 Experimental section 44 2.1 Specimen Fabrication 44 2.1.1 Materials 44 2.2.2 The doping process by ALD 45 2.3 Properties analysis 49 2.3.1 Measurement of electrical properties 49 2.3.2 Element quantitative analysis 49 2.3.3 Thickness of the thin film 50 2.3.4 Crystallinity of the thin film 50 Chapter 3 51 Results and Discussion 51 3.1 Basic properties 52 3.1.1 Thickness 52 3.1.2 Crystallinity 53 3.2 Mechanism and verification of the mixed-deposition process 55 3.2.1 Mechanism of the mixed-deposition process 55 3.2.2 Verification of the mixed-deposition process 56 3.3 Hypothetical schematic images based on the filament model 57 3.3.1 Formation of filaments 57 3.3.2 Rupture and reconnection of filaments 62 3.4 Effect of the mixed-deposition process on electrical properties 72 3.4.1 Current-voltage curves 72 3.4.2 Uniformity of switching parameters 73 3.5 Stability 80 3.5.1 Cycle to cycle stability 80 3.5.2 Device to device stability 81 3.5.3 Endurance 82 Chapter 4 87 Conclusions and Future works 87 4.1 Conclusions 87 4.2 Future works 89 Reference 90 | |
dc.language.iso | en | |
dc.title | 原子層沈積之鋁混摻氧化鉿於電阻式記憶體之應用 | zh_TW |
dc.title | Application of atomic layer deposited Al-doped hafnium oxide for RRAM | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張顏暉(Yuan-Huei Chang),劉國辰(Guo-Chen Liou) | |
dc.subject.keyword | 電阻式記憶體,原子層沈積,混摻,氧化鉿, | zh_TW |
dc.subject.keyword | resistive switching,atomic layer deposition,hafnium oxide,doped, | en |
dc.relation.page | 93 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-08-14 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 5.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。