請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59161完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡豐羽(Feng-Yu Tsai) | |
| dc.contributor.author | Yen-Yun Lien | en |
| dc.contributor.author | 連彥昀 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:16:59Z | - |
| dc.date.available | 2020-08-20 | |
| dc.date.copyright | 2020-08-20 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-14 | |
| dc.identifier.citation | 1. Burschka, J., N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, and M. Gratzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013. 499(7458): p. 316-+. 2. Liu, M.Z., M.B. Johnston, and H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013. 501(7467): p. 395-+. 3. NREL. Best Research-Cell Efficiency Chart. [cited 2019 12/5]; Available from: https://www.nrel.gov/pv/cell-efficiency.html. 4. Yang, G., H. Tao, P.L. Qin, W.J. Ke, and G.J. Fang, Recent progress in electron transport layers for efficient perovskite solar cells. Journal of Materials Chemistry A, 2016. 4(11): p. 3970-3990. 5. Ameen, S., M.A. Rub, S.A. Kosa, K.A. Alamry, M.S. Akhtar, H.S. Shin, H.K. Seo, A.M. Asiri, and M.K. Nazeeruddin, Perovskite Solar Cells: Influence of Hole Transporting Materials on Power Conversion Efficiency. Chemsuschem, 2016. 9(1): p. 10-27. 6. Zhou, H.P., Q. Chen, G. Li, S. Luo, T.B. Song, H.S. Duan, Z.R. Hong, J.B. You, Y.S. Liu, and Y. Yang, Interface engineering of highly efficient perovskite solar cells. Science, 2014. 345(6196): p. 542-546. 7. Batzill, M. and U. Diebold, The surface and materials science of tin oxide. Progress in Surface Science, 2005. 79(2-4): p. 47-154. 8. Jarzebski, Z.M. and J.P. Marton, PHYSICAL-PROPERTIES OF SNO2 MATERIALS .1. PREPARATION AND DEFECT STRUCTURE. Journal of the Electrochemical Society, 1976. 123(7): p. C199-C205. 9. Snaith, H.J. and C. Ducati, SnO2-Based Dye-Sensitized Hybrid Solar Cells Exhibiting Near Unity Absorbed Photon-to-Electron Conversion Efficiency. Nano Letters, 2010. 10(4): p. 1259-1265. 10. Ye, M.D., C.F. He, J. Iocozzia, X.Q. Liu, X. Cui, X.T. Meng, M. Rager, X.D. Hong, X.Y. Liu, and Z.Q. Lin, Recent advances in interfacial engineering of perovskite solar cells. Journal of Physics D-Applied Physics, 2017. 50(37): p. 16. 11. Baena, J.P.C., L. Steier, W. Tress, M. Saliba, S. Neutzner, T. Matsui, F. Giordano, T.J. Jacobsson, A.R.S. Kandada, S.M. Zakeeruddin, A. Petrozza, A. Abate, M.K. Nazeeruddin, M. Gratzel, and A. Hagfeldt, Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environmental Science, 2015. 8(10): p. 2928-2934. 12. Wang, C.L., C.X. Xiao, Y. Yu, D.W. Zhao, R.A. Awni, C.R. Grice, K. Ghimire, I. Constantinou, W.Q. Liao, A.J. Cimaroli, P. Liu, J. Chen, N.J. Podraza, C.S. Jiang, M.M. Al-Jassim, X.Z. Zhao, and Y.F. Yan, Understanding and Eliminating Hysteresis for Highly Efficient Planar Perovskite Solar Cells. Advanced Energy Materials, 2017. 7(17): p. 9. 13. Anaraki, E.H., A. Kermanpur, L. Steier, K. Domanski, T. Matsui, W. Tress, M. Saliba, A. Abate, M. Gratzel, A. Hagfeldt, and J.P. Correa-Baena, Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide. Energy Environmental Science, 2016. 9(10): p. 3128-3134. 14. McMeekin, D.P., G. Sadoughi, W. Rehman, G.E. Eperon, M. Saliba, M.T. Horantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M.B. Johnston, L.M. Herz, and H.J. Snaith, A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science, 2016. 351(6269): p. 151-155. 15. Bu, T.L., X.P. Liu, Y. Zhou, J.P. Yi, X. Huang, L. Luo, J.Y. Xiao, Z.L. Ku, Y. Peng, F.Z. Huang, Y.B. Cheng, and J. Zhong, A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells. Energy Environmental Science, 2017. 10(12): p. 2509-2515. 16. Dong, Q.S., Y.T. Shi, K. Wang, Y. Li, S.F. Wang, H. Zhang, Y.J. Xing, Y. Du, X.G. Bai, and T.L. Ma, Insight into Perovskite Solar Cells Based on SnO2 Compact Electron-Selective Layer. Journal of Physical Chemistry C, 2015. 119(19): p. 10212-10217. 17. Li, Y., J. Zhu, Y. Huang, F. Liu, M. Lv, S.H. Chen, L.H. Hu, J.W. Tang, J.X. Yao, and S.Y. Dai, Mesoporous SnO2 nanoparticle films as electron-transporting material in perovskite solar cells. Rsc Advances, 2015. 5(36): p. 28424-28429. 18. Rao, H.S., B.X. Chen, W.G. Li, Y.F. Xu, H.Y. Chen, D.B. Kuang, and C.Y. Su, Improving the Extraction of Photogenerated Electrons with SnO2 Nanocolloids for Efficient Planar Perovskite Solar Cells. Advanced Functional Materials, 2015. 25(46): p. 7200-7207. 19. Ke, W.J., G.J. Fang, Q. Liu, L.B. Xiong, P.L. Qin, H. Tao, J. Wang, H.W. Lei, B.R. Li, J.W. Wan, G. Yang, and Y.F. Yan, Low-Temperature Solution-Processed Tin Oxide as an Alternative Electron Transporting Layer for Efficient Perovskite Solar Cells. Journal of the American Chemical Society, 2015. 137(21): p. 6730-6733. 20. Zuo, L.J., H.X. Guo, D.W. deQuilettes, S. Jariwala, N. De Marco, S.Q. Dong, R. DeBlock, D.S. Ginger, B. Dunn, M.K. Wang, and Y. Yang, Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells. Science Advances, 2017. 3(8): p. 11. 21. Jung, K.H., J.Y. Seo, S. Lee, H. Shin, and N.G. Park, Solution-processed SnO2 thin film for a hysteresis-free planar perovskite solar cell with a power conversion efficiency of 19.2%. Journal of Materials Chemistry A, 2017. 5(47): p. 24790-24803. 22. Zhu, Z.L., Y. Bai, X. Liu, C.C. Chueh, S.H. Yang, and A.K.Y. Jen, Enhanced Efficiency and Stability of Inverted Perovskite Solar Cells Using Highly Crystalline SnO2 Nanocrystals as the Robust Electron-Transporting Layer. Advanced Materials, 2016. 28(30): p. 6478-6484. 23. Jiang, Q., L.Q. Zhang, H.L. Wang, X.L. Yang, J.H. Meng, H. Liu, Z.G. Yin, J.L. Wu, X.W. Zhang, and J.B. You, Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)(2)PbI3-based perovskite solar cells. Nature Energy, 2017. 2(1): p. 1-7. 24. Jiang, Q., Z.N. Chu, P.Y. Wang, X.L. Yang, H. Liu, Y. Wang, Z.G. Yin, J.L. Wu, X.W. Zhang, and J.B. You, Planar-Structure Perovskite Solar Cells with Efficiency beyond 21%. Advanced Materials, 2017. 29(46): p. 7. 25. Dong, Q.S., Y.T. Shi, C.Y. Zhang, Y.K. Wu, and L.D. Wang, Energetically favored formation of SnO2 nanocrystals as electron transfer layer in perovskite solar cells with high efficiency exceeding 19%. Nano Energy, 2017. 40: p. 336-344. 26. C. Jeffrey Brinker, G.W.S., Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. 1990. 27. Bob, B., T.B. Song, C.C. Chen, Z. Xu, and Y. Yang, Nanoscale Dispersions of Gelled SnO2: Material Properties and Device Applications. Chemistry of Materials, 2013. 25(23): p. 4725-4730. 28. Duan, J.X., Q. Xiong, B.J. Feng, Y. Xu, J. Zhang, and H. Wang, Low-temperature processed SnO2 compact layer for efficient mesostructure perovskite solar cells. Applied Surface Science, 2017. 391: p. 677-683. 29. Wu, Y.C., W. Hamd, E. Thune, A. Boulle, C. Rochas, and R. Guinebretiere, Synthesis of tin oxide nanosized crystals embedded in silica matrix through sol-gel process using alkoxide precursors. Journal of Non-Crystalline Solids, 2009. 355(16-17): p. 951-959. 30. Hamd, W., A. Boulle, E. Thune, and R. Guinebretiere, A new way to prepare tin oxide precursor polymeric gels. Journal of Sol-Gel Science and Technology, 2010. 55(1): p. 15-18. 31. 陳鈞瑋, 以溶膠凝膠法於室溫下製備氧化錫薄膜並與奈米銀線複合製備透明導電薄膜, in 材料科學與工程學研究所. 2018, 國立臺灣大學. 32. Hatte, Q., P.A. Dubos, N. Guitter, M. Richard-Plouet, and P. Casari, Influence of relative humidity and temperature on the sol-gel transition of a siloxane surface treatment. Journal of Sol-Gel Science and Technology, 2019. 90(2): p. 230-240. 33. 侯政宏, 金屬氧化物於高效率、無電流電壓遲滯且具大氣穩定性之鈣鈦礦太陽能電池中之應用, in 材料科學與工程研究所. 2018, 國立臺灣大學. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59161 | - |
| dc.description.abstract | 氧化錫是常用於有機無機混合鈣鈦礦太陽能電池電子傳輸層的材料之一,因為它具有高的載子遷移率,能階也與鈣鈦礦相匹配。目前文獻中對於做為電子傳輸層的低溫製程氧化錫薄膜,通常是使用旋塗氧化錫奈米顆粒懸浮液的方式製備。雖然使用此方法製備電子傳輸層的鈣鈦礦太陽能電池已能達到高效率,在前驅物準備上仍較複雜。為了找到一種更簡單的方法,此篇研究利用高反應性有機錫前驅物—異丙醇錫,透過較簡單的溶膠凝膠法在低溫下製備高品質的氧化錫薄膜,其電導率大於3.1 × 10-3 S/cm,也成功以此氧化錫薄膜做為鈣鈦礦太陽能電池之電子傳輸層,此太陽能電池元件的能量轉換效率可達15%。接著我們進一步研究此氧化錫薄膜的成膜機制,藉由化學和表面分析,發現燒結環境的相對濕度是影響氧化錫成膜的重要因素。相對濕度高的燒結環境可使反應中濕膜的乾燥時間拉長,令中間產物有足夠的時間進行縮合反應,使得反應更完全,最終得到具較低電阻的高品質氧化錫電子傳輸層。 | zh_TW |
| dc.description.abstract | Tin oxide (SnOx) is one of the commonly used electron transporting materials for organic-inorganic hybrid perovskite solar cells (PSCs) as well as other types of electronic devices thanks to its excellent electronic properties. Currently, low-temperature, solution-based processing of SnOx films for electron transporting applications have relied upon casting from dispersion solutions of pre-synthesized SnOx nanocrystals. Aiming for a simpler method, this study demonstrated a low-temperature sol-gel process for fabricating high-quality SnOx films utilizing a high-reactivity organotin precursor, tin (IV) isopropoxide (TIP). The key to obtaining high electrical conductivity from the sol-gel SnOx films at low processing temperatures was identified to be a high-humidity annealing environment. By using > 70% relative humidity (R.H.), SnOx films with conductivity > 3.1 × 10-3 S/cm could be fabricated at annealing temperatures ranging from 25 to 85 C, which when incorporated into PSC devices as electron-transporting layers yielded power conversion efficiency > 15%. Chemical and surface analysis revealed that the beneficial effects of the high-humidity annealing environment originated from the slower sol-gel condensation reaction rates at higher R.H., which allowed more thorough removal of reaction byproducts, resulting in lower impurity in the SnOx films. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:16:59Z (GMT). No. of bitstreams: 1 U0001-1408202015462300.pdf: 2858129 bytes, checksum: b2051f20337d6ed077225778898a27df (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書 ii 誌謝 iii 摘要 iv Abstract v Content vii List of Figures x List of tables xii Chapter 1 Introduction and Literature review 1 1.1 Introduction of perovskite solar cell 1 1.2 Carrier transporting layers of PSC 5 1.2.1 Introduction of carrier transporting layer 5 1.2.2 Advantages of SnOx as electron transporting layer 7 1.3 Review of tin oxide as an electron transporting layer 9 1.3.1 ALD deposited tin oxide ETL 9 1.3.2 CBD deposited tin oxide ETL 9 1.3.3 Sol-gel process tin oxide ETL 11 1.3.4 Summary of tin oxide as an electron transporting layer 15 1.4 Objective statement 19 Chapter 2 Experimental details 20 2.1 Materials 20 2.2 Sol-gel SnOx thin film fabrication 20 2.3 Perovskite solar cell fabrication 22 2.4 Characteristic and analysis 25 Chapter 3 Results and discussions 26 3.1 Thermal and humidity effect on TIP/SnOx sol-gel process 26 3.2 Mechanism of relative humidity affecting on SnOx thin film formation 30 3.2.1 Crystal structure and morphology 32 3.2.2 Chemical composition analysis 34 3.2.3 Surface analysis 38 3.3 Performance of perovskite solar cell with SnOx ETL 39 Chapter 4 Conclusion and Future work 41 4.1 Conclusion 41 4.2 Future work 43 Reference 45 Appendix 52 | |
| dc.language.iso | en | |
| dc.subject | 溶膠凝膠法 | zh_TW |
| dc.subject | 鈣鈦礦 | zh_TW |
| dc.subject | 太陽能電池 | zh_TW |
| dc.subject | 氧化錫 | zh_TW |
| dc.subject | 異丙醇錫 | zh_TW |
| dc.subject | 低溫製程 | zh_TW |
| dc.subject | Sol-gel process | en |
| dc.subject | Perovskite | en |
| dc.subject | Solar cell | en |
| dc.subject | Tin oxide | en |
| dc.subject | Tin isopropoxide | en |
| dc.subject | Low-temperature process | en |
| dc.title | 以溶膠凝膠法於低溫下製備氧化錫薄膜作為鈣鈦礦太陽能電池之電子傳輸層 | zh_TW |
| dc.title | Tin oxide thin films by a low-temperature sol-gel process as electron transporting layer of perovskite solar cell | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林唯芳(Wei-Fang Su),陳奕君(I-Chun Cheng) | |
| dc.subject.keyword | 鈣鈦礦,太陽能電池,氧化錫,異丙醇錫,低溫製程,溶膠凝膠法, | zh_TW |
| dc.subject.keyword | Perovskite,Solar cell,Tin oxide,Tin isopropoxide,Low-temperature process,Sol-gel process, | en |
| dc.relation.page | 54 | |
| dc.identifier.doi | 10.6342/NTU202003438 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-15 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1408202015462300.pdf 未授權公開取用 | 2.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
