Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59974
標題: 半監督學習模型以改善標籤數稀少的中文新聞的立場偵測分類
Semi-supervised method for Improving Stance Classification on Insufficient Labeled Chinese Newspaper
作者: Yu Ran
冉昱
指導教授: 林守德(Shou-De Lin)
關鍵字: 立場偵測,半監督學習,梯子網絡,深度學習,
Stance Classification,Semi-supervised Learning,Ladder Network,Deep Learning,
出版年 : 2017
學位: 碩士
摘要: 本論文主要基於先前收集的爭議性新聞語料,意圖發展一智慧程式,分辨中文爭議性新聞之立場。本問題難點主要在於標記語料量較少,模型難以學到足夠的知識。對於此問題,韋銘學長主要對特征進行劃分,特征集群達到特征降維進而提升準確率,他主要使用了監督管理方法。本文目標主要從如何完全利用無標記信息角度和使用深度學習表示特征的方法出發,最終超越韋銘學長方法。首先利用文檔向量作為文章特征,並且與普通字特征和依賴特征作對比;然後利用半監督學習方法,主要使用自學習模型和梯子網絡。我們的自學習模型在話題二,梯子網絡在其他三個話題上超過了韋銘學長的方法。
We aim at developing an intelligent program to classify the stance on the Chinese news article on several controversial topics based on the former crawled data. The difficulty in this problem is the insufficient labeled news so that the model cannot learn enough knowledge. Wei-Ming mainly focus on the feature division, feature clustering to reduct the feature dimension and get higher accuracy with supervised method. We
aimed at how to make full use of unlabeled data and use deep learning representation vector as feature to get the result beyond the Wei-Ming’s method. We first use paragraph vector as news’ feature and compare them with word feature and dependency feature, then we use the semi-supervised method, that is self-learning and ladder network with paragraph vector feature. We get the better result in topic 2 with self-learning and other 3 topics beyond the Wei-Ming’s method.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59974
DOI: 10.6342/NTU201700163
全文授權: 有償授權
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
3.63 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved