請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60490
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳瑞北(Ruey-Beei Wu) | |
dc.contributor.author | Chang-Bao Chang | en |
dc.contributor.author | 張長葆 | zh_TW |
dc.date.accessioned | 2021-06-16T10:19:35Z | - |
dc.date.available | 2013-11-05 | |
dc.date.copyright | 2013-11-05 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-16 | |
dc.identifier.citation | [1] “International Technology Roadmap for Semiconductors.” [Online]. Available: http://www.itrs.net/Links/2012ITRS/Home2012.htm.
[2] T.-Y. Cheng, C.-D. Wang, Y.-P. Chiou, and T.-L. Wu, “Accuracy-improved through-silicon-via model using conformal mapping technique,” in IEEE 20th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), San Jose, California, USA, 2011, pp. 189–192. [3] M. Brocard, P. Le Maitre, C. Bermond, P. Bar, R. Anciant, A. Farcy, T. Lacrevaz, P. Leduc, P. Coudrain, N. Hotellier, H. Ben Jamaa, S. Cheramy, N. Sillon, J. Marin, and B. Flechet, “Characterization and modelling of Si-substrate noise induced by RF signal propagating in TSV of 3D-IC stack,” in Electronic Components and Technology Conference (ECTC), 2012 IEEE 62nd, 2012, pp. 665 –672. [4] J. S. Pak, J. Kim, J. Cho, K. Kim, T. Song, S. Ahn, J. Lee, H. Lee, K. Park, and J. Kim, “PDN Impedance Modeling and Analysis of 3D TSV IC by Using Proposed P/G TSV Array Model Based on Separated P/G TSV and Chip-PDN Models,” IEEE Trans. Components Packag. Manuf. Technol., vol. 1, no. 2, pp. 208 –219, Feb. 2011. [5] G. Katti, M. Stucchi, K. De Meyer, and W. Dehaene, “Electrical Modeling and Characterization of Through Silicon via for Three-Dimensional ICs,” Electron Devices IEEE Trans., vol. 57, no. 1, pp. 256 –262, Jan. 2010. [6] X. Gu, B. Wu, M. Ritter, and L. Tsang, “Efficient full-wave modeling of high density TSVs for 3D integration,” in Electronic Components and Technology Conference (ECTC), 2010 Proceedings 60th, 2010, pp. 663 –666. [7] Y.-J. Chang, T.-Y. Zheng, H.-H. Chuang, C.-D. Wang, P.-S. Chen, T.-Y. Kuo, C.-J. Zhan, S.-H. Wu, W.-C. Lo, Y.-C. Lu, Y.-P. Chiou, and T.-L. Wu, “Low slow-wave effect and crosstalk for low-cost ABF-coated TSVs in 3-D IC interposer,” in Electronic Components and Technology Conference (ECTC), 2012 IEEE 62nd, 2012, pp. 1934–1938. [8] I. Ndip, B. Curran, K. Lobbicke, S. Guttowski, H. Reichl, K.-D. Lang, and H. Henke, “High-Frequency Modeling of TSVs for 3-D Chip Integration and Silicon Interposers Considering Skin-Effect, Dielectric Quasi-TEM and Slow-Wave Modes,” IEEE Trans. Components Packag. Manuf. Technol., vol. 1, no. 10, pp. 1627 –1641, Oct. 2011. [9] Q. Ge, X. Liu, X. Chen, and W. Luo, “Design of Ku band GaN power HEMT with 3D electromagnetic characterization,” in 2012 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 2012, vol. 1, pp. 1–3. [10] C. Xu, H. Li, R. Suaya, and K. Banerjee, “Compact AC modeling and analysis of Cu, W, and CNT based through-silicon vias (TSVs) in 3-D ICs,” in Electron Devices Meeting (IEDM), 2009 IEEE International, 2009, pp. 1 –4. [11] Y.-C. Tseng, C.-B. Chang, C.-K. Tang, C.-H. Cheng, Y.-C. Lu, K.-Y. Lin, T.-L. Wu, and R.-B. Wu, “Design considerations for radio frequency 3DICs,” in 2012 IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS), 2012, pp. 197–200. [12] “ITRS 2012 Updates.” [Online]. Available: http://www.itrs.net/Links/2012ITRS/Home2012.htm. [Accessed: 18-May-2013]. [13] G. M. Gorbik and K. V. Ilyenko, “Four-Vector Potential for Point Charge Moving Arbitrarily in Cylindrical Waveguide,” in 2006 International Conference on Mathematical Methods in Electromagnetic Theory, 2006, pp. 437–439. [14] R. E. Collin, Field Theory of Guided Waves, 2nd ed. Wiley-IEEE Press, 1990. [15] “Electromagnetic Modeling Using the Partial Element Equivalent Circuit.” [Online]. Available: http://staff.www.ltu.se/~jekman/Pres/PhDThesis.pdf. [Accessed: 14-Jan-2013]. [16] K. J. Han, M. Swaminathan, and T. Bandyopadhyay, “Electromagnetic Modeling of Through-Silicon Via (TSV) Interconnections Using Cylindrical Modal Basis Functions,” IEEE Trans. Adv. Packag., vol. 33, no. 4, pp. 804 –817, Nov. 2010. [17] C. Xu, H. Li, R. Suaya, and K. Banerjee, “Compact AC Modeling and Performance Analysis of Through-Silicon Vias in 3-D ICs,” IEEE Trans. Electron Devices, vol. 57, no. 12, pp. 3405 –3417, Dec. 2010. [18] S. Kannan, S. S. Evana, A. Gupta, B. Kim, and L. Li, “3-D Copper based TSV for 60-GHz applications,” in Electronic Components and Technology Conference (ECTC), 2011 IEEE 61st, 2011, pp. 1168 –1175. [19] Analysis and simulation of semiconductor devices. Springer-Verlag, 1984. [20] C. R. Paul, Analysis of Multiconductor Transmission Lines, 1st ed. Wiley-Interscience, 1994. [21] M. Vitelli, “Calculation of per-unit-length resistance and internal inductance in 2-D skin-effect current driven problems,” IEEE Trans. Electromagn. Compat., vol. 44, no. 4, pp. 529 – 538, Nov. 2002. [22] A. E. Ruehli and H. Heeb, “Circuit models for three-dimensional geometries including dielectrics,” IEEE Trans. Microw. Theory Tech., vol. 40, no. 7, pp. 1507 –1516, Jul. 1992. [23] G. Antonini, A. E. Ruehli, and J. Esch, “Nonorthogonal PEEC formulation for time and frequency domain modeling,” in IEEE International Symposium on Electromagnetic Compatibility, 2002. EMC 2002, 2002, vol. 1, pp. 452 –456 vol.1. [24] K. M. Coperich, A. E. Ruehli, and A. Cangellaris, “Enhanced skin effect for partial element equivalent circuit (PEEC) models,” in Electrical Performance of Electronic Packaging, 1999, 1999, pp. 189–192. [25] Ki Jin Han and M. Swaminathan, “Inductance and Resistance Calculations in Three-Dimensional Packaging Using Cylindrical Conduction-Mode Basis Functions]]>,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 28, no. 6, pp. 846–859, Jun. 2009. [26] J. D. Jackson, Classical Electrodynamics Third Edition, 3rd ed. Wiley, 1998. [27] M. S. Akyuz, V. B. Erturk, and M. Kalfa, “Closed-Form Green’s Function Representations for Mutual Coupling Calculations Between Apertures on a Perfect Electric Conductor Circular Cylinder Covered With Dielectric Layers,” IEEE Trans. Antennas Propag., vol. 59, no. 8, pp. 3094–3098, 2011. [28] Y. Liu, Fast Multipole Boundary Element Method: Theory and Applications in Engineering, 1st ed. Cambridge University Press, 2009. [29] “Discussion on Simple Inductance Formulas for Radio Coils (Harold A. Wheeler),” Proc. Inst. Radio Eng., vol. 17, no. 3, pp. 580–582, 1929. [30] A. E. Engin and S. R. Narasimhan, “Modeling of Crosstalk in Through Silicon Vias,” IEEE Trans. Electromagn. Compat., vol. 55, no. 1, pp. 149–158, 2013. [31] K. J. Han and M. Swaminathan, “Inductance and Resistance Calculations in Three-Dimensional Packaging Using Cylindrical Conduction-Mode Basis Functions,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 28, no. 6, pp. 846–859, 2009. [32] “ANSYS Q3D Extractor.” [Online]. Available: http://www.ansys.com/Products/Simulation+Technology/Electromagnetics/High-Performance+Electronic+Design/ANSYS+Q3D+Extractor. [Accessed: 07-Jun-2013]. [33] J. Cho, M. Kim, J. Kim, J. S. Pak, J. Kim, H. Lee, J. Lee, and K. Park, “Through-silicon via (TSV) depletion effect,” in 2011 IEEE 20th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), 2011, pp. 101 –104. [34] H. Chaabouni, M. Rousseau, P. Leduc, A. Farcy, R. El Farhane, A. Thuaire, G. Haury, A. Valentian, G. Billiot, M. Assous, F. De Crecy, J. Cluzel, A. Toffoli, D. Bouchu, L. Cadix, T. Lacrevaz, P. Ancey, N. Sillon, and B. Flechet, “Investigation on TSV impact on 65nm CMOS devices and circuits,” in Electron Devices Meeting (IEDM), 2010 IEEE International, 2010, pp. 35.1.1 –35.1.4. [35] T. Bandyopadhyay, K. J. Han, D. Chung, R. Chatterjee, M. Swaminathan, and R. Tummala, “Rigorous Electrical Modeling of Through Silicon Vias (TSVs) With MOS Capacitance Effects,” IEEE Trans. Components Packag. Manuf. Technol., vol. 1, no. 6, pp. 893 –903, Jun. 2011. [36] P. Le Maitre, M. Brocard, A. Farcy, and J.-C. Marin, “Device and electromagnetic co-simulation of TSV: Substrate noise study and compact modeling of a TSV in a matrix,” in 2012 13th International Symposium on Quality Electronic Design (ISQED), 2012, pp. 404 –411. [37] C. L. Gardner, “Semiconductor device simulation: the hydrodynamic model,” IEEE Potentials, vol. 22, no. 5, pp. 17 – 19, Jan. 2003. [38] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. Wiley-Interscience, 2006. [39] M.-J. Zhou, H. De Smet, A. De Bruycker, and A. Van Calster, “A 2-D boundary element method approach to the simulation of DMOS transistors,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 12, no. 6, pp. 810 –816, Jun. 1993. [40] T. Sauer, Numerical analysis. Boston: Pearson, 2012. [41] K.-Y. Chen, Y.-A. Sheu, C.-H. Cheng, J.-H. Lin, Y.-P. Chiou, and T.-L. Wu, “A novel TSV model considering nonlinear MOS effect for transient analysis,” in 2012 IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS), 2012, pp. 49–52. [42] Y. Zhou, H. Chen, X. Wang, W. Mao, W. Shi, and Y. Chang, “Modeling differential Through-Silicon-Vias (TSVs) with large signal, non-linear capacitance,” in 2012 IEEE 21st Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), 2012, pp. 276–279. [43] P. Kuper and C. A. Grimbergen, “Determination of generation lifetime from non-equilibrium linear-sweep current and capacitance measurements on an MOS capacitor,” Solid-State Electron., vol. 21, no. 3, pp. 549–553, Mar. 1978. [44] J. Ole¿ski and P. Machalica, “Erratum: Technique for plotting nonequilibrium C/V curves of an m.o.s. capacitor,” Electron. Lett., vol. 11, no. 17, p. 424–, 1975. [45] D. K. Schroder, J. D. Whitfield, and C. J. Varker, “Recombination lifetime using the pulsed MOS capacitor,” IEEE Trans. Electron Devices, vol. 31, no. 4, pp. 462–467, 1984. [46] E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology. Wiley-Interscience, 2002. [47] L. Zhang, H. Y. Li, S. Gao, and C. S. Tan, “Achieving Stable Through-Silicon Via (TSV) Capacitance with Oxide Fixed Charge,” IEEE Electron Device Lett., vol. 32, no. 5, pp. 668–670, 2011. [48] J. A. Greenfield and R. W. Dutton, “Nonplanar VLSI Device Analysis Using the Solution of Poisson’s Equation,” IEEE J. Solid-State Circuits, vol. 15, no. 4, pp. 585 – 597, Aug. 1980. [49] S.-Y. Oh and R. W. Dutton, “A simplified two-dimensional numerical analysis of MOS devices #8212;DC case,” IEEE Trans. Electron Devices, vol. 27, no. 11, pp. 2101 – 2108, Nov. 1980. [50] F. Cuypers and G. De Mey, “Boundary element method for calculation of depletion layer profiles,” Electron. Lett., vol. 20, no. 6, pp. 229 –230, 1984. [51] J. Cho, K. Yoon, J. S. Pak, J. Kim, J. Lee, H. Lee, K. Park, and J. Kim, “Guard ring effect for through silicon via (TSV) noise coupling reduction,” in CPMT Symposium Japan, 2010 IEEE, 2010, pp. 1 –4. [52] G. Chen and J. Zhou, Boundary Element Methods With Applications To Nonlinear Problems, 2nd ed. World Scientific Publishing Company, 2010. [53] C. R. Paul, “Applications of Multiconductor Transmission Line Theory to the Prediction of Cable Coupling. Volume I. Multiconductor Transmission Line Theory.,” Apr. 1976. [54] C. Xu, V. Kourkoulos, R. Suaya, and K. Banerjee, “A Fully Analytical Model for the Series Impedance of Through-Silicon Vias With Consideration of Substrate Effects and Coupling With Horizontal Interconnects,” IEEE Trans. Electron Devices, vol. 58, no. 10, pp. 3529 –3540, Oct. 2011. [55] L. J.-H. Lin, H.-P. Chang, T.-L. Wu, and Y.-P. Chiou, “3D simulation of substrate noise coupling from Through Silicon Via (TSV) and noise isolation methods,” in 2012 IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS), 2012, pp. 181–184. [56] S. Uemura, Y. Hiraoka, T. Kai, and S. Dosho, “Isolation techniques against substrate noise coupling utilizing through silicon via (TSV) for RF/mixed-signal SoCs,” in VLSI Circuits (VLSIC), 2011 Symposium on, 2011, pp. 48 –49. [57] A. R. Trivedi, W. Yueh, and S. Mukhopadhyay, “Impact of Through-Silicon-Via capacitance on high frequency supply noise in 3D-stacks,” in Electrical Performance of Electronic Packaging and Systems (EPEPS), 2011 IEEE 20th Conference on, 2011, pp. 105 –108. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60490 | - |
dc.description.abstract | 著名的摩爾定律(Moore’s law)指出,積體電路(IC)中的電晶體每隔約兩年將會加倍。但在現今(2013)的半導體產業界中,由於各種困難,使得我們逐漸難以繼續遵守此定律。
因此,為了跟上摩爾定律,許多新方法被提出來取代舊有的方式:藉由縮小電晶體來達成電晶體密度的增加與功耗降低。其中一種廣為人知的方式為藉由垂直堆疊多層積體電路的三維積體電路(3D IC)。 在三維積體電路(3D IC)中,直通矽晶連通柱(TSV)作為積體電路之間的垂直信號與電源連結。然而,高達每平方公分105至107根互相平行直通矽晶連通柱、和半導體的基體特性,使得等效電路模型的萃取及模擬是非常耗時的工作。 本論文利用圓柱型特性與調和基底函數的關係,提出一個新的等效電路模型萃取方法,並同時考慮半導體與電磁效應。此一新方法充分利用直通矽晶連通柱其為圓柱之形狀,在維持良好的準確度的前提下,提高計算的效能。 | zh_TW |
dc.description.abstract | In the modern semiconductor industry, it has become harder to keep following Moore’s law, which states that the number of transistors in Integrated Circuit (IC) doubles approximately every two years. Thus, instead of just shrinking the device, several other ways have been proposed to keep up with Moore’s law. Three-dimensional Integrated Circuit (3D IC) has provided a solution by vertically stacking the multiple ICs and thus increased the density of transistors without shrinking it. Within this technology, Through-Silicon Vias (TSVs) are formed in each IC in order to connect the signals vertically. However, because of the typical high density of 105 ~ 107 per cm2, the vertical parallel nature in geometry, and the coupling properties of semiconductor substrate, the equivalent model extraction and performance analysis for TSVs have become time consuming.
This thesis proposes a new extraction method, while including the semiconductor effect, to accelerate the construction of equivalent model with the cylindrical basis, taking advantage of the cylindrical nature of TSVs, while remaining a good accuracy. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T10:19:35Z (GMT). No. of bitstreams: 1 ntu-102-R00942126-1.pdf: 5578760 bytes, checksum: 9c35e3847542f78e5645d6822245e508 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 iii Abstract v Contents vii List of Tables xi List of Figures xiii Chapter 1 Introduction 1 1.1 Three Dimensional System Integration 1 1.1.1 Through Silicon Interconnection 1 1.1.2 Stacking Strategy 3 1.1.3 Modeling Challenge 4 1.2 Contribution 5 1.3 Thesis Outline 5 Chapter 2 Basic Theory and Assumptions 7 2.1 Basic Electromagnetism 7 2.1.1 Auxiliary Variables and Green’s Theorem 7 2.1.2 Integral Equation 10 2.2 Previous Work 11 2.2.1 Electromagnetic Aspect 11 2.2.2 Semiconductor Aspect 13 2.3 Assumption Used in this Thesis 14 2.3.1 Quasi-Static Field Approximation 14 2.3.2 Decoupling of Electric and Magnetic Field 16 2.3.3 Drift Diffusion Model (DDM) 16 2.3.4 Neglection of Hall Effect inside Silicon 17 2.3.5 Summary 17 Chapter 3 Inductance and Resistance Extractions of Through Silicon Vias 19 3.1 Introduction 19 3.1.1 Magnetic Induced Effect 19 3.1.2 Modeling Challenges 21 3.2 Decoupling of Electric and Magnetic Field 22 3.3 Partial Element Equivalent Circuit (PEEC) 23 3.3.1 Extraction of Inductance and Resistance 23 3.4 Basis Function 24 3.4.1 Conduction Model Basis Function (CMBF) 24 3.4.2 Frequency Independent Cylindrical basis Function 26 3.4.3 Green’s Function in Cylindrical Coordinate 29 3.4.4 Equivalent Circuit 30 3.4.5 Method of Integration 31 3.4.6 Current Density 33 3.4.7 Convergence 33 3.5 Validation and Comparison 35 3.5.1 Several Previous Technique in Inductance Extraction 35 3.5.2 Several Previous Technique in Resistance Extraction 37 3.5.3 Comparison of Different Method 38 3.6 Summary 48 Chapter 4 Capacitance and Conductance Extractions of Through Silicon Via 49 4.1 Aspects of Modeling 49 4.1.1 Electromagnetic Aspect 49 4.1.2 Semiconductor Aspect 50 4.2 Biased and Unbiased Substrate 58 4.2.1 Biased Substrate 58 4.2.2 Unbiased Substrate 59 4.3 Conventional Model 61 4.4 Cylindrical Cylindrical basis 65 4.4.1 Simple Layer Boundary Element Method 65 4.4.2 Cylindrical basis 66 4.5 Validation and Comparison 70 4.5.1 Several Previous Technique in Capacitance extraction 70 4.5.2 . Comparison of Different Method 70 4.6 Summary 71 Chapter 5 Future Works and Conclusions 73 5.1 Future Works 73 5.1.1 Inductance Modeling 73 5.1.2 Capacitance Modeling 73 5.2 Conclusions 75 Reference 77 | |
dc.language.iso | en | |
dc.title | 利用圓柱函數基底萃取直通矽晶穿孔柱陣列之電氣參數 | zh_TW |
dc.title | Extraction of Electrical Parameters of Through Silicon Vias Using Cylindrical Basis | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 楊明宗,吳宗霖,林建民,洪子聖 | |
dc.subject.keyword | 三維積體電路,直通矽晶穿孔柱,矩量法,邊界元素法,圓柱函數,部分元件等效電路, | zh_TW |
dc.subject.keyword | Three-dimensional integrated circuit,through silicon via,moment method,boundary element method,cylindrical function,partial element equivalent circuit, | en |
dc.relation.page | 82 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-08-16 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 5.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。