Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5979
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor柯文俊(Wen-Jiunn Ko)
dc.contributor.authorHao-Yuan Tengen
dc.contributor.author鄧皓元zh_TW
dc.date.accessioned2021-05-16T16:19:00Z-
dc.date.available2014-01-27
dc.date.available2021-05-16T16:19:00Z-
dc.date.copyright2014-01-27
dc.date.issued2013
dc.date.submitted2013-11-27
dc.identifier.citation[1] H. Ma and G. Yang, “Methods and Advances of Structural Damage Detection”. Journal of Advances in Mechanic, Vol. 29, No. 4, 1999, pp. 513-527 (in Chinese).
[2] J.M. Lifshitz and A. Rotem, “Determination of Reinforcement unbonding of Composites by a Vibration Technique”. Journal of Composite Materials, Vol. 3, No. 3, 1969, pp. 412-423.
[3] R. D. Adams, P. Cawley, C. J. Pye and B. J. Stone, “A Vibration Technique for Non-Destructively Assessing the Integrity of Structures”. Journal of Mechanical Engineering Science, Vol. 20, No. 2, 1978, pp. 93-100.
[4] N. S. Stubbs and R. A. Osegueda, “Global Damage Detection in Solids-Experimental Verification”. International Journal of Analytical and Experimental Modal Analysis, Vol. 5, No. 2, 1990, pp. 81-97.
[5] S. W. Doebling and C. R. Farrar, “Effect of Measurement Statistics on the Detection of Damage in the Alamosa Canyon Bridge”, Proceedings 15th International Modal Analysis Conference, 1997, pp. 919-929, Orlando.
[6] W. M. West, “Illustration of the Use of Modal Assurance Criterion to Detect Structural Changes in an Orbiter Test Specimen”, Air Force Conference, 1984, pp. 93-100.
[7] A. K. Pandey, M. Biswas and M. M. Samman, “Damage Detection from Changes in Curvature Mode Shapes”. Journal of Sound and Vibration, Vol. 145, No. 2, 1991, pp. 321-332.
[8] N. Stubbs and J. T. Kim, “Damage Localization in Structures without Baseline Modal Parameters”. Journal of AIAA, Vol. 34, No. 8, 1996, pp. 1644-1649.
[9] H. Peng, C. You and Y. Meng, “Damage Diagnosis of Beam Structures by Modal Curvature Difference Method”. Journal of Engineering Mechanics, Vol. 23, No. 7, 2006, pp. 49-53.
[10] B. Moaveni. 2007. System and Damage Identification of Civil Structures. PhD dissertation. San Diego: University of California, Structural Engineering.
[11] S. M. Pandit and S. M. Wu, Time Series and System Analysis with Applications. New York: John Wiley and Sons, 1983.
[12] S. M. Pandit and S. M. Wu, Modal and Spectrum Analysis: Data Dependent System in State Space. John Wiley and Sons, Inc., 1991.
[13] P. Van Overschee and B. De Moor, “Subspace Algorithms for System Identification and Stochastic Realization”. Proceedings Conference on Mathematical Theory for Networks and System, MTNS, Kobe, Japan, 1991.
[14] P. Van Overschee and B. De Moor, “Subspace Algorithms for the Stochastic Identification Problem”. Proceedings 30th IEEE Conference on Decision and Control, Brighton, UK, 1991, pp. 1321-1326.
[15] P. Van Overschee and B. De Moor, Subspace Identification for Linear System: Theory. Implementation and Applications, Kluwer Academic Publishers, 1996.
[16] J. Lardies, “Analysis of Multivariate Autoregressive Process”. Journal of Mechanical System and Signal Processing, Vol. 10, No. 6, 1996, pp. 747-761.
[17] J. Lardies, “Modal Parameter Identification from Output-only Measurement”. Mechanics Research Communication, Vol. 24, No. 5, 1997.
[18] 洪振發、戴志豪與柯文俊,利用量測鑑定模態參數以直接法修正結構分析模型的質量與勁度矩陣,中國造船輪機工程學刊第十九卷第三期,中華民國八十九年,pp. 1-12。
[19] L. Ljung, System Identification: Theory for the User. New Jersey: Prentice-Hall, 1987.
[20] T. Soderstrom, System Identification. Hemel Hempstead: Prentice-Hall, 1989.
[21] G. A. McGraw, C. L. Gustafson and J. T. Gillis, “Condition for the Equivalence of ARMAX and ARX System”. IEEE Transaction on Automatic Control, Vol. 38, No. 4, 1993, pp. 632-636.
[22] T. Soderstrom, H. Fan, B. Carlsson and S. Bigi, “Least Squares Parameter Estimation of Continuous-Time ARX Models from Discrete-Time Data”. IEEE Transaction on Automatic Control, Vol. 42, No. 5, 1997, pp. 659-673.
[23] 洪振發、柯文俊與戴志豪,ARX模型之結構動態系統鑑定與配合量測資料修正有限元素分析模型,第十一屆中國造船暨輪機工程研討會論文集,中華民國八十七年十一月。
[24] W. J. Ko and C. F. Hung, “Extraction of Structural System Matrices from an Identified State-Space System Using the Combined Measurement of DVA”. Journal of Sound and Vibration, Vol. 41, 2001, pp. 329-344.
[25] 柯文俊,由狀態空間系統萃取結構系統矩陣與模態參數,博士論文,工程科學及海洋工程研究所,國立臺灣大學,台北,2002。
[26] C. F. Hung, W. J. Ko and Y. T. Peng, “Identification of Modal Parameters from Measured Input and Output Data Using a Vector Backward Auto-regressive with Exogeneous model”. Journal of Sound and Vibration, Vol. 276, 2004, pp. 1043-1063.
[27] C. F. Hung, W. J. Ko and C. H. Tai, “Identification of Dynamic Systems from Data Composed by Combination of their Response Components”. Engineering Structures, Vol. 24, 2002, pp. 1441-1450.
[28] C. S. Li, W. J. Ko, H. T. Lin and R. J. Shyu, “Vector Autoregressive Modal Analysis with Application to Ship Structures”. Journal of Sound and Vibration, Vol. 167, 1993, pp. 1-15.
[29] S. S. Rao, Mechanical Vibration. USA: Addison-Wesley, 1995.
[30] 余壽文與馮西橋,損傷力學,北京,清華大學出版社,1997。
[31] J. Chance, G. R. Tomlinson and K. Worden, “A Simplified Approach to the Numerical and Experimental Modeling of the Dynamics of a Cracked Beam”. The 12th International Modal Analysis Conference, 1994.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5979-
dc.description.abstract損傷偵測於結構工程問題中為一門重要研究,而樑式結構於工程中又有著廣泛之應用,如:橋梁、建築等。對於樑式結構使用上之安全檢測已存在許多方法;有鑑於近年來結構系統識別發展的完善,並參考了以結構模態參數作為偵測結構損傷狀況之相關文獻後,其內容多以有限元素法作數值上之模擬,但未有許多考慮實際應用狀況之研究。因此本文將結構系統識別所得之模態參數結合結構系統之模態曲率理論考慮實際狀況下偵測懸臂樑結構損傷之情形。
  本文使用自我迴歸模型及狀態空間系統理論實際識別出懸臂樑結構之模態參數,利用上述識別成果估算結構之雷利阻尼矩陣係數,透過此方式建立近似於實際狀況懸臂樑之有限元模型並由電腦程式分別模擬多種受損狀況下受損與未受損懸臂樑結構含雜訊之輸出響應,由此一流程即可模擬在僅含輸出響應之情況下,首先以自我迴歸模型反向識別出懸臂樑之模態參數,並基於結構模態曲率之理論對懸臂樑作損傷狀況之偵測。而在考慮實際情況所假設之各種不同受損狀況中,本文以上述方式模擬之成果顯示此損傷偵測方法於實際情況下對受損懸臂樑結構能給予一定程度之鑑別功效。
zh_TW
dc.description.abstractProblems of damage detection in structural engineering are a major research topic. Beams have extensive applications in structures. For example, bridges and buildings are about that. The use of beam structure already exists in many safety testing methods. The development of structural system identification plays a good role in these fields in recent years. With the references of damage detection by structures modal parameters, its content are more about using finite element method to simulate damage detection. This thesis consider a way to detect the injury situation of cantilever structure through modal parameters obtained from system identification and the curvature modal shape theory.
This thesis uses the Autoregressive model and the state-space system to identify modal parameters of cantilever beam structure and estimate its coefficient of Rayleigh damping. With the above steps, this thesis create finite element model to be similar to the actual cantilever beam. By generating responses of damaged and undamaged cantilever beams from a computer program, we can simulate the damage detection based on curvature modal shapes. The results showed that the proposed method for the variety injury situations has a good effect.
en
dc.description.provenanceMade available in DSpace on 2021-05-16T16:19:00Z (GMT). No. of bitstreams: 1
ntu-102-R00525060-1.pdf: 2516543 bytes, checksum: 15d76206f289351f8f4c4e9624fec3db (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents中文摘要 I
Abstract II
謝誌 III
圖目錄 VII
表目錄 XII
簡稱術語對照表 XIV
符號說明 XV
第一章 導論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 論文架構 5
第二章 時間序列模型及狀態空間系統識別理論 7
2.1 狀態空間系統 7
2.2 時間序列模型 9
2.2.1 ARX模型 10
2.2.2 ARX模型轉換至離散狀態空間系統 12
2.3 凝縮及連續等效狀態空間系統 14
2.4 矩陣轉換法 19
2.5 狀態空間系統識別流程 24
第三章 結構系統識別與有限元素模型 25
3.1 直立式懸臂鋼梁結構 25
3.1.1 直立式懸臂鋼樑結構理論解 26
3.1.2 直立式懸臂鋼樑結構有限元素模型 30
3.2 直立式懸臂鋼樑結構之識別 34
3.2.1 識別成果 37
3.2.2 估算直立式懸臂鋼樑結構之雷利阻尼係數 40
第四章 模態曲率於結構損傷偵測之理論基礎 44
4.1 模態曲率理論 44
4.1.1 損傷因子 46
4.1.2 連續體模態曲率 47
4.1.3 離散體模態曲率 49
4.1.4 中央差分法 50
4.2 損傷偵測模擬例 51
4.2.1 模擬分散多單元受損 55
4.2.2 模擬集中多單元受損 58
4.2.3 模擬同單元不同損傷程度 61
4.3 損傷偵測流程 64
第五章 模擬結構輸出響應之損傷偵測 66
5.1 二階段式選取量測通道位置偵測損傷 66
5.1.1 單處損傷偵測 70
5.1.2 多處損傷偵測 79
5.2 模態振形於數值處理後偵測損傷 95
第六章 結論與未來展望 110
6.1 結論 110
6.2 未來展望 112
參考文獻 114
dc.language.isozh-TW
dc.title利用自我迴歸模型與模態曲率理論以研究懸臂樑結構之損傷偵測zh_TW
dc.titleUsing AR Model and Theory of Curvature Modal Shape to Study Damage Detection of Cantilever Beamen
dc.typeThesis
dc.date.schoolyear102-1
dc.description.degree碩士
dc.contributor.oralexamcommittee程安邦(An-Pan Cherng),徐培譽(Pei-Yu Hsu),陳國在(Kuo-Tsai Chen),薛文證(Wen-Jeng Hsueh)
dc.subject.keyword系統識別,自我迴歸模型,狀態空間系統,損傷偵測,模態曲率,zh_TW
dc.subject.keywordSystem Identification,AutoregRessive Model(AR),State-Space System,Damage Detection,Curvature Modal Shape,en
dc.relation.page116
dc.rights.note同意授權(全球公開)
dc.date.accepted2013-11-28
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf2.46 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved