Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60385
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙基揚(Chi-Yang Chao)
dc.contributor.authorHerman Limen
dc.contributor.author林國輝zh_TW
dc.date.accessioned2021-06-16T10:16:53Z-
dc.date.available2015-08-20
dc.date.copyright2013-08-20
dc.date.issued2013
dc.date.submitted2013-08-17
dc.identifier.citationReferences-Chapter 1
1. Chiang, C. K.; Fincher, C. R., Jr.; Park, Y. W.; Heeger, A. J.; Shirakawa, H.; Louis, E. J.; Gau, S. C.; MacDiarmid, A. G., Electrical Conductivity in Doped Polyacetylene. Physical Review Letters 1977, 39 (17), 1098-1101.
2. Roncali, J., Conjugated poly(thiophenes): synthesis, functionalization, and applications. Chemical Reviews 1992, 92 (4), 711-738.
3. McCullough, R. D.; Lowe, R. D.; Jayaraman, M.; Anderson, D. L., Design, synthesis, and control of conducting polymer architectures: structurally homogeneous poly(3-alkylthiophenes). The Journal of Organic Chemistry 1993, 58 (4), 904-912.
4. Osaka, I.; McCullough, R. D., Advances in Molecular Design and Synthesis of Regioregular Polythiophenes. Acc. Chem. Res. 2008, 41 (9), 1202-1214.
5. Chen, T.-A.; Wu, X.; Rieke, R. D., Regiocontrolled Synthesis of Poly(3-alkylthiophenes) Mediated by Rieke Zinc: Their Characterization and Solid-State Properties. Journal of the American Chemical Society 1995, 117 (1), 233-244.
6. Robert S. Loewe, S. M. K. R. D. M., A Simple Method to Prepare Head-to-Tail Coupled, Regioregular Poly(3-alkylthiophenes) Using Grignard Metathesis. Advanced Materials 1999, 11 (3), 250-253.
7. Lohwasser, R. H.; Thelakkat, M., Toward Perfect Control of End Groups and Polydispersity in Poly(3-hexylthiophene) via Catalyst Transfer Polymerization. Macromolecules 2011, 44 (9), 3388-3397.
8. Liu, J.; McCullough, R. D., End Group Modification of Regioregular Polythiophene through Postpolymerization Functionalization. Macromolecules 2002, 35 (27), 9882-9889.
9. Sauve, G.; McCullough, R. D., High Field-Effect Mobilities for Diblock Copolymers of Poly(3-hexylthiophene) and Poly(methyl acrylate). Advanced Materials 2007, 19 (14), 1822-1825.
10. Iovu, M. C.; Jeffries-El, M.; Sheina, E. E.; Cooper, J. R.; McCullough, R. D., Regioregular poly(3-alkylthiophene) conducting block copolymers. Polymer 2005, 46 (19), 8582-8586.
11. Iovu, M. C.; Craley, C. R.; Jeffries-El, M.; Krankowski, A. B.; Zhang, R.; Kowalewski, T.; McCullough, R. D., Conducting Regioregular Polythiophene Block Copolymer Nanofibrils Synthesized by Reversible Addition Fragmentation Chain Transfer Polymerization (RAFT) and Nitroxide Mediated Polymerization (NMP). Macromolecules 2007, 40 (14), 4733-4735.
12. Dai, C.-A.; Yen, W.-C.; Lee, Y.-H.; Ho, C.-C.; Su, W.-F., Facile Synthesis of Well-Defined Block Copolymers Containing Regioregular Poly(3-hexyl thiophene) via Anionic Macroinitiation Method and Their Self-Assembly Behavior. Journal of the American Chemical Society 2007, 129 (36), 11036-11038.
13. Radano, C. P.; Scherman, O. A.; Stingelin-Stutzmann, N.; Muller, C.; Breiby, D. W.; Smith, P.; Janssen, R. A. J.; Meijer, E. W., Crystalline−Crystalline Block Copolymers of Regioregular Poly(3-hexylthiophene) and Polyethylene by Ring-Opening Metathesis Polymerization. Journal of the American Chemical Society 2005, 127 (36), 12502-12503.
14. Boudouris, B. W.; Frisbie, C. D.; Hillmyer, M. A., Nanoporous Poly(3-alkylthiophene) Thin Films Generated from Block Copolymer Templates. Macromolecules 2008, 41 (1), 67-75.
15. Urien, M.; Erothu, H.; Cloutet, E.; Hiorns, R. C.; Vignau, L.; Cramail, H., Poly(3-hexylthiophene) Based Block Copolymers Prepared by 'Click' Chemistry. Macromolecules 2008, 41 (19), 7033-7040.
16. Higashihara, T.; Ohshimizu, K.; Hirao, A.; Ueda, M., Facile Synthesis of ABA Triblock Copolymer Containing Regioregular Poly(3-hexylthiophene) and Polystyrene Segments via Linking Reaction of Poly(styryl)lithium. Macromolecules 2008, 41 (24), 9505-9507.
17. (a) Li, W.; Maddux, T.; Yu, L., Synthesis and Characterization of Diblock Copolymers Containing Oligothiophenes with Defined Regiospecificity and Molecular Weights. Macromolecules 1996, 29 (23), 7329-7334; (b) Li, W.; Wang, H.; Yu, L.; Morkved, T. L.; Jaeger, H. M., Syntheses of Oligophenylenevinylenes-Polyisoprene Diblock Copolymers and Their Microphase Separation. Macromolecules 1999, 32 (9), 3034-3044.
18. Iovu, M. C.; Zhang, R.; Cooper, J. R.; Smilgies, D. M.; Javier, A. E.; Sheina, E. E.; Kowalewski, T.; McCullough, R. D., Conducting Block Copolymers of Regioregular Poly(3-hexylthiophene) and Poly(methacrylates): Electronic Materials with Variable Conductivities and Degrees of Interfibrillar Order. Macromolecular Rapid Communications 2007, 28 (17), 1816-1824.
19. Leibler, L., Theory of Microphase Separation in Block Copolymers. Macromolecules 1980, 13 (6), 1602-1617.
20. Shiomi, T.; Takeshita, H.; Kawaguchi, H.; Nagai, M.; Takenaka, K.; Miya, M., Crystallization and Structure Formation of Block Copolymers Containing a Rubbery Amorphous Component. Macromolecules 2002, 35 (21), 8056-8065.
21. (a) Shiomi, T.; Tsukada, H.; Takeshita, H.; Takenaka, K.; Tezuka, Y., Crystallization of semicrystalline block copolymers containing a glassy amorphous component. Polymer 2001, 42 (11), 4997-5004; (b) Sakurai, K.; MacKnight, W. J.; Lohse, D. J.; Schulz, D. N.; Sissano, J. A., Blends of Amorphous-Crystalline Block Copolymers with Amorphous Homopolymers. 2. Synthesis and Characterization of Poly(ethylene-propylene) Diblock Copolymer and Crystallization Kinetics for the Blend with Atactic Polypropylene. Macromolecules 1994, 27 (18), 4941-4951.
22. Lohwasser, R. H.; Gupta, G.; Kohn, P.; Sommer, M.; Lang, A. S.; Thurn-Albrecht, T.; Thelakkat, M., Phase Separation in the Melt and Confined Crystallization as the Key to Well-Ordered Microphase Separated Donor–Acceptor Block Copolymers. Macromolecules 2013.
23. Botiz, I.; Darling, S. B., Self-Assembly of Poly(3-hexylthiophene)-block-polylactide Block Copolymer and Subsequent Incorporation of Electron Acceptor Material. Macromolecules 2009, 42 (21), 8211-8217.
24. Lee, Y.-H.; Yen, W.-C.; Su, W.-F.; Dai, C.-A., Self-assembly and phase transformations of [small pi]-conjugated block copolymers that bend and twist: from rigid-rod nanowires to highly curvaceous gyroids. Soft Matter 2011, 7 (21).
25. Lin, S.-H.; Wu, S.-J.; Ho, C.-C.; Su, W.-F., Rational Design of Versatile Self-Assembly Morphology of Rod–Coil Block Copolymer. Macromolecules 2013, 46 (7), 2725-2732.
26. Yu, X.; Yang, H.; Wu, S.; Geng, Y.; Han, Y., Microphase Separation and Crystallization of All-Conjugated Phenylene–Thiophene Diblock Copolymers. Macromolecules 2011.
27. Miller-Chou, B. A.; Koenig, J. L., A review of polymer dissolution. Progress in Polymer Science 2003, 28 (8), 1223-1270.
28. Tao, Y.; Zohar, H.; Olsen, B. D.; Segalman, R. A., Hierarchical Nanostructure Control in Rod−Coil Block Copolymers with Magnetic Fields. Nano Letters 2007, 7 (9), 2742-2746.
29. Masaki, H., Rubbing Technologies. In Alignment Technology and Applications of Liquid Crystal Devices, CRC Press: 2005; pp 7-54.
30. Derue, G.; Coppee, S.; Gabriele, S.; Surin, M.; Geskin, V.; Monteverde, F.; Leclere, P.; Lazzaroni, R.; Damman, P., Nanorubbing of Polythiophene Surfaces. Journal of the American Chemical Society 2005, 127 (22), 8018-8019.
31. Abbas, M.; D'Amico, F.; Ali, M.; Mencarelli, I.; Setti, L.; Bontempi, E.; Gunnella, R., Rubbing effects on the structural and optical properties of poly(3-hexylthiophene) films. Journal of Physics D: Applied Physics 2010, 43 (3), 035103.
32. Hartmann, L.; Tremel, K.; Uttiya, S.; Crossland, E.; Ludwigs, S.; Kayunkid, N.; Vergnat, C.; Brinkmann, M., 2D Versus 3D Crystalline Order in Thin Films of Regioregular Poly(3-hexylthiophene) Oriented by Mechanical Rubbing and Epitaxy. Advanced Functional Materials 2011, 21 (21), 4047-4057.
33. Park, H. J.; Kang, M.-G.; Ahn, S. H.; Guo, L. J., A Facile Route to Polymer Solar Cells with Optimum Morphology Readily Applicable to a Roll-to-Roll Process without Sacrificing High Device Performances. Advanced Materials 2010, 22 (35), E247-E253.
References-Chapter2
1. Osaka, I.; McCullough, R. D., Advances in Molecular Design and Synthesis of Regioregular Polythiophenes. Acc. Chem. Res. 2008, 41 (9), 1202-1214.
2. (a) Wu, P.-T.; Ren, G.; Kim, F. S.; Li, C.; Mezzenga, R.; Jenekhe, S. A., Poly(3-hexylthiophene)-b-poly(3-cyclohexylthiophene): Synthesis, microphase separation, thin film transistors, and photovoltaic applications. Journal of Polymer Science Part A: Polymer Chemistry 2010, 48 (3), 614-626; (b) Takagi, K.; Torii, C.; Yamashita, Y., Polymerization of branched thiophene monomers and optoelectronic properties of materials. Journal of Polymer Science Part A: Polymer Chemistry 2009, 47 (12), 3034-3044; (c) Hiorns, R. C.; Iratcabal, P.; Begue, D.; Khoukh, A.; Bettignies, R. D.; Leroy, J.; Firon, M.; Sentein, C.; Martinez, H.; Preud'homme, H.; Dagron-Lartigau, C., Alternatively linking fullerene and conjugated polymers. Journal of Polymer Science Part A: Polymer Chemistry 2009, 47 (9), 2304-2317; (d) He, Y.; Wu, W.; Liu, Y.; Li, Y., High performance polymer field-effect transistors based on polythiophene derivative with conjugated side chain. Journal of Polymer Science Part A: Polymer Chemistry 2009, 47 (20), 5304-5312; (e) Shen, J.; Tsuchiya, K.; Ogino, K., Synthesis and characterization of highly fluorescent polythiophene derivatives containing polystyrene sidearms. Journal of Polymer Science Part A: Polymer Chemistry 2008, 46 (3), 1003-1013.
3. Cheng, Y.-J.; Yang, S.-H.; Hsu, C.-S., Synthesis of Conjugated Polymers for Organic Solar Cell Applications. Chemical Reviews 2009, 109 (11), 5868-5923.
4. Bates, F. S., Polymer-Polymer Phase Behavior. Science 1991, 251 (4996), 898-905.
5. Iovu, M. C.; Jeffries-El, M.; Sheina, E. E.; Cooper, J. R.; McCullough, R. D., Regioregular poly(3-alkylthiophene) conducting block copolymers. Polymer 2005, 46 (19), 8582-8586.
6. (a) Jinsong Liu, E. S. T. K. R. D. M., Tuning the Electrical Conductivity and Self-Assembly of Regioregular Polythiophene by Block Copolymerization: Nanowire Morphologies in New Di- and Triblock Copolymers13. Angewandte Chemie International Edition 2002, 41 (2), 329-332; (b) Lee, Y.; Fukukawa, K.-I.; Bang, J.; Hawker, C. J.; Kim, J. K., A high purity approach to poly(3-hexylthiophene) diblock copolymers. Journal of Polymer Science Part A: Polymer Chemistry 2008, 46 (24), 8200-8205.
7. Iovu, M. C.; Craley, C. R.; Jeffries-El, M.; Krankowski, A. B.; Zhang, R.; Kowalewski, T.; McCullough, R. D., Conducting Regioregular Polythiophene Block Copolymer Nanofibrils Synthesized by Reversible Addition Fragmentation Chain Transfer Polymerization (RAFT) and Nitroxide Mediated Polymerization (NMP). Macromolecules 2007, 40 (14), 4733-4735.
8. Radano, C. P.; Scherman, O. A.; Stingelin-Stutzmann, N.; Muller, C.; Breiby, D. W.; Smith, P.; Janssen, R. A. J.; Meijer, E. W., Crystalline-Crystalline Block Copolymers of Regioregular Poly(3-hexylthiophene) and Polyethylene by Ring-Opening Metathesis Polymerization. Journal of the American Chemical Society 2005, 127 (36), 12502-12503.
9. Dai, C.-A.; Yen, W.-C.; Lee, Y.-H.; Ho, C.-C.; Su, W.-F., Facile Synthesis of Well-Defined Block Copolymers Containing Regioregular Poly(3-hexyl thiophene) via Anionic Macroinitiation Method and Their Self-Assembly Behavior. Journal of the American Chemical Society 2007, 129 (36), 11036-11038.
10. (a) Higashihara, T.; Ohshimizu, K.; Hirao, A.; Ueda, M., Facile Synthesis of ABA Triblock Copolymer Containing Regioregular Poly(3-hexylthiophene) and Polystyrene Segments via Linking Reaction of Poly(styryl)lithium. Macromolecules 2008, 41 (24), 9505-9507; (b) Tao, Y.; McCulloch, B.; Kim, S.; Segalman, R. A., The relationship between morphology and performance of donor-acceptor rod-coil block copolymer solar cells. Soft Matter 2009, 5 (21), 4219-4230; (c) Urien, M.; Erothu, H.; Cloutet, E.; Hiorns, R. C.; Vignau, L.; Cramail, H., Poly(3-hexylthiophene) Based Block Copolymers Prepared by 'Click' Chemistry. Macromolecules 2008, 41 (19), 7033-7040.
11. Sauve, G.; McCullough, R. D., High Field-Effect Mobilities for Diblock Copolymers of Poly(3-hexylthiophene) and Poly(methyl acrylate). Advanced Materials 2007, 19 (14), 1822-1825.
12. Jeffries-El, M.; Sauve, G.; McCullough, R. D., Facile Synthesis of End-Functionalized Regioregular Poly(3-alkylthiophene)s via Modified Grignard Metathesis Reaction. Macromolecules 2005, 38 (25), 10346-10352.
13. Liu, J.; McCullough, R. D., End Group Modification of Regioregular Polythiophene through Postpolymerization Functionalization. Macromolecules 2002, 35 (27), 9882-9889.
14. Li, W.; Wang, H.; Yu, L.; Morkved, T. L.; Jaeger, H. M., Syntheses of Oligophenylenevinylenes-Polyisoprene Diblock Copolymers and Their Microphase Separation. Macromolecules 1999, 32 (9), 3034-3044.
15. Li, W.; Maddux, T.; Yu, L., Synthesis and Characterization of Diblock Copolymers Containing Oligothiophenes with Defined Regiospecificity and Molecular Weights. Macromolecules 1996, 29 (23), 7329-7334.
16. Miyakoshi, R.; Yokoyama, A.; Yokozawa, T., Development of catalyst-transfer condensation polymerization. Synthesis of pi-conjugated polymers with controlled molecular weight and low polydispersity. Journal of Polymer Science Part A: Polymer Chemistry 2008, 46 (3), 753-765.
17. Loewe, R. S.; Ewbank, P. C.; Liu, J.; Zhai, L.; McCullough, R. D., Regioregular, Head-to-Tail Coupled Poly(3-alkylthiophenes) Made Easy by the GRIM Method: Investigation of the Reaction and the Origin of Regioselectivity. Macromolecules 2001, 34 (13), 4324-4333.
18. Boudouris, B. W.; Molins, F.; Blank, D. A.; Frisbie, C. D.; Hillmyer, M. A., Synthesis, Optical Properties, and Microstructure of a Fullerene-Terminated Poly(3-hexylthiophene). Macromolecules 2009, 42 (12), 4118-4126.
Reference-Chapter3
1. (a) Briseno, A. L.; Mannsfeld, S. C. B.; Jenekhe, S. A.; Bao, Z.; Xia, Y., Introducing organic nanowire transistors. Materials Today 2008, 11 (4), 38-47; (b) Heeger, A. J., Semiconducting and Metallic Polymers:  The Fourth Generation of Polymeric Materials†. The Journal of Physical Chemistry B 2001, 105 (36), 8475-8491; (c) Ma, W.; Yang, C.; Gong, X.; Lee, K.; Heeger, A. J., Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology. Advanced Functional Materials 2005, 15 (10), 1617-1622; (d) O’Neill, M.; Kelly, S. M., Ordered Materials for Organic Electronics and Photonics. Advanced Materials 2011, 23 (5), 566-584; (e) Sirringhaus, H., Reliability of Organic Field-Effect Transistors. Advanced Materials 2009, 21 (38-39), 3859-3873; (f) Sirringhaus, H.; Tessler, N.; Friend, R. H., Integrated Optoelectronic Devices Based on Conjugated Polymers. Science 1998, 280 (5370), 1741-1744; (g) Wang, F.; Yang, Y.; Swager, T. M., Molecular Recognition for High Selectivity in Carbon Nanotube/Polythiophene Chemiresistors. Angewandte Chemie 2008, 120 (44), 8522-8524.
2. Miller, S.; Fanchini, G.; Lin, Y.-Y.; Li, C.; Chen, C.-W.; Su, W.-F.; Chhowalla, M., Investigation of nanoscale morphological changes in organic photovoltaics during solvent vapor annealing. Journal of Materials Chemistry 2008, 18 (3), 306-312.
3. Cho, S.; Lee, K.; Yuen, J.; Wang, G.; Moses, D.; Heeger, A. J.; Surin, M.; Lazzaroni, R., Thermal annealing-induced enhancement of the field-effect mobility of regioregular poly(3-hexylthiophene) films. Journal of Applied Physics 2006, 100 (11), 114503.
4. (a) Kim, D. H.; Han, J. T.; Park, Y. D.; Jang, Y.; Cho, J. H.; Hwang, M.; Cho, K., Single-Crystal Polythiophene Microwires Grown by Self-Assembly. Advanced Materials 2006, 18 (6), 719-723; (b) Rahimi, K.; Botiz, I.; Stingelin, N.; Kayunkid, N.; Sommer, M.; Koch, F. P. V.; Nguyen, H.; Coulembier, O.; Dubois, P.; Brinkmann, M.; Reiter, G., Controllable Processes for Generating Large Single Crystals of Poly(3-hexylthiophene). Angewandte Chemie International Edition 2012, 51 (44), 11131-11135; (c) Zhao, K.; Xue, L.; Liu, J.; Gao, X.; Wu, S.; Han, Y.; Geng, Y., A New Method to Improve Poly(3-hexyl thiophene) (P3HT) Crystalline Behavior: Decreasing Chains Entanglement To Promote Order−Disorder Transformation in Solution. Langmuir 2009, 26 (1), 471-477.
5. Li, L.; Lu, G.; Yang, X., Improving performance of polymer photovoltaic devices using an annealing-free approach via construction of ordered aggregates in solution. Journal of Materials Chemistry 2008, 18 (17), 1984-1990.
6. Lim, H.; Huang, K.-T.; Su, W.-F.; Chao, C.-Y., Facile syntheses, morphologies, and optical absorptions of P3HT coil-rod-coil triblock copolymers. Journal of Polymer Science Part A: Polymer Chemistry 2010, 48 (15), 3311-3322.
7. (a) Robert S. Loewe, S. M. K. R. D. M., A Simple Method to Prepare Head-to-Tail Coupled, Regioregular Poly(3-alkylthiophenes) Using Grignard Metathesis. Advanced Materials 1999, 11 (3), 250-253; (b) Chen, T. A.; Rieke, R. D., The first regioregular head-to-tail poly(3-hexylthiophene-2,5-diyl) and a regiorandom isopolymer: nickel versus palladium catalysis of 2(5)-bromo-5(2)-(bromozincio)-3-hexylthiophene polymerization. Journal of the American Chemical Society 1992, 114 (25), 10087-10088; (c) Yokoyama, A.; Miyakoshi, R.; Yokozawa, T., Chain-Growth Polymerization for Poly(3-hexylthiophene) with a Defined Molecular Weight and a Low Polydispersity. Macromolecules 2004, 37 (4), 1169-1171.
8. Kayunkid, N.; Uttiya, S.; Brinkmann, M., Structural Model of Regioregular Poly(3-hexylthiophene) Obtained by Electron Diffraction Analysis. Macromolecules 2010, 43 (11), 4961-4967.
9. (a) Brinkmann, M.; Rannou, P., Molecular Weight Dependence of Chain Packing and Semicrystalline Structure in Oriented Films of Regioregular Poly(3-hexylthiophene) Revealed by High-Resolution Transmission Electron Microscopy. Macromolecules 2009, 42 (4), 1125-1130; (b) Ruderer, M. A.; Wang, C.; Schaible, E.; Hexemer, A.; Xu, T.; Muller-Buschbaum, P., Morphology and Optical Properties of P3HT:MEH-CN-PPV Blend Films. Macromolecules 2013; (c) Zen, A.; Pflaum, J.; Hirschmann, S.; Zhuang, W.; Jaiser, F.; Asawapirom, U.; Rabe, J. P.; Scherf, U.; Neher, D., Effect of Molecular Weight and Annealing of Poly(3-hexylthiophene)s on the Performance of Organic Field-Effect Transistors. Advanced Functional Materials 2004, 14 (8), 757-764.
10. (a) Wu, Z.; Petzold, A.; Henze, T.; Thurn-Albrecht, T.; Lohwasser, R. H.; Sommer, M.; Thelakkat, M., Temperature and Molecular Weight Dependent Hierarchical Equilibrium Structures in Semiconducting Poly(3-hexylthiophene). Macromolecules 2010, 43 (10), 4646-4653; (b) Yuan, Y.; Zhang, J.; Sun, J.; Hu, J.; Zhang, T.; Duan, Y., Polymorphism and Structural Transition around 54 °C in Regioregular Poly(3-hexylthiophene) with High Crystallinity As Revealed by Infrared Spectroscopy. Macromolecules 2011, 44 (23), 9341-9350; (c) Pankaj, S.; Beiner, M., Long-term behavior and side chain crystallization of poly(3-alkyl thiophenes). Soft Matter 2010, 6 (15), 3506-3516.
11. (a) Causin, V.; Marega, C.; Marigo, A.; Valentini, L.; Kenny, J. M., Crystallization and Melting Behavior of Poly(3-butylthiophene), Poly(3-octylthiophene), and Poly(3-dodecylthiophene). Macromolecules 2004, 38 (2), 409-415; (b) Lee, Y.-H.; Yen, W.-C.; Su, W.-F.; Dai, C.-A., Self-assembly and phase transformations of [small pi]-conjugated block copolymers that bend and twist: from rigid-rod nanowires to highly curvaceous gyroids. Soft Matter 2011, 7 (21).
12. Muller, C.; Radano, C. P.; Smith, P.; Stingelin-Stutzmann, N., Crystalline–crystalline poly(3-hexylthiophene)–polyethylene diblock copolymers: Solidification from the melt. Polymer 2008, 49 (18), 3973-3978.
13. Pascui, O. F.; Lohwasser, R.; Sommer, M.; Thelakkat, M.; Thurn-Albrecht, T.; Saalwachter, K., High Crystallinity and Nature of Crystal−Crystal Phase Transformations in Regioregular Poly(3-hexylthiophene). Macromolecules 2010, 43 (22), 9401-9410.
14. Lohwasser, R. H.; Thelakkat, M., Synthesis of Amphiphilic Rod–Coil P3HT-b-P4VP Carrying a Long Conjugated Block Using NMRP and Click Chemistry. Macromolecules 2012, 45 (7), 3070-3077.
15. (a) Sirringhaus, H.; Brown, P. J.; Friend, R. H.; Nielsen, M. M.; Bechgaard, K.; Langeveld-Voss, B. M. W.; Spiering, A. J. H.; Janssen, R. A. J.; Meijer, E. W.; Herwig, P.; de Leeuw, D. M., Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 1999, 401 (6754), 685-688; (b) Yan, H.; Chen, Z.; Zheng, Y.; Newman, C.; Quinn, J. R.; Dotz, F.; Kastler, M.; Facchetti, A., A high-mobility electron-transporting polymer for printed transistors. Nature 2009, 457 (7230), 679-686.
16. (a) Yu, X.; Xiao, K.; Chen, J.; Lavrik, N. V.; Hong, K.; Sumpter, B. G.; Geohegan, D. B., High-Performance Field-Effect Transistors Based on Polystyrene-b-Poly(3-hexylthiophene) Diblock Copolymers. ACS Nano 2011, 5 (5), 3559-3567 ; (b) Lee, Y. J.; Kim, S. H.; Yang, H.; Jang, M.; Hwang, S. S.; Lee, H. S.; Baek, K.-Y., Vertical Conducting Nanodomains Self-Assembled from Poly(3-hexyl thiophene)-Based Diblock Copolymer Thin Films. The Journal of Physical Chemistry C 2011, 115 (10), 4228-4234; (c) Shah, M.; Ganesan, V., Correlations between Morphologies and Photovoltaic Properties of Rod−Coil Block Copolymers. Macromolecules 2009, 43 (1), 543-552.
17. (a) Abbas, M.; D'Amico, F.; Ali, M.; Mencarelli, I.; Setti, L.; Bontempi, E.; Gunnella, R., Rubbing effects on the structural and optical properties of poly(3-hexylthiophene) films. Journal of Physics D: Applied Physics 2010, 43 (3), 035103; (b) Biniek, L.; Leclerc, N.; Heiser, T.; Bechara, R.; Brinkmann, M., Large Scale Alignment and Charge Transport Anisotropy of pBTTT Films Oriented by High Temperature Rubbing. Macromolecules 2013, 46 (10), 4014-4023; (c) Derue, G.; Coppee, S.; Gabriele, S.; Surin, M.; Geskin, V.; Monteverde, F.; Leclere, P.; Lazzaroni, R.; Damman, P., Nanorubbing of Polythiophene Surfaces. Journal of the American Chemical Society 2005, 127 (22), 8018-8019; (d) Hartmann, L.; Tremel, K.; Uttiya, S.; Crossland, E.; Ludwigs, S.; Kayunkid, N.; Vergnat, C.; Brinkmann, M., 2D Versus 3D Crystalline Order in Thin Films of Regioregular Poly(3-hexylthiophene) Oriented by Mechanical Rubbing and Epitaxy. Advanced Functional Materials 2011, 21 (21), 4047-4057; (e) Zhu, R.; Kumar, A.; Yang, Y., Polarizing Organic Photovoltaics. Advanced Materials 2011, 23 (36), 4193-4198.
18. (a) Botiz, I.; Darling, S. B., Self-Assembly of Poly(3-hexylthiophene)-block-polylactide Block Copolymer and Subsequent Incorporation of Electron Acceptor Material. Macromolecules 2009, 42 (21), 8211-8217; (b) Dai, C.-A.; Yen, W.-C.; Lee, Y.-H.; Ho, C.-C.; Su, W.-F., Facile Synthesis of Well-Defined Block Copolymers Containing Regioregular Poly(3-hexyl thiophene) via Anionic Macroinitiation Method and Their Self-Assembly Behavior. Journal of the American Chemical Society 2007, 129 (36), 11036-11038; (c) Higashihara, T.; Ueda, M., Living Anionic Polymerization of 4-Vinyltriphenylamine for Synthesis of Novel Block Copolymers Containing Low-Polydisperse Poly(4-vinyltriphenylamine) and Regioregular Poly(3-hexylthiophene) Segments. Macromolecules 2009, 42 (22), 8794-8800; (d) Iovu, M. C.; Jeffries-El, M.; Sheina, E. E.; Cooper, J. R.; McCullough, R. D., Regioregular poly(3-alkylthiophene) conducting block copolymers. Polymer 2005, 46 (19), 8582-8586; (e) Moon, H. C.; Anthonysamy, A.; Kim, J. K.; Hirao, A., Facile Synthetic Route for Well-Defined Poly(3-hexylthiophene)-block-poly(methyl methacrylate) Copolymer by Anionic Coupling Reaction. Macromolecules 2011, 44 (7), 1894-1899; (f) Radano, C. P.; Scherman, O. A.; Stingelin-Stutzmann, N.; Muller, C.; Breiby, D. W.; Smith, P.; Janssen, R. A. J.; Meijer, E. W., Crystalline−Crystalline Block Copolymers of Regioregular Poly(3-hexylthiophene) and Polyethylene by Ring-Opening Metathesis Polymerization. Journal of the American Chemical Society 2005, 127 (36), 12502-12503.
19. (a) Lin, S.-H.; Wu, S.-J.; Ho, C.-C.; Su, W.-F., Rational Design of Versatile Self-Assembly Morphology of Rod–Coil Block Copolymer. Macromolecules 2013, 46 (7), 2725-2732; (b) Moon, H. C.; Bae, D.; Kim, J. K., Self-Assembly of Poly(3-dodecylthiophene)-block-poly(methyl methacrylate) Copolymers Driven by Competition between Microphase Separation and Crystallization. Macromolecules 2012, 45 (12), 5201-5207.
20. Han, D.; Tong, X.; Zhao, Y.; Zhao, Y., Block Copolymers Comprising π-Conjugated and Liquid Crystalline Subunits: Induction of Macroscopic Nanodomain Orientation. Angewandte Chemie International Edition 2010, 49 (48), 9162-9165.
21. Wang, T.; Dunbar, A. D. F.; Staniec, P. A.; Pearson, A. J.; Hopkinson, P. E.; MacDonald, J. E.; Lilliu, S.; Pizzey, C.; Terrill, N. J.; Donald, A. M.; Ryan, A. J.; Jones, R. A. L.; Lidzey, D. G., The development of nanoscale morphology in polymer:fullerene photovoltaic blends during solvent casting. Soft Matter 2010, 6 (17), 4128-4134.
References-Chapter4
1. (a) Yu, X.; Xiao, K.; Chen, J.; Lavrik, N. V.; Hong, K.; Sumpter, B. G.; Geohegan, D. B., High-Performance Field-Effect Transistors Based on Polystyrene-b-Poly(3-hexylthiophene) Diblock Copolymers. ACS Nano 2011, 5 (5), 3559-3567 ; (b) Lim, H.; Huang, K.-T.; Su, W.-F.; Chao, C.-Y., Facile syntheses, morphologies, and optical absorptions of P3HT coil-rod-coil triblock copolymers. Journal of Polymer Science Part A: Polymer Chemistry 2010, 48 (15), 3311-3322; (c) Higashihara, T.; Ohshimizu, K.; Hirao, A.; Ueda, M., Facile Synthesis of ABA Triblock Copolymer Containing Regioregular Poly(3-hexylthiophene) and Polystyrene Segments via Linking Reaction of Poly(styryl)lithium. Macromolecules 2008, 41 (24), 9505-9507; (d) C. Rockford Craley, R. Z. T. K. R. D. M. M. C. S., Regioregular Poly(3-hexylthiophene) in a Novel Conducting Amphiphilic Block Copolymer. Macromolecular Rapid Communications 2008, 9999 (9999), NA; (e) Iovu, M. C.; Craley, C. R.; Jeffries-El, M.; Krankowski, A. B.; Zhang, R.; Kowalewski, T.; McCullough, R. D., Conducting Regioregular Polythiophene Block Copolymer Nanofibrils Synthesized by Reversible Addition Fragmentation Chain Transfer Polymerization (RAFT) and Nitroxide Mediated Polymerization (NMP). Macromolecules 2007, 40 (14), 4733-4735; (f) Iovu, M. C.; Jeffries-El, M.; Sheina, E. E.; Cooper, J. R.; McCullough, R. D., Regioregular poly(3-alkylthiophene) conducting block copolymers. Polymer 2005, 46 (19), 8582-8586.
2. Liu, J.; Loewe, R. S.; McCullough, R. D., Employing MALDI-MS on Poly(alkylthiophenes): Analysis of Molecular Weights, Molecular Weight Distributions, End-Group Structures, and End-Group Modifications. Macromolecules 1999, 32 (18), 5777-5785.
3. Olsen, B. D.; Segalman, R. A., Structure and Thermodynamics of Weakly Segregated Rod-Coil Block Copolymers. Macromolecules 2005, 38 (24), 10127-10137.
4. Brinkmann, M.; Rannou, P., Molecular Weight Dependence of Chain Packing and Semicrystalline Structure in Oriented Films of Regioregular Poly(3-hexylthiophene) Revealed by High-Resolution Transmission Electron Microscopy. Macromolecules 2009, 42 (4), 1125-1130.
5. Lee, K. M.; Han, C. D., Order−Disorder Transition Induced by the Hydroxylation of Homogeneous Polystyrene-block-polyisoprene Copolymer. Macromolecules 2001, 35 (3), 760-769.
References-Chapter5
1. (a) Coakley, K. M.; Liu, Y.; McGehee, M. D.; Frindell, K. L.; Stucky, G. D., Infiltrating Semiconducting Polymers into Self-Assembled Mesoporous Titania Films for Photovoltaic Applications. Advanced Functional Materials 2003, 13 (4), 301-306; (b) Lee, J. I.; Cho, S. H.; Park, S.-M.; Kim, J. K.; Kim, J. K.; Yu, J.-W.; Kim, Y. C.; Russell, T. P., Highly Aligned Ultrahigh Density Arrays of Conducting Polymer Nanorods using Block Copolymer Templates. Nano Letters 2008, 8 (8), 2315-2320.
2. (a) Bates, F. S.; Fredrickson, G. H., Block Copolymers---Designer Soft Materials. Physics Today 1999, 52 (2), 32-38; (b) Bates, F. S., Polymer-Polymer Phase Behavior. Science 1991, 251 (4996), 898-905.
3. (a) Dante, M.; Yang, C.; Walker, B.; Wudl, F.; Nguyen, T.-Q., Self-Assembly and Charge-Transport Properties of a Polythiophene–Fullerene Triblock Copolymer. Advanced Materials 2010, 22 (16), 1835-1839; (b) Renaud, C.; Mougnier, S.-J.; Pavlopoulou, E.; Brochon, C.; Fleury, G.; Deribew, D.; Portale, G.; Cloutet, E.; Chambon, S.; Vignau, L.; Hadziioannou, G., Block Copolymer as a Nanostructuring Agent for High-Efficiency and Annealing-Free Bulk Heterojunction Organic Solar Cells. Advanced Materials 2012, 24 (16), 2196-2201; (c) Sary, N.; Richard, F.; Brochon, C.; Leclerc, N.; Leveque, P.; Audinot, J.-N.; Berson, S.; Heiser, T.; Hadziioannou, G.; Mezzenga, R., A New Supramolecular Route for Using Rod-Coil Block Copolymers in Photovoltaic Applications. Advanced Materials 2010, 22 (6), 763-768.
4. Segalman, R. A.; McCulloch, B.; Kirmayer, S.; Urban, J. J., Block Copolymers for Organic Optoelectronics. Macromolecules 2009, 42 (23), 9205-9216.
5. Zuo, L.; Yao, S.; Wang, W.; Duan, W., An efficient method for demethylation of aryl methyl ethers. Tetrahedron Letters 2008, 49 (25), 4054-4056.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60385-
dc.description.abstractPoly(3-hexylthiophene) (P3HT)之剛-柔嵌段共聚高分子(P3HT BCPs) 經過自組裝可形成規則的奈米結構,使其在有機電子元件的應用上有極大的潛力而受到多方的研究。P3HT BCPs的自組裝行為受到多種因素的影響,包含:剛-剛作用力(rod-rod interaction)、剛-柔作用力(rod-coil interaction)及聚3-己基噻吩之結晶。因此了解P3HT BCPs的自組裝行為對於操控其所形成的微結構與結晶性以提升在元件中的光電性質是極為重要的。在本論文中,我們對於P3HT BCPs 之合成及影響自組裝行為的因素做了系統性的研究。
在第二章中,我們建立一個有效率且可精準控制P3HT BCPs的分子量及組成的合成方法學。本方法學是利用末端改質為醛基之P3HT與軟段的活性陰離子進行高效率的耦合反應(coupling reaction)。我們證明此方法學可以用於多種不同的軟鍊段,如:polystyrene (PS)、polyisoprene (PI) 及 poly(methylmethacrylate) (PMMA) ;並合成出一系列不同組成及分子量的高純度三嵌段共聚高分子。針對這些三嵌段共聚高分子的旋轉塗佈薄膜的研究中,我們發現軟段的化學結構與塗佈所使用的溶劑對於其微結構及吸收光譜有大的影響。
為了使P3HT的結晶性及微結構的連續性同時提升來增加電荷傳輸效率,在第三章中,我們以1,4-addition的polyisoprene (PI(1,4)) 做為P3HT BCP的軟鍊段製備出單邊耦合的poly(3-hexylthiophene-block-isoprene) 雙嵌段共聚高分子(P3HT-b-PI(1,4) DBCP) 與雙邊耦合的poly(isoprene-block-3-hexylthiophene-block-isoprene) 三嵌段共聚高分子 (PI-b-P3HT-b-PI TBCP)。我們針對DBCP 及TBCP的微結構與結晶特性做了系統性的研究。藉由小角度X光散射(SAXS) 及穿透式電子顯微鏡 (TEM) 的觀察,發現PI(1,4) 含量小於40 wt% 的P3HT-b-PI(1,4) DBCP 與PI-b-P3HT-b-PI TBCP 顯出層狀的微結構並有長且直的區域界面。與P3HT homopolymer相比, PI(1,4) 含量小於40 wt%之P3HT-b-PI(1,4) DBCP的P3HT晶粒較大且結晶度更高。我們認為PI(1,4)的高柔軟度及P3HT與PI(1,4)的中度相分離的適度平衡是使其展現出大範圍的規則結構及良好的結晶性的主要因素。此外,高柔軟度的PI(1,4)能夠讓我們藉由對P3HT-b-PI(1,4) DBCP進行簡單的機械摩擦(mechanical rubbing)來產生具有順向性的奈米結構以及良好結晶性的膜材。
在第四章我們研究一系列的雙親性嵌段共聚高分子poly(3-hexylthiophene-block-hydroxylated isoprene) P3HT-b-PIOH DBCPs 與 Poly(hydroxylated isoprene-block-3-hexylthiophene-block-hydroxylated isoprene) PIOH-b-P3HT-b-PIOH TBCPs 的自組裝行為。 合成的方法是藉由將P3HT-b-PI(1,2/3,4) BCPs 的PI鍊段之側鍊雙鍵進行氫硼化-烴基化反應而轉化成為側鍊氫氧基(-OH)。具有高含量PIOH的P3HT-b-PIOH BCPs 在醇類中可形成micelle且被均勻分散。藉由調控混合溶劑的比例可以改變P3HT-b-PIOH BCP 溶液的顏色。在固態中,具有短鍊段PIOH的P3HT-b-PIOH BCPs會形成層狀的微結構,而長鍊段的PIOH的BCPs則形成短柱狀的微結構。由於PIOH鍊段所構成的區域內有分子間氫鍵的存在,因此展現了強相分離的自組裝特性;而微結構的TODT甚至高於250oC ,遠高過P3HT的熔點。當對DBCPs在P3HT的熔融態下進行退火並進行緩慢降溫時,可觀察到P3HT在微相分離的區域內進行受限結晶(confined crystallization)而產生新的相變化。
在第五章中,oxadiazole (OXD)透過酯化反應進行側鍊接枝於P3HT –b-PIOH的PIOH鍊段而得到P3HT-b-POXD p-n半導體嵌段共聚高分子。由 1H NMR 與 GPC 分析可證明此高分子被成功製備。
zh_TW
dc.description.abstractPoly(3-hexylthiophene) rod-coil block copolymers (P3HT BCP) have drawn significant interests for their potentials in organic electronic applications due to the ability to form order nanostructures through self-assembly, which is complicatedly governed by rod-rod interaction, rod-coil interaction and crystallization of P3HT. Understanding the self-assembly behaviors is critical to manipulate the morphologies of the BCPs and the crystallinity of P3HT domains therein, and thus to improve the optical and electrical properties of the BCPs in the corresponding devices. In this dissertation, systematic studies on syntheses of well-defined P3HT BCPs and factors affecting the self-assembly of selected P3HT BCPs are presented.
In chapter 2, an effective methodology was developed to synthesize P3HT BCPs with accurate control on molecular weights and compositions. In this method, P3HT was bi-end-functionalized with aldehyde and which could be coupled with coil segments in living polymeric anions. The coupling reactions were found to be efficient toward various coil segments, including polystyrene (PS), polyisoprene (PI) and poly(methylmethacrylate) (PMMA) to afford P3HT triblock copolymers with a good variation of chemical structures and compositions in high yield and high purity. The further studies on the spin-coated thin films of the resulting P3HT BCPs showed that the coil segments and the solvents noticeablely affect the morphologies and the UV–Vis absorptions.
In chapter 3, polyisoprene (PI) was employed as the coil segment in order to achieve simultaneous enhancement in both the domain continuity and P3HT crystallinity for the potential improvement in the device performance by promoting charge transportations. Mono- and bi-end-functionalized P3HT with aldehyde as the terminal group were successfully synthesized in high purity to produce the corresponding Poly(3-hexylthiophene-block-isoprene) diblock copolymers (HT/I(1,4) DBCPs) and Poly(isoprene-block-3-hexylthiophene-block-isoprene) triblock copolymers (HT/I(1,4) TBCPs) through coupling reaction between P3HT and PI anions in 1,4-addition (PI 1,4). Systematic studies on the morphology and the crystallinity of the DBCPs and TBCPs were performed. SAXS and TEM results suggested both DBCPs and TBCPs possessing PI(1,4) < 40 wt% to exhibit lamellae morphology with extended straight inter-domain boundaries. The crystallite size and the degree of crystallization of DBCP with PI(1,4) < 40 wt% were even enlarged as comparing with the corresponding P3HT homopolymers. Thus, the high flexibility and the moderate phase separation between PI(1,4) and P3HT were thought to be responsible to mediate the self-assembly of these BCPs. By incorporating suitable amount of PI(1,4) in DBCPs, the long range order in morphology and the good P3HT crystallinity could be simultaneously achieved. The highly flexible PI enhance the chain mobility significantly at room temperature, allowing the achievement of a highly ordered, uniformly aligned nanostructure with good crystallinity on the P3HT-b-PI possessing a low weight fraction (19.4 wt%) of PI(1,4) via simple mechanical rubbing without the uses of solution based fabrication and thermal treatment.
In chapter 4, investigations on self-assembly of amphiphilic P3HT BCPs were carried out for a series of Poly(3-hexylthiophene-block-hydroxylated isoprene) (HT/OH DBCPs) and Poly(hydroxylated isoprene-block-3-hexylthiophene-block-hydroxylated isoprene) (HT/OH TBCPs). Syntheses of HT/OH BCPs were performed via subsequent hydroboration-hydroxylation on the PI segment in 1,2/3,4-addition of P3HT and PI(1,2/3,4) BCPs. HT/OH BCPs with high PIOH content formed micelles and which could homogeneously disperse in alcohols, allowing tuning the color of the HT/OH BCP solution by adjusting the solvent combination. Lamellar morphologies in bulk were observed for both DBCPs and TBCPs with shorter PIOH, while distorted short cylinders were observed for BCPs with higher content of PIOH. The system could be classified as strong segregation as the order disorder transition temperatures were much higher than the melting temperatures of P3HT (TODT > 250oC), which might be attributed to the hydrogen bonding in PIOH domains. Confined crystallization of P3HT within the microdomains of P3HT was observed for the slowly cooled DBCPs, and which was found to generate a new phase transition for P3HT.
In chapter 5, we report a single molecule p-n semiconductor was synthesized with the n-type semiconducting oxadiazole (OXD) side chains attached to HT/OH BCPs to afford 3-hexylthiophene and sidechain-oxadiazole HT/OXD BCPs by esterification between acid chloride of oxadiazole moieties and –OH group of PIOH. The 1H NMR and GPC results indicated the success of the synthesis of the polymer.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:16:53Z (GMT). No. of bitstreams: 1
ntu-102-D96527027-1.pdf: 12883873 bytes, checksum: 10e8e08da902abd99c5e8da5074e99ba (MD5)
Previous issue date: 2013
en
dc.description.tableofcontentsAcknowledgement ………………………………………………………... i
摘要……………………………………………………………………….. iii
Abstract …………………………………………………………………... v
Table of Content ……………………………………………………….. viii
Figure and Scheme List ……………………………………………….. xiii
Table List ……………………………………………………………..... xxi
Chapter I Introduction …………………………………………………. 1
1.1 Conjugated Polymer ……………………………………………………………… 1
1.2 Syntheses of P3HT ………………………………………………………………. 2
1.3 End-Functionalization of P3HT ………………………………………………….. 3
1.3.1 Post Polymerization Method ……………………………………………………... 4
1.3.2 In-situ Method …………………………………………………………………… 5
1.4 Syntheses of P3HT Block Copolymers …………………………………………... 7
1.4.1 Macroinitiator Method …………………………………………………………… 8
1.4.2 Coupling Method ……………………………………………………………….. 11
1.5 P3HT Block Copolymer Properties and Applications …………………………. 15
1.5.1 Thermodynamics of Microphase Separation…………………………………….. 15
1.5.2 Kinetics of Crystallization in Block Copolymers……………………………….. 16
1.6 Self-assembly of Block Copolymers …………………………………………… 19
1.6.1 Morphology and Crystallinity of poly(3-hexylthiophene) Block Copolymers….. 19
1.6.2 Control of the Orientation of Nanostructure and Microcrystalline Structure…… 25
1.7 Motivation and Research Scope ……………………………………………….... 28
References……………………………………………………………………………… 32
Chapter II Synthesis of P3HT Block Copolymer by Coupling between Aldehyde Terminated P3HT and Living Anioinic Polymers ……….. 37
2.1 Introduction …………………………………………………………………….. 38
2.2 Experimental ………………………………………………………………….... 41
2.2.1 Materials ……………………………………………………………………… 41
2.2.2 Synthesis of Aldehyde Terminated Bi-end Functionalized P3HT (CHO/CHO) . 42
2.2.3 General Procedure for Synthesis of PS-b-P3HT-b-PS Triblock Copolymer …… 42
2.2.4 General Procedure for Synthesis of PI-b-P3HT-b-PI …………………………… 43
2.2.5 Synthesis of PMMA-b-P3HT-b-PMMA ………………………………………... 44
2.2.6 Characterization of the Block Copolymers and Their Thin Films ……………… 44
2.3 Result and Discussions …………………………………………………………. 45
2.3.1 Synthesis of P3HT-CHO/CHO ………………………………………………. 45
2.3.2 Synthesis of Block Copolymers via Coupling Reaction ……………………… 48
2.3.3 Morphologies and Photophysical Properties of Spin-coated Thin Films ……..... 56
2.4 Conclusion ……………………………………………………………………… 63
References……………………………………………………………………………… 64
Chapter III P3HT Rod-Coil Diblock and Triblock Copolymers: Mutual Enhancement of Morphology and Crystallinity …………… 68
3.1 Introduction …………………………………………………………………….. 69
3.2 Experimental ……………………………………………………………………. 72
3.2.1 Materials ………………………………………………………………………… 72
3.2.2 Synthesis of 2-bromo-3-hexyl-5-iodothiophene………………………………… 72
3.2.3 Syntheses of aldehyde end-capped P3HT ………………………………………. 74
3.2.4 Genreal Procedure for Synthesis of P3HT-b-PI(1,4) Diblock Copolymers (DBCPs) and PI(1,4)-b-P3HT-b-PI(1,4) Triblock Copolymers (TBCPs)…….…………… 75
3.2.5 Instrumentation…. ……………………………………………………………… 76
3.2.6 Rubbing Procedure……………………………………………………………… 76
3.3 Results and Discussion …………………………………………………………. 77
3.3.1 Synthesis ……………………………………………………………………….. 77
3.3.2 Crystallinity and morphology of P3HT-PI Block Copolymer………………….. 84
3.3.3 Macroscopic Alignment of P3HT-PI BCPs induced by Mechanical Rubbing …. 99
3.4 Conclusion ……………………………………………………………………... 111
References……………………………………………………………………………. 112
Chapter IV Confined Crystallization in Poly(3-hexylthiophene) Block Copolymers induced by Hydrogen Bonding ………… 119
4.1 Introduction …………………………………………………………………..... 119
4.2 Experimental …………………………………………………………………... 122
4.2.1 Materials ………………………………………………………………………. 122
4.2.2 General procedure of Hydroboration/Hydroxylation of P3HT-PI BCPs ……… 123
4.2.3 End-capping with Acetyl Chloride ……………………………………………. 124
4.2.4 Characterization…………………. ……………………………………………. 124
4.3 Synthesis of Diblock and Triblock Copolymer ……………………………….. 125
4.4 Self-assembly in Selective Solvent ………………………………………….... 130
4.5 The Self Assembly of P3HT-PIOH Blcok Copolymers in Solid State………... 132
4.5.1. Morphology and Crystallinity …………………………………………………. 132
4.5.2. Crystallinity …………………………………………………………………… 133
4.5.3 Thermal Properties and Temperature Dependent Study ………………………. 137
4.6 Conclusion …………………………………………………………………….. .150
References…………………………………………………………………………….. 152
Chapter V Synthesis and Characterization of Electron Donor–Acceptor Block Copolymer with Oxadiazole Moieties …………….. 154
5.1 Introduction …………………………………………………………………… 154
5.2 Experimental …………………………………………………………………... 156
5.2.1 Synthesis of 4-hexyl-N'-(4-methoxybenzoyl)benzohydrazide (1) ……………. 156
5.2.2 Synthesis of 2-(4-hexylphenyl)-5-(4-methoxyphenyl)-1,3,4-oxadiazole (2) …. 156
5.2.3 Synthesis of 4-(5-(4-hexylphenyl)-1,3,4-oxadiazol-2-yl)phenol (3) ………….. 157
5.2.4 Synthesis of ethyl 6-(4-(5-(4-hexylphenyl)-1,3,4-oxadiazol-2-yl)phenoxy) hexanoate (OXD-spacer-COOC2H5) (4) …………………................................ 157
5.2.5 Synthesis of 6-(4-(5-(4-hexylphenyl)-1,3,4-oxadiazol-2-yl)phenoxy)hexanoic acid (OXD-spacer-COOH) (5) ……………………………………………………... 158
5.2.6 Synthesis 6-(4-(5-(4-hexylphenyl)-1,3,4-oxadiazol-2-yl)phenoxy)hexanoyl chloride (OXD-spacer-COCl) (6) ……………………………………………... 158
5.2.7 Attachment of oxadiazoles moieties into P3HT-POH block copolymers ……... 159
5.3 Results and Discussion ………………………………………………………... 161
5.3.1 Synthesis of Oxadizoles Moieties …………………………………………….. 161
5.3.2 Synthesis of P3HT-b-POXD …………………………………………………... 162
5.4 Conclusion and Future Works ………………………………………………… 164
References…………………………………………………………………………….. 165
Chapter VI Conclusion and Future Works ……………..………….. 167
 
Figure and Scheme List
Figure 1.1 Regioisomeric couplings of 3-alkylthiophenes (top) and regioregular and regioirregular P3HT (bottom) ………………………………………..…. 2
Scheme 1.1 Initiation, propagation and termination of P3HT polymerization ……..... 3
Scheme 1.2 Termination of P3HT growing chain resulting in H/H and Br/Br end-groups …………………………………………………………………..4
Scheme 1.3 End-group functionalization of P3HT by post-polymerization method.. 5
Scheme 1.4 End-group functionalization of P3HT by in-situ method ……………... 6
Scheme 1.5 Synthesis of P3HT-b-PMA and P3HT-b-PtBuA via ATRP …………... 9
Scheme 1.6 Synthesis of P3HT diblock copolymers though RAFT and NMP …….. 10
Scheme 1.7 Synthesis of P3HT-b-P2VP by anionic polymerization from vinyl terminated P3HT (redrawn based on ref 12) …………………………. 11
Scheme 1.8 Synthesis of P3HT-b-PE (i) Cyclooctane, Ru-(H2IMes)Cl2PCy3(=CHPh), chlorobenzene, 55oC, 24 h. (ii) p-Toluene-sulfonhydrazide, p-xylene, 130oC, 8h. (Redrawn from reference 13) ……………………………… 11
Scheme 1.9 Synthesis of P3HT-b-PLA (redrawn from reference 14) ……………… 12
Scheme 1.10 Synthesis of PS-b-P3HT-b-PS via click chemistry ……………………. 13
Scheme 1.11 Synthesis of PS-b-P3HT-b-PS by coupling poly(styryl)lithium with P3HT. Synthesis condition: (i) Isopropylmagnesium chloride, LiCl, THF, 0oC, 30 min; (ii) Ni(dppp)Cl2, RT, 10 min; (iii) 1-hexene as an additive, RT, 30 min; (iv) sec-butyllithium, benzene, RT, 2 h; (v) benzene, RT, 24 h, quenched with methanol. ………………………………………..…. 14
Figure 1.2 Phase diagram of microphase separated AB linear diblock copolymer predicted theoretically (a) and proved experimentally (b). The domains were colored red and blue to represents A block and B block ………… 17
Figure 1.3 Schematic illustration of structure transformation upon crystallization from an amorphous melt block copolymer system ………………......... 18
Figure 1.4 The possible scenarios for block copolymer self-assembly behavior upon cooling (top to bottom): (a) A block copolymer with two noncrystalline segments was at disordered melt state at temperature above the order-disorder transition temperature TODT (i), while for T < TODT (ii) in the ordered melt the well-known microphase separated morphologies develop. For BCPs with two crystalline segments, the crystallization of the individual blocks either occurs from an ordered melt (b) or directly from the disordered melt (c) …………………………………………… 19
Figure 1.5 TEM image of P3HT-b-PLLA lamellae on Si3N4 membrane substrate.. 20
Figure 1.6 TEM images of ultramicrotomed P3HT-b-P2VP samples (a) sphere (b) hexagonal closed packed (c) lamellae and (d) nanofiber …………….... 21
Figure 1.7 Phase diagram of P3HT-b-P2VP…………………………….………… 21
Figure 1.8 The AFM images of (a) P3HT homopolymer (b) P3HT-b-PEO (c) P3HT-b-PS and (d) P3HT-b-PI…………………………………...................... 23
Figure 1.9 Interplay between microphase separation and crystallization resulting in inhibited crystallization in the case of dominating microphase separation and confined crystallization within nanodomain in in the case of dominating crystallization within PPP-b-P3HT ……………………….. 24
Figure 1.10 UV-Vis absorption spectra of PS-b-P3HT-b-PS in comparison with P3TH homopolymers in (a) solution and as thin………………………. 24
Figure 1.11 Illustration of proper and wrong orientations of block copolymer nanostructure toward electrodes ………………..................................... 24
Figure 1.12 The nanostructure orientation result from magnetic field alignment, the red segment represent PPV rod and blue segment refers to polyisoprene coil……………………………………………………………………… 26
Figure 1.13 Schematic illustration of nanorubbed P3HT molecules arrangement….. 27
Scheme 2.1 End-group functionalization of P3HT …………………………………. 40
Scheme 2.2 Triblock copolymer syntheses through coupling between P3HT CHO/CHO and living anionic polymers……………………………….. 41
Figure 2.1 1H NMR spectra of P3HT H/H in d-chloroform solution …………….. 46
Figure 2.2 MALDI-TOF spectra of P3HT H/H ………………………………...… 47
Figure 2.3 1H NMR spectra of P3HT CHO/CHO in d-chloroform solution ……… 47
Figure 2.4 MALDI-TOF spectra of P3HT CHO/CHO ………………………….... 48
Figure 2.5 Normalized GPC traces of triblock copolymer PS-b-P3HT-b-PS_1 (as synthesized and after purification) and corresponding building polystyrene and P3HT………………………………………………….. 50
Figure 2.6 1H NMR spectra of PS-b-P3HT-b-PS_2 in d-chloroform …………...... 51
Figure 2.7 Normalized GPC traces of Polyisoprene (1,4/3,4 addition) (Mn = 6980 PDI = 1.05), P3HT (Mn = 10855 PDI = 1.21), and triblock copolymer (Mn = 24202 PDI = 1.25) ……………………………………………... 52
Figure 2.8 1H NMR Spectra of PI-b-P3HT-b-PI_1 in d-chloroform ……………… 53
Figure 2.9 Normalized GPC traces of Polyisoprene (1,2/3,4 addition) (Mn = 6876 PDI = 1.09), P3HT (Mn = 10855 PDI = 1.21), and triblock copolymer after purification (Mn = 22710 PDI = 1.34).………………… ……..... 53
Figure 2.10 1H NMR of PI-b-P3HT-b-PI_3 in d-chloroform ………………………. 54
Figure 2.11 Normalized GPC traces of PMMA (1,2/3,4 addition) (Mn = 4287 PDI = 1.05), P3HT (Mn = 12762 PDI = 1.20), and triblock copolymer after purification (Mn = 18855 PDI = 1.15)…………………………………. 54
Figure 2.12 1H NMR spectra of (a) P3HT-CHO/CHO and (b) PMMA-b-P3HT-b-PMMA in d-chloroform ……………………………………………….. 56
Figure 2.13 AFM phase images of spin-coated thin films from (a) CHCl3 solution, (b) toluene solution and (c) dichlorobenzene solution of PS-b-P3HT-b-PS_2; from (d) CHCl3 solution, (e) toluene solution and (f) dichlorobenzene solution of PI-b-P3HT-b-PI_1; as well as from (g) CHCl3 solution and (h) toluene solution and (i) dichlorobenzene solution of PMMA-b-P3HT-b-PMMA. The scale bar represents 100 nm……… 60
Figure 2.14 UV-Vis absorption spectra of P3HT triblock copolymers dissolved in chloroform …………………………………………………................... 61
Figure 2.15 UV-Vis absorption spectra of the spin-coated thin films of P3HT triblock copolymers from (a) CHCl3 solution and (b) toluene solution……....... 62
Figure 3.1 Rubbing experiment setup ……………………………………………. 77
Figure 3.2 Two dimensional SAXS (left) and WAXS (right) patterns of rubbed kapton tape …………………………………………………………...... 77
Scheme 3.1 Synthetic route of P3HT H/CHO ……………………………………… 77
Figure 3.3 MALDI-TOF spectra of (a) P3HT H/CHO and (b) P3HT CHO/CHO .. 80
Figure 3.4 1H NMR spectra of P3HT H/Br (top) and P3HT H/CHO (bottom), insets showing expansion at chemical shift around peak b’ …………………. 81
Figure 3.5 1H NMR spectra of P3HT-CHO/CHO, insets show expansion at chemical shift around peak b’ and h ……………………………………………... 82
Scheme 3.2 Synthetic route of P3HT-b-PI and PI-b-P3HT-b-PI by coupling method......................................................................................................82
Figure 3.6 GPC traces of block copolymers and their building segments …..……. 83
Figure 3.7 1H NMR spectra of P3HT-b-PI (D2) in CDCl3………….…………...... 83
Figure 3.8 P3HT crystal structure (a) WAXS pattern (b) of pristine P3HT and P3HT-b-PI diblock and PI-b-P3HT-b-PI triblock copolymers. ……….. 86
Scheme 3.3 Illustration on self-assembly of P3HT/PI diblock copolymers and triblock copolymers …………………………………………………………...... 88
Figure 3.9 DSC traces of thermally annealed P3HT and diblock copolymers recorded at first heating cycle (solid line) and first cooling cycle (dash line)……. ……………………………………………………………… 91
Figure 3.10 DSC traces of thermally annealed triblock copolymers recorded at first heating cycle (solid line) and first cooling cycle (dashed line).… …….. 92
Figure 3.11 Plot of crystallization temperature (Tc) (dashed-line) and melting temperature (Tm) (solid line) of P3HT block copolymers versus weight percentage of PI ……………………………………………………….. 93
Figure 3.12 Temperature dependent WAXS plot of HT/I(1,4)-D1………………… 96
Figure 3.13 Temperature dependent WAXS plot of HT/I(1,4)-D1………..………... 96
Figure 3.14 TEM images and SAXS profile of P3HT-PI block copolymers……….. 98
Scheme 3.4 The synthetic routes of P3HT-b-PI diblock copolymer and the block diagram of the experimental procedure ................................................ 102
Figure 3.15 (a) Schematic illustrations of the setup of synchronic 2-D SAXS and WAXS measurements as well as the proposed hierarchical nanostructure of the rubbed film. The P3HT segments were stretched along the direction of rubbing and the domain interfaces were aligned perpendicularly to the rubbing direction. (b) SAXS pattern, (d) WAXS pattern of pristine copolymer and; while (c) SAXS pattern, (e) WAXS pattern are for the rubbed film. The arcs in the SAXS patterns are parallel to the rubbing direction while those in WAXS patterns are perpendicular to the rubbing direction ……………………………………………….. 103
Figure 3.16 The cross-sectional TEM image of pristine copolymer (a) and rubbed film (b). The illustration shows the cut direction relative to the rubbing direction in rubbed film. Inset of each image shows the Fourier transformed pattern of the image that indicates the orientation of the domains………………………………………………………………... 104
Figure 3.17 SAXS profile of P3HT-b-PI rubbed film. The domain spacing that measured from the scattering peak is 14 nm………………………….. 104
Figure 3.18 Line plot of TEM profile showing the domain spacing which is closed to the domain spacing obtained from SAXS profile……………………... 106
Figure 3.19 Differential Scanning Calorimetry traces of rubbed film and pristine copolymer ……………………………………………………………. 107
Figure 3.20 Azimuthal plot of (100) reflection for rubbed film …………………... 108
Figure 3.21 Polarized optical microscope images of the rubbed HT/I(1,4)-D1 film on a glass slide. The angles between the polarizer and the analyzer are (a) 45° and (b) 135°. The scale bar represents 30μm……………………... 110
Scheme 4.1 The synthetic route of HT/OH block copolymers ……………………. 122
Scheme 4.2 Solubility enhancement by end-capping of P3HT-b-PIOH with acetyl chloride ………………………………………………………………. 124
Figure 4.1 GPC traces of HT/OH-D3 (a) and HT/OH-D5 (b) and their buiding blocks…………………………………………………………..……... 128
Figure 4.2 1H-NMR HT/OH-D3 before hydroboration/hydroxylation (a) and after hydroboration/ hydroxylation followed by end-capping (b) to enhance solubility in d-chloroform …………………………………………….. 129
Figure 4.3 UV-Vis absorption spectra of HT/OH-D2 in various volume ratio of mixed THF/MeOH ……………………………………………………. 131
Figure 4.4 TEM images of HT/OH-D3 and HT/OH-T2 block copolymers, the P3HT segment appear dark due to staining with RuO4………………………. 131
Figure 4.5 SAXS spectra of HT/OH block copolymers …………………………. 135
Figure 4.6 TEM images of HT/OH-D1 to HT/OH-D5 (a) - (e) and HT/OH-T1 to HT/OH-T3 (f) – (h) with selective staining of RuO4 on P3HT domain………………………………………………………………… 136
Figure 4.7 WAXS spectra of HT/OH block copolymers and P3HT homopolymer…………………………………………………………. 137
Figure 4.8 Tdep SAXS (a) and WAXS (b) of HT/OH-D3 that slowly cooled from annealing temperature ………………………………………………… 141
Figure 4.9 Tdep SAXS (a) and WAXS (b) of HT/OH-D4 that slowly cooled from annealing temperature…………………………………………………. 142
Figure 4.10 Tdep SAXS (a) and WAXS (b) of HT/OH-T2 that slowly cooled from annealing temperature ………………………………………………… 143
Figure 4.11 Figure 4.11 Tdep SAXS (a) and WAXS (b) of HT/OH-T3 that slowly cooled from annealing temperature………………………………...… 144
Figure 4.12 Temperature dependent FTIR spectra of and HT/OH-D2 …………… 145
Figure 4.13 Tdep SAXS (a) and WAXS (b) of HT/OH-D1 that slowly cooled from annealing temperature ………………………………………………... 146
Figure 4.14 The comparison of TEM images for slowly cooled (left) HT/OH-D3 (a), HT/OH-T2 (b) and HT/OH-D4 (c) versus quenched (right) HT/OH-D3 (d), HT/OH-T2 (e) and HT/OH-D4 (f) .……………………………... 147
Figure 4.15 DSC traces of HT/OH-D3, HT/OH-D4 and HT/OH-T2 in the first heating (represented by full line in heating), second heating (represented by the dashed line in heating cycle) and cooling cycles …................... 148
Figure 4.16 The plot of scattering factor (q) of diffraction peak (100) of P3HT homopolymer and block copolymers versus temperature…………..... 149
Scheme 4.3 Schematic illustration of self-assembly of HT/OH BCPs with lamellae morphology. Red colored rod represents P3HT segment and the blue colored coil represents PIOH segment. ………………………………. 149
Figure 5.1 Schematic illustration of desired morphology of active materials using D-A block copolymer …………………………………………………… 155
Scheme 5.1 Schematic illustration of designed D-A P3HT-POXD block copolymers……………………………………………………………. 156
Scheme 5.2 Synthetic route of oxadiazole moieties and P3HT-POXD block copolymer …………………………………………………………..... 160
Figure 5.2 1H NMR spectra of oxadiazoles from acylation to deprotection of OXD moieties……………………………………………………………….. 163
Figure 5.3 1H NMR of oxadiazole with ester (1) and carboxylic acid group (2) .. 164
Figure 5.4 1H NMR of P3HT-b-POXD in d-chloroform ……………………...… 165
Table List
Table 1.1 End-functionalization of P3HT through in-situ method and the resulting polymers ………………………………………………………………….... 7
Table 2.1 Compositions and molecular weight distributions of P3HT triblock copolymers ………………………………………………………………... 49
Table 3.1 Molecular weight and composition of diblock and triblock copolymers..... 84
Table 3.2 Thermal properties and crystal data of P3HT-PI block copolymers............ 85
Table 4.1 Molecular weight of block copolymers and their building block………... 129
Table 4.2 Morphology and domain spacing of HT/OH BCPs…………………..….. 134
Table 4.3 Thermal properties of HT/OH BCPs……..…………………………...…. 140
dc.language.isoen
dc.title含聚3-己基噻吩的嵌段共聚高分子的合成與自組裝之研究




























































































含聚3-己基噻吩的嵌段共聚高分子的合成與自組裝之研究
zh_TW
dc.titleSynthesis and Self-assembly of Poly(3-hexylthiophene) Based Block Copolymersen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree博士
dc.contributor.oralexamcommittee陳信龍(Hsin-Lung Chen),林唯芳(Wei-Fang Su),戴子安(Chi-An Dai),吳春桂(Chun-Kui Wu),陳錦地(Chin-Ti Chen)
dc.subject.keyword聚3-己基噻,吩,陰離子聚合,嵌段共聚高分子,自組裝,結晶性,zh_TW
dc.subject.keywordPoly(3-hexylthiophene),Anionic Polymerization,Block Copolymer,Self Assembly,Crystallininty,en
dc.relation.page169
dc.rights.note有償授權
dc.date.accepted2013-08-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
12.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved