Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59798
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor沈聖峰(Sheng-Feng Shen)
dc.contributor.authorChang-Yu Changen
dc.contributor.author張昌祐zh_TW
dc.date.accessioned2021-06-16T09:38:32Z-
dc.date.available2017-02-16
dc.date.copyright2017-02-16
dc.date.issued2017
dc.date.submitted2017-02-10
dc.identifier.citationAak, A., & Knudsen, G. K. (2011). Sex differences in olfaction‐mediated visual acuity in blowflies and its consequences for gender‐specific trapping. Entomologia experimentalis et applicata, 139(1), 25-34.
Adams, M. D., Celniker, S. E., Holt, R. A., Evans, C. A., Gocayne, J. D., Amanatides, P. G., . . . Galle, R. F. (2000). The genome sequence of Drosophila melanogaster. Science, 287(5461), 2185-2195. doi:10.1126/science.287.5461.2185
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403-410.
Bates, D., Mächler, M., Bolker, B. M., & Walker, S. C. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1-48. doi:10.18637/jss.v067.i01
Bok, M. J., Porter, M. L., & Cronin, T. W. (2015). Ultraviolet filters in stomatopod crustaceans: diversity, ecology and evolution. Journal of Experimental Biology, 218(13), 2055-2066.
Borowiak, D. (2009). Optical classification of lakes in northern Poland. Limnological Review, 9, 141-152.
Bréda, N. J. (2003). Ground‐based measurements of leaf area index: a review of methods, instruments and current controversies. Journal of Experimental Botany, 54(392), 2403-2417. doi:10.1093/jxb/erg263
Chen, P.-J., Awata, H., Matsushita, A., Yang, E.-C., & Arikawa, K. (2016). Extreme spectral richness in the eye of the Common Bluebottle butterfly, Graphium Sarpedon. Frontiers in Ecology and Evolution, 4, 18.
Cunningham, C. B., Ji, L., Wiberg, R. A. W., Shelton, J., McKinney, E. C., Parker, D. J., . . . Ritchie, M. G. (2015). The genome and methylome of a beetle with complex social behavior, Nicrophorus vespilloides (Coleoptera: Silphidae). Genome Biology and Evolution, 7(12), 3383-3396. doi:10.1093/gbe/evv194
Dacke, M., Baird, E., Byrne, M., Scholtz, C. H., & Warrant, E. J. (2013). Dung beetles use the Milky Way for orientation. Current Biology, 23(4), 298-300.
DeVault, T. L., Rhodes Jr, O. E., & Shivik, J. A. (2003). Scavenging by vertebrates: behavioral, ecological, and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos, 102(2), 225-234.
Eggert, A. K., & Müller, J. K. (1997). Biparental care and social evolution in burying beetles: lessons from the larder. In J. C. Choe & B. J. Crespi (Eds.), The evolution of social behavior in insects and arachnids (pp. 216-236). Cambridge: Cambridge Univ. Press.
el Jundi, B., Warrant, E. J., Byrne, M. J., Khaldy, L., Baird, E., Smolka, J., & Dacke, M. (2015). Neural coding underlying the cue preference for celestial orientation. Proceedings of the National Academy of Sciences, 112(36), 11395-11400.
Endler, J. A. (1993). The color of light in forests and its implications. Ecological Monographs, 63, 2-27.
Evans, W. G. (1964). Infra-red receptors in Melanophila acuminata DeGeer. Nature, 202, 211.
Fernández, E. J., & Artal, P. (2008). Ocular aberrations up to the infrared range: from 632.8 to 1070 nm. Optics Express, 16(26), 21199-21208. doi:10.1364/OE.16.021199
Finn, R. D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R. Y., Eddy, S. R., . . . Punta, M. (2014). Pfam: the protein families database. Nucleic Acids Research, 42(1), D222-D230. doi:10.1093/nar/gkt1223
Finn, R. D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R. Y., Eddy, S. R., . . . Punta, M. (2014). Pfam: the protein families database. Nucleic Acids Research, 42(D1), D222-D230. doi:10.1093/nar/gkt1223
Futahashi, R., Kawahara-Miki, R., Kinoshita, M., Yoshitake, K., Yajima, S., Arikawa, K., & Fukatsu, T. (2015). Extraordinary diversity of visual opsin genes in dragonflies. Proceedings of the National Academy of Sciences of the United States of America, 112(11), 1247-1256. doi:10.1073/pnas.1424670112
Gates, D. M. (1965). Energy, plants, and ecology. Ecology, 46, 1-13.
Gausman, H. W. (1983). Visible light reflectance, transmittance, and absorptance of differently pigmented cotton leaves. Remote Sensing of Environment, 13(3), 233-238.
Griffin, D. R., Hubbard, R., & Wald, G. (1947). The sensitivity of the human eye to infra-red radiation. JOSA, 37(7), 546-553.
Gueymard, C. (1995). SMARTS2: A Simple Model of the Atmospheric Radiative Transfer of Sunshine: Algorithms and Performance Assessment. Cocoa, FL: Florida Solar Energy Center.
Hammer, D. X., Schmitz, H., Schmitz, A., Rylander, H. G., & Welch, A. J. (2001). Sensitivity threshold and response characteristics of infrared detection in the beetle Melanophila acuminata (Coleoptera: Buprestidae). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 128(4), 805-819.
Horvath, H. (1993). Atmospheric light-absorption - a review. Atmospheric Environment Part a-General Topics, 27(3), 293-317. doi:Doi 10.1016/0960-1686(93)90104-7
Kalinová, B., Podskalská, H., Růžička, J., & Hoskovec, M. (2009). Irresistible bouquet of death—how are burying beetles (Coleoptera: Silphidae: Nicrophorus) attracted by carcasses. Naturwissenschaften, 96(8), 889-899. doi:10.1007/s00114-009-0545-6
Katoh, K., Misawa, K., Kuma, K.-i., & Miyata, T. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30(14), 3059-3066.
Kelber, A., Balkenius, A., & Warrant, E. J. (2002). Scotopic colour vision in nocturnal hawkmoths. Nature, 419(6910), 922-925.
Kistenpfennig, C. R. (2012). Rhodopsin 7 and Cryptochrome–circadian photoreception in Drosophila. Julius-Maximilians-Universität Würzburg.
Kreiss, E., Schmitz, H., & Gebhardt, M. (2007). Electrophysiological characterisation of the infrared organ of the Australian “Little Ash Beetle” Acanthocnemus nigricans (Coleoptera, Acanthocnemidae). Journal of Comparative Physiology A, 193(7), 729-739.
Kreysing, M., Pusch, R., Haverkate, D., Landsberger, M., Engelmann, J., Ruiter, J., . . . Franze, K. (2012). Photonic crystal light collectors in fish retina improve vision in turbid water. Science, 336(6089), 1700-1703.
Kürten, L., & Schmidt, U. (1982). Thermoperception in the common vampire bat (Desmodus rotundus). Journal of Comparative Physiology. A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 146(2), 223-228.
Lee, L. P., & Szema, R. (2005). Inspirations from biological optics for advanced photonic systems. Science, 310(5751), 1148-1150.
Li, H., & Durbin, R. (2010). Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics, 26(5), 589-595. doi:10.1093/bioinformatics/btp698
Lin, T.-F. (2011). Using MODIS data to estimate the leaf area index of different forest types in Taiwan. (Master), Using MODIS data to estimate the leaf area index of different forest types in Taiwan, National Pingtung University of Science and Technology.
Lind, O., Mitkus, M., Olsson, P., & Kelber, A. (2014). Ultraviolet vision in birds: the importance of transparent eye media. Proceedings of the Royal Society of London B: Biological Sciences, 281(1774), 20132209.
Liu, H., Huang, Y., & Jiang, H. (2016). Artificial eye for scotopic vision with bioinspired all-optical photosensitivity enhancer. Proceedings of the National Academy of Sciences of the United States of America, 113, 3982-3985. doi:10.1073/pnas.1517953113
Luo, D.-G., Yue, W. W., Ala-Laurila, P., & Yau, K.-W. (2011). Activation of visual pigments by light and heat. Science, 332(6035), 1307-1312. doi:10.1126/science.1200172
Lythgoe, J. N. (1984). Visual pigments and environmental light. Vision Research, 24(11), 1539-1550.
Meuthen, D., Rick, I. P., Thünken, T., & Baldauf, S. A. (2012). Visual prey detection by near-infrared cues in a fish. Naturwissenschaften, 99(12), 1063-1066. doi:10.1007/s00114-012-0980-7
Michaud, J. P., & Moreau, G. (2009). Predicting the visitation of carcasses by carrion-related insects under different rates of degree-day accumulation. Forensic Science International, 185(1), 78-83. doi:10.1016/j.forsciint.2008.12.015
Milne, L. J., & Milne, M. (1976). The social behavior of burying beetles. Scientific American, 235, 84-89.
Monsi, M., & Saeki, T. (1953). The light factor in plant communities and its significance for dry matter production. Japanese Journal of Botany, 14, 22-52.
Newman, E. A., & Hartline, P. H. (1982). The infrared' vision' of snakes. Scientific American, 246.
Palczewska, G., Vinberg, F., Stremplewski, P., Bircher, M. P., Salom, D., Komar, K., . . . Kefalov, V. J. (2014). Human infrared vision is triggered by two-photon chromophore isomerization. Proceedings of the National Academy of Sciences of the United States of America, 111(50), 5445-5454. doi:10.1073/pnas.1410162111
Pfrommer, A., & Krell, F.-T. (2004). Who steals the eggs? Coprophanaeus telamon (Erichson) buries decomposing eggs in western Amazonian Rain Forest (Coleoptera: Scarabaeidae). Coleopterists Bulletin, 58(1), 21-27. doi:http://dx.doi.org/10.1649/585
R core team. (2013). R: A Language and Environment for Statistical Computing: R Foundation for Statistical Computing, Vienna, Austria.
Reber, T., Dacke, M., Warrant, E., & Baird, E. (2016). Bumblebees perform well-controlled landings in dim light. Frontiers in Behavioral Neuroscience, 10.
Sanger, J. E. (1971). Quantitative investigations of leaf pigments from their inception in buds through autumn coloration to decomposition in falling leaves. Ecology, 52, 1075-1089.
Schepers, J. S., Blackmer, T. M., Wilhelm, W., & Resende, M. (1996). Transmittance and reflectance measurements of corn leaves from plants with different nitrogen and water supply. Journal of Plant Physiology, 148(5), 523-529.
Schmitz, A., Gebhardt, M., & Schmitz, H. (2008). Microfluidic photomechanic infrared receptors in a pyrophilous flat bug. Naturwissenschaften, 95(5), 455-460.
Schmitz, A., Schätzel, H., & Schmitz, H. (2010). Distribution and functional morphology of photomechanic infrared sensilla in flat bugs of the genus Aradus (Heteroptera, Aradidae). Arthropod structure & development, 39(1), 17-25.
Schmitz, H., & Bleckmann, H. (1998). The photomechanic infrared receptor for the detection of forest fires in the beetle Melanophila acuminata (Coleoptera: Buprestidae). Journal of Comparative Physiology A, 182(5), 647-657.
Schmitz, H., Mürtz, M., & Bleckmann, H. (2000). Responses of the infrared sensilla of Melanophila acuminata (Coleoptera: Buprestidae) to monochromatic infrared stimulation. Journal of Comparative Physiology A, 186(6), 543-549.
Schmitz, H., Schmitz, A., & Bleckmann, H. (2000). A new type of infrared organ in the Australian' fire-beetle' Merimna atrata (Coleoptera: Buprestidae). Naturwissenschaften, 87(12), 542-545.
Scott, M. P. (1998). The ecology and behavior of burying beetles. Annual Review of Entomology, 43(1), 595-618. doi:10.1146/annurev.ento.43.1.595
Seehausen, O., Terai, Y., Magalhaes, I. S., Carleton, K. L., Mrosso, H. D., Miyagi, R., . . . Tachida, H. (2008). Speciation through sensory drive in cichlid fish. Nature, 455(7213), 620-626. doi:10.1038/nature07285
Shcherbakov, D., Knörzer, A., Espenhahn, S., Hilbig, R., Haas, U., & Blum, M. (2013). Sensitivity differences in fish offer near-infrared vision as an adaptable evolutionary trait. PloS One, 8(5), e64429. doi:10.1371/journal.pone.0064429
Shcherbakov, D., Knörzer, A., Hilbig, R., Haas, U., & Blum, M. (2012). Near-infrared orientation of Mozambique tilapia Oreochromis mossambicus. Zoology, 115(4), 233-238. doi:10.1016/j.zool.2012.01.005
Sliney, D. H. (2016). What is light? The visible spectrum and beyond. Eye, 30, 222-229. doi:10.1038/eye.2015.252
Sliney, D. H., Wangemann, R. T., Franks, J. K., & Wolbarsht, M. L. (1976). Visual sensitivity of the eye to infrared laser radiation. Journal of the Optical Society of America, 66(4), 339-341.
Stamatakis, A. (2014). RAxML Version 8: A tool for Phylogenetic Analysis and Post-Analysis of Large Phylogenies. Bioinformatics. doi:10.1093/bioinformatics/btu033
Stanke, M., & Morgenstern, B. (2005a). AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Research, 33(suppl 2), W465-W467. doi:10.1093/nar/gki458
Stanke, M., & Morgenstern, B. (2005b). AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Research, 33(suppl 2), D465-D467. doi:10.1093/nar/gki458
Stanke, M., Steinkamp, R., Waack, S., & Morgenstern, B. (2004a). AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Research, 32(suppl 2), D309-D312. doi:10.1093/nar/gkh379
Stanke, M., Steinkamp, R., Waack, S., & Morgenstern, B. (2004b). AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Research, 32(suppl 2), W309-W312. doi:10.1093/nar/gkh379
Stöckl, A. L., O’Carroll, D. C., & Warrant, E. J. (2016). Neural summation in the hawkmoth visual system extends the limits of vision in dim light. Current Biology, 26(6), 821-826.
Sun, S.-J., Rubenstein, D. R., Chen, B.-F., Chan, S.-F., Liu, J.-N., Liu, M., . . . Shen, S.-F. (2014). Climate-mediated cooperation promotes niche expansion in burying beetles. eLife, 3, e02440.
Suzuki, S. (2013). Biparental care in insects: Paternal care, life history, and the function of the nest. Journal of Insect Science, 13(1), 131.
Thorvaldsdóttir, H., Robinson, J. T., & Mesirov, J. P. (2013). Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Briefings in Bioinformatics, 14(2), 178-192. doi:10.1093/bib/bbs017
Vázquez-Yanes, C., Orozco-Segovia, A., Rincón, E. et a., Sanchez-Coronado, M., Huante, P., Toledo, J., & Barradas, V. (1990). Light beneath the litter in a tropical forest: effect on seed germination. Ecology, 71, 1952-1958.
Wakakuwa, M., Stavenga, D. G., Kurasawa, M., & Arikawa, K. (2004). A unique visual pigment expressed in green, red and deep-red receptors in the eye of the small white butterfly, Pieris rapae crucivora. Journal of Experimental Biology, 207(Pt 16), 2803-2810. doi:10.1242/jeb.01078
Wakakuwa, M., Stewart, F., Matsumoto, Y., Matsunaga, S., & Arikawa, K. (2014). Physiological basis of phototaxis to near-infrared light in Nephotettix cincticeps. Journal of Comparative Physiology. A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 200(6), 527-536. doi:10.1007/s00359-014-0892-4
Wall, R., & Fisher, P. (2001). Visual and olfactory cue interaction in resource‐location by the blowfly, Lucilia sericata. Physiological Entomology, 26(3), 212-218.
Warrant, E. J. (1999). Seeing better at night: life style, eye design and the optimum strategy of spatial and temporal summation. Vision Research, 39(9), 1611-1630.
Warrant, E. J., & Johnsen, S. (2013). Vision and the light environment. Current Biology, 23(22), 990-994. doi:doi:10.1016/j.cub.2013.10.019
Wasserman, S., & Itagaki, H. (2003). The olfactory responses of the antenna and maxillary palp of the fleshfly, Neobellieria bullata (Diptera: Sarcophagidae), and their sensitivity to blockage of nitric oxide synthase. Journal of Insect Physiology, 49(3), 271-280. doi:10.1016/S0022-1910(02)00288-3
Woolley, J. T. (1971). Reflectance and transmittance of light by leaves. Plant Physiology, 47(5), 656-662.
Zurek, D. B., Cronin, T. W., Taylor, L. A., Byrne, K., Sullivan, M. L., & Morehouse, N. I. (2015). Spectral filtering enables trichromatic vision in colorful jumping spiders. Current Biology, 25(10), R403-R404.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59798-
dc.description.abstract地球上多樣的光環境所施加的選汰壓力,塑造了生物視覺的演化。然而,我們對於生態因子與物理環境如何共同塑造長波光感知,目前仍然所知有限。森林落葉層的光環境有相當豐富的長波光 (> 700 nm),這個波段的光線因為其低能量的性質,通常被認為無法透過視覺感光來接收。在本篇研究中,我們發現了目前為止陸域生態系的動物之中,光感知可見光波長(850-1050 nm) 最長的動物尼泊爾埋葬蟲 (Nicrophorus nepalensis),並探討了塑造該特殊視覺的生態因子及其演化意義。 (一)、野外實驗證實,森林落葉層對於埋葬蟲而言,是一個種間競爭壓力小的環境,埋葬蟲因而不需要投資在耗能的埋葬行為上;相較之下,森林無落葉的地面則有相當激烈的種間競爭,埋葬蟲幾乎無法在沒有落葉的環境成功繁殖。(二)、室內的行為操作實驗,透過調整不同波長與強度的光線環境,進一步證實埋葬行為會受近紅外線調控,且預期的行為反應(不埋但仍有加工屍體)隨著波長增加而越明顯,在近紅外光的波長反應最明顯。此外,行為與外部形態的證據皆排除埋葬蟲使用熱感知的可能性,因而支持埋葬蟲使用光感知來偵測近紅外光。(三)、比較基因體的分析結果顯示,斑紋埋葬蟲屬有三種視蛋白:昆蟲紫外線視蛋白、昆蟲長波視蛋白、與rhodopsin7-like視蛋白,其中rh7-like視蛋白可能在近紅外線感知中扮演重要角色。綜合上述證據,我的研究指出,物理環境中豐富的長波光以及激烈的種間競爭壓力,此二生態因子共同塑造了埋葬蟲近紅外線感知的演化。zh_TW
dc.description.abstractThe remarkably varied light environments in ecosystems on Earth presents strong selective pressures on the evolution of visual systems. Physical limitations imposed on vision by a given light environment constraint the possibility of visual adaptations. However, we still have limited understandings on the interactions of ecological drivers and physical limitation in shaping the visual adaptation in forests—the largest terrestrial ecosystem. Forest detritus possesses markedly abundant long-wavelength light (> 700 nm), which has been conventionally considered imperceptible by animals. Here, we discover the longest visible wavelength (850-1050 nm) of photoreception known in terrestrial ecosystems and investigate the ecological drivers of this unusual visual adaption in forest-dwelling burying beetles (Nicrophorus nepalensis). Our field experiments reveal that forest detritus is a safe location with low interspecific competition and thus a location where beetles do not need to invest in costly carcass burial. We experimentally manipulate the light environments and demonstrate that burying behavior is mediated by the long-wavelength light (> 700 nm) cue through photoreception, rather than thermoreception. Our comparative genomic survey also identifies three opsin genes, an insect ultraviolet (UV) opsin, long-wavelength (LW) opsin, and a Drosophila rhodopsin7-like opsin, as candidates for the NIR photoreceptor. Together, our results identify interspecific competitive pressure as the crucial ecological driver for the only known visual system that can detect long-wavelength light under nature condition.en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:38:32Z (GMT). No. of bitstreams: 1
ntu-106-R04b44005-1.pdf: 4900663 bytes, checksum: 8fc21d8adddce3458c2669999e3819d5 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員會審定書 1
Acknowledgements 2
中文摘要 3
Abstract 4
Index 5
Index of Figures 6
Index of Tables 7
1. Introduction 8
2. Methods 11
2.1 Impact of dead leaves on the competition and burying behavior on forest floor 11
2.2 Simulated irradiance spectrum in detritus 13
2.3 Collection and maintenance of N. nepalensis 15
2.4 Dead leaves preference assays in the programmed incubator 16
2.5 Burying assays in the programmed incubator 17
2.6 Examination of the body surface of N. nepalensis 18
2.7 Opsin gene annotation and phylogenetic analysis 19
2.8 Statistical analysis 19
3. Results 21
3.1 Impact of dead leaves on the competition and burying behavior on forest floor 21
3.2 Simulated irradiance spectrum in the detritus 22
3.3 Burying behavior under different light wavelengths and intensities 23
3.4 Examination of the body surface of N. nepalensis 24
3.5 Phylogenetic analysis of opsin genes 25
4. Discussion 26
5. References 31
dc.language.isozh-TW
dc.subject視覺適應zh_TW
dc.subject近紅外線感知zh_TW
dc.subject種間競爭zh_TW
dc.subject埋葬蟲zh_TW
dc.subjectnear infrared photoreceptionen
dc.subjectinterspecific competitionen
dc.subjectvisual adaptationen
dc.subjectburying beetlesen
dc.title埋葬蟲近紅外線感知行為演化之生態因子zh_TW
dc.titleEcological Drivers for the Evolution of Near Infrared Photoreception in Burying Beetles (Nicrophorus nepalensis)en
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree碩士
dc.contributor.oralexamcommittee楊恩誠(En-Cheng Yang),焦傳金(Chuan-Chin Chiao),謝志豪(Chih-hao Hsieh)
dc.subject.keyword近紅外線感知,種間競爭,視覺適應,埋葬蟲,zh_TW
dc.subject.keywordnear infrared photoreception,interspecific competition,visual adaptation,burying beetles,en
dc.relation.page53
dc.identifier.doi10.6342/NTU201700439
dc.rights.note有償授權
dc.date.accepted2017-02-10
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生態學與演化生物學研究所zh_TW
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
4.79 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved