Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60582
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝志豪
dc.contributor.authorFeng-Hsun Changen
dc.contributor.author張峰勳zh_TW
dc.date.accessioned2021-06-16T10:22:22Z-
dc.date.available2013-08-20
dc.date.copyright2013-08-20
dc.date.issued2013
dc.date.submitted2013-08-16
dc.identifier.citationAgawin, N. S. R., C. M. Duarte, and S. Agusti. 2000. Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnology and Oceanography 45:591-600.
Allen, A. P., J. F. Gillooly, and J. H. Brown. 2005. Linking the global carbon cycle to individual metabolism. Functional Ecology 19:202-213.
Alvarez, E., A. Lopez-Urrutia, E. Nogueira, and S. Fraga. 2011. How to effectively sample the plankton size spectrum? A case study using FlowCAM. Journal of Plankton Research 33:1119-1133.
Banavar, J. R., J. Damuth, A. Maritan, and A. Rinaldo. 2002. Supply-demand balance and metabolic scaling. Proceedings of the National Academy of Sciences of the United States of America 99:10506-10509.
Barnes, C., X. Irigoien, J. A. A. De Oliveira, D. Maxwell, and S. Jennings. 2011. Predicting marine phytoplankton community size structure from empirical relationships with remotely sensed variables. Journal of Plankton Research 33:13-24.
Berner, T., Z. Dubinsky, K. Wyman, and P. G. Falkowski. 1989. Photoadaptation and the 'package effect' in Dunaliella tertiolecta (Chlorophyceae). Journal of Phycology 25:70-78.
Bissinger, J. E., D. J. S. Montagnes, J. Sharples, and D. Atkinson. 2008. Predicting marine phytoplankton maximum growth rates from temperature: Improving on the Eppley curve using quantile regression. Limnology and Oceanography 53:487-493.
Bolker, B. M., M. E. Brooks, C. J. Clark, S. W. Geange, J. R. Poulsen, M. H. H. Stevens, and J.-S. S. White. 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24:127-135.
Brown, J. H., J. F. Gillooly, A. P. Allen, V. M. Savage, and G. B. West. 2004. Toward a metabolic theory of ecology. Ecology 85:1771-1789.
Brucet, S., D. Boix, X. D. Quintana, E. Jensen, L. W. Nathansen, C. Trochine, M. Meerhoff, S. Gascon, and E. Jeppesen. 2010. Factors influencing zooplankton size structure at contrasting temperatures in coastal shallow lakes: Implications for effects of climate change. Limnology and Oceanography 55:1697-1711.
Burkill, P. H., R. F. C. Mantoura, C. A. Llewellyn, and N. J. P. Owens. 1987. Microzooplankton grazing and selectivity of phytoplankton in coastal waters. Marine Biology 93:581-590.
Calbet, A. 2008. The trophic roles of microzooplankton in marine systems. ICES Journal of Marine Science 65:325-331.
Calbet, A. and M. R. Landry. 2004. Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnology and Oceanography 49:51-57.
Calbet, A., M. R. Landry, and S. Nunnery. 2001. Bacteria-flagellate interactions in the microbial food web of the oligotrophic subtropical North Pacific. Aquatic Microbial Ecology 23:283-292.
Calbet, A., I. Trepat, R. Almeda, V. Salo, E. Saiz, J. I. Movilla, M. Alcaraz, L. Yebra, and R. Simo. 2008. Impact of micro- and nanograzers on phytoplankton assessed by standard and size-fractionated dilution grazing experiments. Aquatic Microbial Ecology 50:145-156.
Cavender-Bares, K. K., A. Rinaldo, and S. W. Chisholm. 2001. Microbial size spectra from natural and nutrient enriched ecosystems. Limnology and Oceanography 46:778-789.
Cermeno, P., E. Maranon, J. Rodriguez, and E. Fernadez. 2005. Large-sized phytoplankton sustain higher carbon-specific photosynthesis than smaller cells in a coastal eutrophic ecosystem. Marine Ecology-Progress Series 297:51-60.
Chan, Y.-F., A.-Y. Tsai, K.-P. Chiang, and C.-h. Hsieh. 2009. Pigmented nanoflagellates grazing on Synechococcus: seasonal variations and effect of flagellate size in the coastal ecosystem of subtropical western pacific. Microb. Ecol. 58:548-557.
Chang, J., K. H. Lin, K. M. Chen, G. C. Gong, and K. P. Chiang. 2003. Synechococcus growth and mortality rates in the East China Sea: range of variations and correlation with environmental factors. Deep Sea Research (Part II, Topical Studies in Oceanography) 50:1265-1278.
Chen, B. Z. and H. B. Liu. 2010. Relationships between phytoplankton growth and cell size in surface oceans: Interactive effects of temperature, nutrients, and grazing. Limnology and Oceanography 55:965-972.
Chen, B. Z., H. B. Liu, M. R. Landry, M. H. Dai, B. Q. Huang, and J. Sun. 2009. Close coupling between phytoplankton growth and microzooplankton grazing in the western South China Sea. Limnology and Oceanography 54:1084-1097.
Dolan, J. R., C. L. Gallegos, and A. Moigis. 2000. Dilution effects on microzooplankton in dilution grazing experiments. Marine Ecology-Progress Series 200:127-139.
Dolan, J. R. and K. McKeon. 2005. The reliability of grazing rate estimates from dilution experiments: Have we over-estimated rates of organic carbon consumption by microzooplankton? Ocean Science 1:1-7.
Edwards, K. F., M. K. Thomas, C. A. Klausmeier, and E. Litchman. 2012. Allometric scaling and taxonomic variation in nutrient utilization traits and maximum growth rate of phytoplankton. Limnology and Oceanography 57:554-566.
Eppley, R. W. 1972. Temperature and phytoplankton growth in the sea. Fish. B.-NOAA 70:1063-1085.
Finkel, Z. V. 2001. Light absorption and size scaling of light-limited metabolism in marine diatoms. Limnology and Oceanography 46:86-94.
Finkel, Z. V., A. J. Irwin, and O. Schofield. 2004. Resource limitation alters the 3/4 size scaling of metabolic rates in phytoplankton. Marine Ecology-Progress Series 273:269-279.
Froneman, P. W. and C. D. McQuaid. 1997. Preliminary investigation of the ecological role of microzooplankton in the Kariega Estuary, South Africa. Estuar. Coast. Shelf S. 45:689-695.
Gaul, W. and A. N. Antia. 2001. Taxon-specific growth and selective microzooplankton grazing of phytoplankton in the Northeast Atlantic. J. Marine Syst. 30:241-261.
Glazier, D. S. 2005. Beyond the '3/4-power law': variation in the intra- and interspecific scaling of metabolic rate in animals. Biological Reviews 80:611-662.
Glazier, D. S. 2010. A unifying explanation for diverse metabolic scaling in animals and plants. Biological Reviews 85:111-138.
Gong, G. C., Y. L. L. Chen, and K. K. Liu. 1996. Chemical hydrography and chlorophyll a distribution in the East China Sea in summer: Implications in nutrient dynamics. Continental Shelf Research 16:1561-1590.
Gong, G. C., F. K. Shiah, K. K. Liu, Y. H. Wen, and M. H. Liang. 2000. Spatial and temporal variation of chlorophyll a, primary productivity and chemical hydrography in the southern East China Sea. Continental Shelf Research 20:411-436.
Gong, G. C., Y. H. Wen, B. W. Wang, and G. J. Liu. 2003. Seasonal variation of chlorophyll a concentration, primary production and environmental conditions in the subtropical East China Sea. Deep Sea Research (Part II, Topical Studies in Oceanography) 50:1219-1236.
Gutierrez-Rodriguez, A., M. Latasa, B. Mourre, and E. A. Laws. 2009. Coupling between phytoplankton growth and microzooplankton grazing in dilution experiments: potential artefacts. Marine Ecology-Progress Series 383:1-9.
Gutierrez-Rodriguez, A., M. Latasa, R. Scharek, R. Massana, G. Vila, and J. M. Gasol. 2011. Growth and grazing rate dynamics of major phytoplankton groups in an oligotrophic coastal site. Estuar. Coast. Shelf S. 95:77-87.
Hendriks, A. J. 2007. The power of size: A meta-analysis reveals consistency of allometric regressions. ECOL MODEL 205:196-208.
Huete-Ortega, M., A. Calvo-Diaz, R. Grana, B. Mourino-Carballido, and E. Maranon. 2011. Effect of environmental forcing on the biomass, production and growth rate of size-fractionated phytoplankton in the central Atlantic Ocean. J. Marine. Syst. 88:203-213.
Huete-Ortega, M., P. Cermeno, A. Calvo-Diaz, and E. Maranon. 2012. Isometric size-scaling of metabolic rate and the size abundance distribution of phytoplankton. PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES 279:1815-1823.
Ide, K., K. Takahashi, A. Kuwata, M. Nakamachi, and H. Saito. 2008. A rapid analysis of copepod feeding using FlowCAM. Journal of Plankton Research 30:275-281.
Irwin, A. J., Z. V. Finkel, O. M. E. Schofield, and P. G. Falkowski. 2006. Scaling-up from nutrient physiology to the size-structure of phytoplankton communities. Journal of Plankton Research 28:459-471.
Jiao, N. Z., Y. H. Yang, H. Koshikawa, and M. Watanabe. 2002. Influence of hydrographic conditions on picoplankton distribution in the East China Sea. Aquatic Microbial Ecology 30:37-48.
Juhl, A. R. and M. C. Murrell. 2005. Interactions between nutrients, phytoplankton growth, and microzooplankton grazing in a Gulf of Mexico estuary. Aquatic Microbial Ecology 38:147-156.
Key, T., A. McCarthy, D. A. Campbell, C. Six, S. Roy, and Z. V. Finkel. 2010. Cell size trade-offs govern light exploitation strategies in marine phytoplankton. Environmental Microbiology 12:95-104.
Kiorboe, T. 1993. Turbulence, phytoplankton cell size, and the structure of pelagic food webs. Adv. Mar. Biol. 29:1-72.
Landry, M. R. and A. Calbet. 2005. Reality checks on microbial food web interactions in dilution experiments: responses to the comments of Dolan and McKeon. Ocean Science 1:39-44.
Landry, M. R., J. Constantinou, M. Latasa, S. L. Brown, R. R. Bidigare, and M. E. Ondrusek. 2000. Biological response to iron fertilization in the eastern equatorial Pacific (IronEx II). III. Dynamics of phytoplankton growth and microzooplankton grazing. Marine Ecology-Progress Series 201:57-72.
Landry, M. R. and R. P. Hassett. 1982. Estimating the grazing impact of marine micro-zooplankton. Marine Biology 67:283-288.
Landry, M. R., J. Kirshtein, and J. Constantinou. 1995. A refined dilution technique for measuring the community grazing impact of microzooplankton, with experimental tests in the central equatorial Pacific. Marine Ecology-Progress Series 120:53-63.
Latasa, M., X. A. G. Moran, R. Scharek, and M. Estrada. 2005. Estimating the carbon flux through main phytoplankton groups in the northwestern Mediterranean. Limnology and Oceanography 50:1447-1458.
Legendre, P. and L. Legendre. 1998. Numerical ecology. Second English edition. Elsevier Science B. V. , Amsterdam, Netherlands.
Lessard, E. J. and M. C. Murrell. 1998. Microzooplankton herbivory and phytoplankton growth in the northwestern Sargasso Sea. Aquatic Microbial Ecology 16:173-188.
Li, W. K. W. 2002. Macroecological patterns of phytoplankton in the northwestern North Atlantic Ocean. Nature 419:154-157.
Lie, A. A. Y. and C. K. Wong. 2010. Selectivity and grazing impact of microzooplankton on phytoplankton in two subtropical semi-enclosed bays with different chlorophyll concentrations. J. Exp. Mar. Biol. Ecol. 390:149-159.
Litchman, E., C. A. Klausmeier, O. M. Schofield, and P. G. Falkowski. 2007. The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. Ecology Letters 10:1170-1181.
Lopez-Urrutia, A., E. San Martin, R. P. Harris, and X. Irigoien. 2006. Scaling the metabolic balance of the oceans. Proceedings of the National Academy of Sciences of the United States of America 103:8739-8744.
Maguer, J. F., S. L'Helguen, M. Waeles, P. Morin, R. Riso, and J. Caradec. 2009. Size-fractionated phytoplankton biomass and nitrogen uptake in response to high nutrient load in the North Biscay Bay in spring. Continental Shelf Research 29:1103-1110.
Maranon, E. 2008. Inter-specific scaling of phytoplankton production and cell size in the field. Journal of Plankton Research 30:157-163.
Maranon, E., P. Cermeno, D. C. Lopez-Sandoval, T. Rodriguez-Ramos, C. Sobrino, M. Huete-Ortega, J. M. Blanco, and J. Rodriguez. 2012a. Unimodal size scaling of phytoplankton growth and the size dependence of nutrient uptake and use. Ecology Letters.
Maranon, E., P. Cermeno, M. Latasa, and R. D. Tadonleke. 2012b. Temperature, resources, and phytoplankton size structure in the ocean. Limnology and Oceanography 57:1266-1278.
Maranon, E., P. Cermeno, J. Rodriguez, M. V. Zubkov, and R. P. Harris. 2007. Scaling of phytoplankton photosynthesis and cell size in the ocean. Limnology and Oceanography 52:2190-2198.
Marba, N., C. M. Duarte, and S. Agusti. 2007. Allometric scaling of plant life history. Proceedings of the National Academy of Sciences of the United States of America 104:15777-15780.
Marquis, E., N. Niquil, and C. Dupuy. 2011. Does the study of microzooplankton community size structure effectively define their dynamics? Investigation in the Bay of Biscay (France). Journal of Plankton Research 33:1104-1118.
McCoy, M. W. and J. F. Gillooly. 2008. Predicting natural mortality rates of plants and animals. Ecology Letters 11:710-716.
McManus, G. B., B. A. Costas, H. G. Dam, R. M. Lopes, S. A. Gaeta, S. M. Susini, and C. H. Rosetta. 2007. Microzooplankton grazing of phytoplankton in a tropical upwelling region. Hydrobiologia 575:69-81.
Montagnes, D. J. S., A. B. Barbosa, J. Boenigk, K. Davidson, K. Jurgens, M. Macek, J. D. Parry, E. C. Roberts, and K. Simek. 2008. Selective feeding behaviour of key free-living protists: avenues for continued study. Aquatic Microbial Ecology 53:83-98.
Moran, X. A. G., A. Lopez-Urrutia, A. Calvo-Diaz, and W. K. W. Li. 2010. Increasing importance of small phytoplankton in a warmer ocean. Global Change Biology 16:1137-1144.
Murrell, M. C., R. S. Stanley, E. M. Lores, G. T. DiDonato, and D. A. Flemer. 2002. Linkage between microzooplankton grazing and phytoplankton growth in a Gulf of Mexico estuary. Estuaries 25:19-29.
Platt, T. and K. Denman. 1977. Organization in pelagic ecosystem. Helgolander Wissenschaftliche Meeresuntersuchungen 30:575-581.
Power, M. E. 1992. Top-down and bottom-up forces in food webs-do plants have primacy? Ecology 73:733-746.
Reckermann, M. and M. J. W. Veldhuis. 1997. Trophic interactions between picophytoplankton and micro- and nanozooplankton in the western Arabian Sea during the NE monsoon 1993. Aquatic Microbial Ecology 12:263-273.
Reich, P. B., M. G. Tjoelker, J. L. Machado, and J. Oleksyn. 2006. Universal scaling of respiratory metabolism, size and nitrogen in plants. Nature 439:457-461.
Reul, A., J. Rodriguez, F. Guerrero, N. Gonzalez, J. M. Vargas, F. Echevarria, V. Rodriguez, and F. Jimenez-Gomez. 2008. Distribution and size biomass structure of nanophytoplankton in the Strait of Gibraltar. Aquatic Microbial Ecology 52:253-262.
Reul, A., V. Rodriguez, F. Jimenez-Gomez, J. M. Blanco, B. Bautista, T. Sarhan, F. Guerrero, J. Ruiz, and J. Garcia-Lafuente. 2005. Variability in the spatio-temporal distribution and size-structure of phytoplankton across an upwelling area in the NW-Alboran Sea, (W-Mediterranean). Continental Shelf Research 25:589-608.
Ricklefs, R. E. 1998. Evolutionary theories of aging: Confirmation of a fundamental prediction, with implications for the genetic basis and evolution of life span. Am. Nat. 152:24-44.
Safi, K. A., F. Brian Griffiths, and J. A. Hall. 2007. Microzooplankton composition, biomass and grazing rates along the WOCE SR3 line between Tasmania and Antarctica. Deep Sea Research (Part I, Oceanographic Research Papers) 54:1025-1041.
Savage, V. M., E. J. Deeds, and W. Fontana. 2008. Sizing Up Allometric Scaling Theory. Plos Computational Biology 4.
Seibel, B. A. 2007. On the depth and scale of metabolic rate variation: scaling of oxygen consumption rates and enzymatic activity in the Class Cephalopoda (Mollusca). Journal of Experimental Biology 210:1-11.
Sheldon, R. W., Sutcliff.W. H., and A. Prakash. 1972. Size distribution of particles in the ocean. Limnology and Oceanography 17:327-340.
Shurin, J. B., J. L. Clasen, H. S. Greig, P. Kratina, and P. L. Thompson. 2012. Warming shifts top-down and bottom-up control of pond food web structure and function. Philosophical Transactions of the Royal Society B-Biological Sciences 367:3008-3017.
Stolte, W., T. McCollin, A. A. M. Noordeloos, and R. Riegman. 1994. Effect of nitrogen-source on the size distribution within marine-phytoplankton populations. J. Exp. Mar. Biol. Ecol. 184:83-97.
Strom, S. 2002. Novel interactions between phytoplankton and microzooplankton: their influence on the coupling between growth and grazing rates in the sea. Hydrobiologia 480:41-54.
Strom, S. L. and N. A. Welschmeyer. 1991. Pigment-specific rates of phytoplankotn growth and micrzooplankton grazing in the open sub-arctic pacific-ocean. Limnology and Oceanography 36:50-63.
Teixeira, I. G., F. G. Figueiras, B. G. Crespo, and S. Piedracoba. 2011. Microzooplankton feeding impact in a coastal upwelling system on the NW Iberian margin: The Ria de Vigo. Estuarine Coastal and Shelf Science 91:110-120.
Thingstad, T. F., L. Ovreas, J. K. Egge, T. Lovdal, and M. Heldal. 2005. Use of non-limiting substrates to increase size; a generic strategy to simultaneously optimize uptake and minimize predation in pelagic osmotrophs? Ecology Letters 8:675-682.
Tilman, D., J. Hillerislambers, S. Harpole, R. Dybzinski, J. Fargione, C. Clark, and C. Lehman. 2004. Does metabolic theory apply to community ecology? It's a matter of scale. Ecology 85:1797-1799.
Tsai, A. Y., G. C. Gong, R. W. Sanders, W. H. Chen, C. F. Chao, and K. P. Chiang. 2011. Importance of bacterivory by pigmented and heterotrophic nanoflagellates during the warm season in a subtropical western Pacific coastal ecosystem. Aquatic Microbial Ecology 63:9-18.
Verdy, A., M. Follows, and G. Flierl. 2009. Optimal phytoplankton cell size in an allometric model. Marine Ecology-Progress Series 379:1-12.
Wong, G. T. F., G. C. Gong, K. K. Liu, and S. C. Pai. 1998. 'Excess nitrate' in the East China Sea. Estuarine Coastal and Shelf Science 46:411-418.
Yvon-Durocher, G., J. M. Montoya, M. Trimmer, and G. U. Y. Woodward. 2011. Warming alters the size spectrum and shifts the distribution of biomass in freshwater ecosystems. Global Change Biology 17:1681-1694.
Zhang, J., S. M. Liu, J. L. Ren, Y. Wu, and G. L. Zhang. 2007. Nutrient gradients from the eutrophic Changjiang (Yangtze River) Estuary to the oligotrophic Kuroshio waters and re-evaluation of budgets for the East China Sea Shelf. Prog. Oceanogr. 74:449-478.
Zhang, L. Y., J. Sun, D. Y. Liu, and Z. S. Yu. 2005. Studies on growth rate and grazing mortality rate by microzooplankton of size-fractionated phytoplankton in spring and summer in the Jiaozhou Bay, China. Acta. Oceanol. Sin. 24:85-101.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60582-
dc.description.abstract本研究將流式浮游生物掃描器 (FlowCAM, Flow Cytometry and Microscopy) 應用於稀釋培養實驗 (Dilution Experiment) 的測量中。此項創新的結合可獲得高解析度的生物體型大小資訊,提供分層過濾葉綠素方法所無法達到的詳細資訊。本研究在東海地區的不同季節進行稀釋培養實驗同時測量自然條件下微米級浮游植物 (Microphytoplankon) 生長率和被取食率。本研究第一個假說為檢驗自然條件下的微米浮游植物群集之單位體積生長率 (size-specific growth rate) 在經過溫度校正後,是否如同代謝理論 (MTE, Metabolic Theory in Ecology) 所預測,與體型大小成一斜率為-1/4之負相關。將單位體積生長率與體型大小進行廣義線性迴歸 (GLMM, Generalized Linear Mixed effect Model) 後的結果指出單位體積生長率與體型大小成一斜率為0.1之正相關。此一結果顯示代謝理論並不為自然條件下的浮游植物單位體積生長率所支持。另一方面,單位體積被取食率 (size-specific grazing mortality) 則與體型大小無顯著相關,但與單位體積生長率成正相關係。此一結果與路徑分析 (Path Analysis) 之結果共同指出體型大小將正向影響生長率,而生長率將再正向影響被取食率。本研究第二項假說為檢驗在不同環境下不同的體型大小頻譜 (NB-SS, Normalized-Biomass Size Spectra) 斜率是為 (1) 不同體型大小之不同生長率所決定,或是 (2) 不同體型大小之不同被取食率所決定,亦或是 (3) 兩者共同作用之結果。單變數分析結果顯示,小體型個體項較於大體型個體所遭受的被取食率將會決定體型大小頻譜斜率。綜合而言,本研究結果顯示,小體型個體的高生長率將會為小體型個體帶來較高的被取食率,而大體型個體被取食率相對降低,最終則可觀察到一較平緩的體型大小頻譜斜率。本實驗有助了解微米級浮游植物體型大小頻譜所受到由下而上 (bottom up control) 與由上而下 (top down control)影響的相對重要性。zh_TW
dc.description.abstractAllometric scaling of body size versus growth rate and mortality has been suggested to be a universal macroecological pattern, as described by the metabolic theory of ecology (MTE). However, whether such scaling generally holds in natural assemblages remains debated. Here, we test the hypothesis that the size-specific growth rate and grazing mortality scale with the body size with an exponent of -1/4 after temperature correction, as MTE predicts. To do so, we couple a dilution experiment with the FlowCAM imaging system to obtain size-specific growth rates and grazing mortality of natural microphytoplankton assemblages in the East China Sea. This novel approach allows us to achieve highly resolved size-specific measurements that would be very difficult to obtain in traditional size-fractionated measurements using filters. Our results do not support the MTE prediction. On average, the size-specific growth rates and grazing mortality scale almost isometrically with body size (with scaling exponent ~0.1). However, this finding contains high uncertainty, as the size-scaling exponent varies substantially among assemblages. The fact that size-scaling exponent varies among assemblages prompts us to further investigate how the variation of size-specific growth rate and grazing mortality can interact to determine the microphytoplankton size structure, described by normalized biomass size spectrum (NBSS), among assemblages. We test whether the variation of microphytoplankton NBSS slopes is determined by 1) differential grazing mortality of small versus large individuals, 2) differential growth rate of small versus large individuals, or 3) combinations of these scenarios. Our results indicate that the ratio of the grazing mortality of the large size category to that of the small size category best explains the variation of NBSS slopes across environments, suggesting that higher grazing mortality of large microphytoplankton may release the small phytoplankton from grazing, which in turn leads to a steeper NBSS slope. This study contributes to understanding the relative importance of bottom-up versus top-down control in shaping microphytoplankton size structure.en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:22:22Z (GMT). No. of bitstreams: 1
ntu-102-R99b44025-1.pdf: 1077981 bytes, checksum: 42e6186e11cc7286fbb57d3d4db221c4 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員審定書 i
謝辭 ii
中文摘要 iii
英文摘要 iv
1. Introduction 1
2. Method 7
2.1 Sites descriptions 7
2.2 Sampling 7
2.3 Dilution experiment 8
2.4 FlowCAM analysis 9
2.5 Data analysis 11
2.5.1 Calculation of size-specific growth rate and grazing mortality 11
2.5.2 Data pre-treatments 12
2.5.3 Scaling of size-specific growth rate and grazing mortality within assemblages (stations) 13
2.5.4 Coupling between size-specific growth rate and grazing mortality 14
2.5.5 NBSS slope variation among assemblages 15
2.5.6 Environmental effects on the variation of NBSS slopes among assemblages (stations) 17
2.5.7 Further analyses to test the robustness of the results 17
3. Results 19
3.1 Scaling of size-specific growth rates (μ) and grazing mortality (m) 19
3.2 Coupling between size-specific growth rates (μ’) and grazing mortality (m) 20
3.3 Relative size-specific grazing mortality (mS/mL) explains the variation of the NBSS slope among assemblages 20
4. Discussion 22
4.1 Scaling of size-specific growth rates (μ) and grazing mortality (m) 22
4.2 The relative grazing mortality of small to large microphytoplankton (mS/mL) determines the microphytoplankton NBSS slope 25
4.3 Difficulties in testing the MTE in natural phytoplankton assemblages 28
5. Conclusion 31
Reference 32
dc.language.isoen
dc.subject代謝理論zh_TW
dc.subject體型大小頻譜zh_TW
dc.subject稀釋培養實驗zh_TW
dc.subject單位體積生長率zh_TW
dc.subject單位體積被取食率zh_TW
dc.subjectsize-specific mortalityen
dc.subjectBody sizeen
dc.subjectMetabolic theory of ecologyen
dc.subjectSize spectrumen
dc.subjectsize-specific growthen
dc.subjectDilution experimenten
dc.title東海地區微米級浮游植物體型大小對其生長率與被取食率之影響-體型大較頻譜影響因子初探zh_TW
dc.titleScaling of growth rate and mortality with size and its consequence on size spectra of microphytoplankton assemblages in the East China Seaen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee三木健,林雨德,夏復國,蔣國平
dc.subject.keyword稀釋培養實驗,體型大小頻譜,代謝理論,單位體積生長率,單位體積被取食率,zh_TW
dc.subject.keywordDilution experiment,Body size,Metabolic theory of ecology,Size spectrum,size-specific growth,size-specific mortality,en
dc.relation.page56
dc.rights.note有償授權
dc.date.accepted2013-08-16
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生態學與演化生物學研究所zh_TW
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
1.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved