Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58879
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor段維新
dc.contributor.authorShao-Kuan Leeen
dc.contributor.author李劭寬zh_TW
dc.date.accessioned2021-06-16T08:36:21Z-
dc.date.available2023-11-07
dc.date.copyright2014-01-27
dc.date.issued2013
dc.date.submitted2013-11-07
dc.identifier.citation1. G. E. Moore, “Cramming More Components onto Integrated Circuits,” Electronics, 114-117 (1965).
2. M. F. Ashby, Materials Selection in Mechanical Design, Pergamon Press, New York, 1992.
3. C. K. Hu, B. Luther, F. B. Kaufman, J. Ilummel, C. Uzoh, and D. J. Pearson, “Copper Interconnection Integration and Reliability,” Thin Solid Films, 262 84-92 (1995).
4. P. C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans, and H. Deligianni, “Damascene Copper Electroplating for Chip Interconnections,” IBM J. Res. Develp., 42 [5] (1998).
5. J. F. Burgess, C. A. Neugebauer, “Direct Bonding of Metals with a Metal-Gas Eutectic,” United States Patent 3,744,120 (1973).
6. M. D. Losego, M. E. Grady, N. R. Sottos, D. G. Cahill and P. V. Braun, “Effects of Chemical Bonding on Heat Transport Across Interfaces,” Nat. Mater., 11 502-506 (2012).
7. ASM International, ASM Metals Handbook Volume 3 Alloy Phase Diagram, 10th ed, Materials Park, OH, 2003.
8. J. F. Burgess, C. A. Neugebauer and G. Flanagan, “The Direct Bonding of Metals to Ceramics by the Gas-Metal Eutectic Method,” J. Electrochem. Soc., 122 [5] 688-690 (1975).
9. J. F. Burgess, C. A. Neugebauer, G. Flanagan and R. E. Moore, “The Direct Bonding of Metals to Ceramics and Application in Electronics,” Electrocomp. Sci. Tech., 2 233-240 (1976).
10. Y. S. Sun and J. C. Driscoll, “A New Hybrid Power Technique Utilizing a Direct Copper to Ceramic Bond,” IEEE Trans. Electron Devices, ED23 [8] 961-967 (1976).
11. M. Wittmer, “Eutectic Bonding of Copper to Ceramics,” Mater. Res. Soc. Symp. Proc., 40 393-398 (1985).
12. C. Beraud, M. Courbiere, C. Esnouf, D. Juve, and D. Treheux, “Study of Copper-Alumina Bonding,” J. Mater. Sci., 24 4545-4554 (1989).
13. Y. Yoshino, “Role of Oxygen in Bonding Copper to Alumina,” J. Am. Ceram. Soc., 72 [8] 1322-1327 (1989).
14. Y. Yoshino and H. Ohtsu, “Interface Structure and Bond Strength of Copper-Bonded Alumina Substrates,” J. Am. Ceram. Soc., 74 [9] 2184-2188 (1991).
15. Y. Yoshino and T. Shibata, “Structure and Bond Strength of a Copper-Alumina Interface,” J. Am. Ceram. Soc., 75 [10] 2756-2760 (1992).
16. S. Mellul and J. P. Chevalier, “Interfacial Phase Transitions and Bonding in the Cu/Al2O3 System,” Philos. Mag. A, 64 [3] 564-576 (1991).
17. S. T. Kim, C. H. Kim, “Interfacial Reaction Product and its Effect on the Strength of Copper to Alumina Eutectic Bonding,” J. Mater. Sci., 27 2061-2066 (1992).
18. W. L. Chiang, V. A. Greenhut and R. L. Moore, “Gas-Metal Eutectic Bonded Cu to Al2O3 Substrate Mechanism and Substrate Additives Effect Study,” Ceram. Eng. Sci. Proc., 14 [9-10] 802-812 (1993).
19. C. W. Seager, K. Kokini, K. Trumble and M. J. M. Krane, “The Influence of CuAlO2 on the Strength of Eutectically Bonded Cu/Al2O3 Interfaces,” Scripta Mater., 46 395-400 (2002).
20. H. Ning, J. Ma, F. Huang, Y. Wang, Q. Li and X. Li, “Preoxidation of the Cu Layer in Direct Bonding Technology,” Appl. Surf. Sci., 211 250-258 (2003).
21. C. H. Lee, Y. S. Lee D C. Cho and C. H. Lee,” Microstructure and Mechanical Properties of DBC on Sputter Deposited Copper on Alumina Substrate,” Mater. Sci. Forum, 449-452 677-680 (2004).
22. A. Krzynska, W. Wlosinski and M. Kaczorowski, “About the Structure Cu-Al2O3 Joints Obtained by Diffusion Bonding,” Proc. IMechE., 220 B 439-445 (2005).
23. H. He, R. Fu, D. Wang, X. Song, M. Jing, “A new method for preparation of direct bonding copper substrate on Al2O3,” Mater. Lett., 61 4131-4133 (2007).
24. W.H. Tuan, S.K. Lee, 'Direct bonding of copper to alumina and its characterization', Ceramic transactions, 219 9-14 (2010).
25. H. Gasemi, M. A. Faghihi, A. H. Kokabi and Z. Riazi, “Alumina-Copper Eutecitc Bond Strength: Contribution of Preoxidation, Cuprous Oxides Particles and Pores,” Transaction B: Mechanical Engineering, 16 [3] 263-268 (2009).
26. H. Gasemi, A. H. Kokabi, M. A. F. Zani, Z.Riaze, “Roles of Preoxidation, Cu2O particles, and interface pores on the strength of eutectically bonded Cu/α-Al2O3,” Materials and Design, 30 1098-1102 (2009).
27. B. Böttge, S. Klengel, J. Schischka, G. Lorenz, H. Knoll, “Microstructural and Mechanical Characterization of Ceramic Substrates with Different Metallization for Power Applications,” 8th International Conference on Integrated Power Electronics Systems, March 6-8 Nuremberg/Germany (2012).
28. S. K. Lee, W. H. Tuan, Y. Y. Wu and S. J. Shih, “Microstructure-thermal properties of Cu/Al2O3 bilayer prepared by direct bonding,” J. Eur. Ceram. Soc., 33 277-285 (2013).
29. S. K. Lee and W. H. Tuan, “Formation of CuAlO2 at the Cu/Al2O3 Interface and its Influence on Interface Strength and Thermal Conductivity,” Int. J. Appl. Ceram. Technol., 1-10 (2013).
30. S. K. Misra and A. C. D. Chaklader, “The System Copper Oxide-Alumina,” J. Am. Ceram. Soc., 46 [10] 509 (1963).
31. A. M. M. Gadalla, W. F. Ford, and J. White, “Equilibrium Relationship in the System Cu-Cu2O-Al2O3,” Trans. Brit. Ceram. Soc., 63 [1] 39-62 (1964).
32. K. T. Jacob and C. B. Alock, “Thermodynamics of CuAlO2 and CuAl2O4 and Phase Equilibria in the System Cu2O-CuO-Al2O3,” J. Am. Ceram. Soc., 58 [5-6] 192-195 (1975).
33. K. P. Trumble, “Thermodynamic Analysis of Aluminate Formation at Fe/Al2O3 and Cu/Al2O3 Interfaces,” Acta Metal. Mater., 40 S105-S110 (1992).
34. K. P. Trumble, “Prediction of a Critical Temperature for Aluminate Formation in Alumina/Copper-Oxygen Eutectic Bonding,” J. Am. Ceram. Soc., 82 [10] 2919-2920 (1999).
35. S. Yi, K. P. Trumble and D. R. Gaskell, “Thermodynamic Analysis of Aluminate Stability in the Eutectic Bonding of Copper with Alumina,” Acta Mater., 47 [11] 3221-3226 (1999).
36. S. V. Garimella, A. S. Fleischer, J. Y. Murthy, A. Keshavarzi, R. Prasher, C. Patel, S. H. Bhavnani, Venkatasubramanian R, Mahajan R, Joshi Y, Sammakia B, Myers BA, Chorosinski L, Baelmans M, Sathyamurthy P, Raad PE, “Thermal Challenges in Next-generation Electronic Systems,” IEEE Trans. Compon. Packag. Technol., 31 801-815 (2008).
37. M. P. Borom, G. Slack, and J. W. Szymaszek, “Thermal Conductivity of Commercial Aluminum Nitride,” ” Am. Ceram. Soc. Bull., 51 [11] 852-856 (1972).
38. Y. Kurokawa, K. Utsumi, H. Takamizawa, T. Kamata, and S. Noguchi, “AlN Substrates with High Thermal Conductivity,” IEEE Trans. Compon. Packag. Manuf. Technol., CHMT8 [2] 247-252 (1985).
39. F. Miyashiro, N. Iwase, A. Tsuge, F. Ueno, M. Nakahashi, and T. Takahashi, “High Thermal Conductivity Aluminum Nitride Ceramic Substrates and Packages,” IEEE Trans. Compon. Packag. Manuf. Technol., 13 [2] 313-319 (1990).
40. L. M. Sheppard, “Aluminum Nitride: a Versatile but Challenging Material,” Am. Ceram. Soc. Bull., 69 [11] 1801-1812 (1990).
41. F. L. Riley, “Silicon Nitride and Related Materials,” J. Am. Ceram. Soc., 83 [2] 245-265 (2000).
42. R. Lee, “Development of High Thermal Conductivity Aluminum Nitride Ceramic,” J. Am. Ceram. Soc., 74 [9] 2242-2249 (1991).
43. T. B. Jackson, A. V. Virkar, K. L. More, R. B. Dinwiddie Jr,, R. A. Culter, “High-Thermal-Conductivity Aluminum Nitride Ceramics: The Effect of Thermodynamic, Kinetic, and Microstructural Factors,” J. Am. Ceram. Soc., 80 [6] 1421-1435 (1997).
44. A. L. Molisani, and H. N. Yoshimura, “Intermediate Oxide Layers for Direct Bonding of Copper (DBC) to Aluminum Nitride Ceramic Substrates,” Mater. Sci. Forum, 660-661 658-663 (2010).
45. E. Y. Sun, P. F. Becher, K. P. Plucknett, C. H. Hsueh, K. B. Alexander, and S. B. Waters, “Microstructural Design of Silicon Nitride with Improved Fracture Toughness: II, Effects of Yttia and Alumina Additives,” J. Am. Ceram. Soc., 81 [11] 2831-2840 (1998).
46. N. Iwase, K. Anzai, K. Shinozake, O. Hirao, T. D. Thanh, Y. Sugirua, “Thick Film and Direct Bond Copper Forming Technologies for Aluminum Nitride Substrates,” IEEE Trans. Compon. Packag. Manuf. Technol., CHMT8 [2] 253-258 (1985).
47. P. Kluge-Weiss and J. Gobrecht, “Directly Bonded Copper Metallization of AlN Substrates for Power Hybrids,” Mat. Res. Soc. Symp. Proc., 40 399-404 (1985).
48. S. T. Kim, C. H. Kim, J. Y. Park, Y. B. Son, and K. Y. Kim, “The Direct Bonding between Copper and MgO-doped Si3N4,” J. Mater. Sci., 25 5185-5191 (1990).
49. M. Entezarian and R. A. L. Drew, “Direct Bonding of Copper to Aluminum Nitride,” Mater. Sci. Eng., A212 206-212 (1996).
50. A. Kara-Slimane, D. Juve, E. Leblond, and D. Treheux, “Joining of AlN with Metals and Alloys,” J. Eur. Ceram. Soc., 20 1829-1836 (2000).
51. J. Schulz-Harder, “Advantages and New Development of Direct Bonded Copper Substrates,” Microelectron. Reliab., 43 359-365 (2003).
52. M. Chmielewski, “Oxygen Modification of AlN Surface and Its Effect on the Microstructure and Properties of AlN-Cu Joints,” Proc. SPIE 5775, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments III, 275 (2005).
53. J. Jarrige, T. Joyeux, J. P. Lecompte, J. C. Labbe, “Influence of Oxygen on the Joining between Copper and Aluminum Nitride,” J. Eur. Ceram. Soc., 27 337-341 (2007).
54. J. Jarrige, T. Joyeux, J. P. Lecompte, J. C. Labbe, “Comparison between Two Processes using oxygen in the Cu/AlN Bonding,” J. Eur. Ceram. Soc., 27 855-860 (2007).
55. S. Tanaka, “Direct Bonding of Cu to Oxidized Silicon Nitride by Wetting of Molten Cu and Cu(O),” J. Mater. Sci., 45 2181-2187 (2010).
56. A. C. D. Chaklader, A. M. Armstrong and S. K. Misra, “Interface Reactions Between Metals and Ceramics: IV, Wetting of Sapphire by Liquid Copper-Oxygen Alloys,” J. Am. Ceram. Soc., 51 [11] 630-633 ((1968).
57. S. K. Rhee, “Critical Surface Tension for Spreading in the Systems (Al-Mg)/Graphite and (Cu-O)/Sapphire,” J. Am. Ceram. Soc., 57 [8] 329-332 (1974).
58. T. E. O’Brien and A. C. D. Chaklader, “Effect of Oxygen on the Reaction Between Copper and Sapphire,” J. Am. Ceram. Soc., 57 [8] 329-332 (1974).
59. S. P. Mehrotra and A. C. D. Chaklader, “Interfacial Phenomena Between Molten Metals and Sapphire Substrate,” Metall. Trans., 16B 567-575 (1985).
60. P. D. Ownby and J. Liu, “Surface Energy of Liquid Copper and Single-Crystal Sapphire and the Wetting Behavior of Copper on Sapphire,” J. Adhesion Sci. Technol., 2 [4] 255-269 (1988).
61. C. M. Kennefick and R. Raj, “Copper on Sapphire: Stability of Thin Films at 0.7 Tm,” Acta Metal., 37 [11] 2947-2952 (1989).
62. M. D. Baldwin, P. R. Childambaram and G. R. Edwards, “Spreading and Interlayer Formation at the Copper-Copper Oxide/Polycrystalline Alumina Interface,” Metall. Trans A, 25 2497-2506 (1994).
63. A. Meier, M. D. Baldwin, P. R. Childamram and G. R.Edwards, “The Effect of Large Oxygen Additions on the Wettability and Work of Adhesion of Copper-Oxygen Alloys on Polycrystalline Alumina,” Mater. Sci. & Eng., A196 111-117 (1995).
64. A. M. Meier, P. R. Chidambaram, G. R. Edwards, “A Comparison of the Wettability of Copper-Copper Oxide and Silver-Copper Oxide on Polycrystalline Alumina,” J. Mater. Sci., 30 4781-4786 (1995).
65. P. R. Chidambaram, A. Meier, G. R. Edwards, “The Nature of Interfacial Phenomena at Copper-Titanium/Alumina and Copper-Oxygen/Alumina Interfaces,” Mater. Sci. Eng., A206 249-258 (1996).
66. V. Ghetta, J. Fouletier and D. Chatain, “Oxygen Adsorption Isotherms at the Surfaces of Liquid Cu and Au-Cu Alloys and their Interfaces with Al2O3 Detected by Wetting Experiments,” Acta Mater., 44 [5] 1927-1936 (1996).
67. M. Diemer, A. Neubrand, K. P. Trumble and J. Rodel, “Influence of Oxygen Partial Pressure and Oxygen Content on the Wettability in the Copper-Oxygen-Alumina System,” J. Am. Ceram. Soc., 82 [10] 2825-2832 (1999).
68. U. Alber, H. Mullejans, M. Ruhle, “Wetting of Copper on α-Al2O3 Surfaces Depending on the Orientation and Oxygen Partial Pressure,” Micron., 30 101-108 (1999).
69. R. Shen, H. Fujii and K. Nogi, “Effect of Substrate Surface Orientation on the Wettability and Adhesion of α-Al2O3 Single Crystals by Molten Cu,” J. Mater. Res., 20 [4] 940-951 (2005).
70. S. K. Rhee, “Wetting of AlN and TiC by Liquid Ag and Liquid Cu,” J. Am. Ceram. Soc., 51 [11] 630-633 (1968).
71. M. Naka, M. Kubo, and I. Okamoto, “Wettability of Silicon Nitride by Aluminum, Copper and Silver,” J. Mater. Sci., 6 965-966 (1987).
72. R. Sangiorgi, M. L. Muolo and A. Bellosi, “Wettability of Hot-pressed Silicon Nitride Materials by Liquid Copper,” Mater. Sci. Eng., A103 277-283 (1988).
73. J. Li, “Wetting of Ceramic Materials by Liquid Silicon, Aluminum and Metallic Melts Containing Titanium and Other Reactive Elements: a Review,” Ceram. Int., 20 391-412 (1994).
74. S. Sugihara and Y. Hirose, “Wetting Properties of AlN with Electrode Metals and Their Interfaces,” J. Ceram. Soc. Jpn., 102 [3] 217-220 (1994).
75. V. Leroux, J. C. Labbe, T. T. Nguyen, M. E. R. Shanahan, “Wettability of Non-reactive Cu/Si-Al-O-N Systems I. Experimental Results,” J. Eur. Ceram. Soc., 21 825-831 (2001).
76. M. Kida, M. Bahraini, J. M. Molina, L. Weber, A. Mortensen, “High-temperature Wettability of Aluminum Nitride during Liquid Metal Infiltration,” Mater. Sci. Eng. A, 495 197-202 (2008).
77. R. L. Pastorek and R. A. Rapp, “The Solubility and Diffusivity of Oxygen in Solid Copper from Electrochemical Measurements,” Trans. Metall. Soc., AIME 245 1711-1720 (1969).
78. E. Albert, R. Kirchheim and H. Dietz “Diffusivity of Oxygen in Copper,” Scripta Metall. Mater., 15 673-677 (1981).
79. M. L. Narula, V. B. Tare and W. L. Worrell, “Diffusivity and Solubility of Oxygen in Solid Copper Using Potentiostatic and Potentiometric Techniques,” Metall. Trans. B, 14B 673-677 (1983).
80. S. Otsuka and Z. Kozuka, “The Diffusivity of Oxygen in Liquid Copper by Electrochemical Measurements,” Metall. Trans. B, 7B 147-149 (1976).
81. K. A. Rogers, K. P. Trumble, B. J. Dalgleish, and I. E. Reimanis, “Role of Oxygen in Microstructure Development at Solid-State Diffusion-Bonded Cu/α-Al2O3 Interfaces,” J. Am. Ceram. Soc., 77 [8] 2036-2042 (1994).
82. I. E. Remanis, K. P. Trumble, K. A. Rogers and B. J. Dalgleish, “Influence of Cu2O and CuAlO2 Interphases on Crack Propagation at Cu/α-Al2O3 Interfaces,” J. Am. Ceram. Soc., 80 [2] 424-432 (1997).
83. I. Dutta, S. Mitra, and L. Rabenberg, “Oxidation of Sintered Aluminum Nitride at Near-Ambient Temperatures,” J. Am. Ceram. Soc., 75 [11] 3149-3153 (1992).
84. H. Kim, A. J. Moorhead, “Oxidation Behavior and Flexural Strength of Aluminum Nitride Exposed to Air at Elevated Temperatures,” J. Am. Ceram. Soc., 77 [4] 1037-1041 (1994).
85. E. W. Osborne and M .G. Norton, “Oxidation of Aluminum Nitride,” J. Mater. Sci., 33 3859-3865 (1998).
86. R. E. Reed-Hill, Physical Metallurgy Principles, PWS-Kent Pub., Boston, 1992.
87. R. O. Ritchie, R. M. Cannon, B. J. Dalgleish, R. H. Dauskardt, and J .M. McNaney, “Mechanics and Mechanisms of Crack Growth at or Near Ceramic-Metal Interfaces: Interface Engineering Strategies for Promoting Toughness,” Mater. Sci. Eng., A166 221-235 (1993).
88. J. M. McNaney, R. M. Cannon, and R. O. Ritchie, “Near-Interfacial Crack Trajectories in Metal-Ceramic Layered Structures,” Int. J. Fract., 66 227-240 (1994).
89. T. Sato, K. Haryu, T. Endo, and M. Shimada, “High Temperature Oxidation of Hot-pressed Aluminum Nitride by Water Vapor,” J. Mater. Sci., 22 2277-2280 (1987).
90. J. P. Holman, Heat Transfer, McGraw-Hill, New York, 1997.
91. M. Haynes, ed., CRC Handbook of Chemistry and Physics, 91st edition (Internet Version 2011), CRC Press/Taylor and Francis, Boca Raton, FL, 2011.
92. Q. J. Liu, Z. Liu and L. Feng, “Theoretical Calculations of Mechanical, Electronic, Chemical Bonding and Optical Properties of Delafossite CuAlO2,” Physica B, 405 2028-2033 (2010).
93. M. Kitayama, K. Hirao, A. Tsuge, K. Watari, M. Toriyama, S. Kanzaki, “Thermal Conductvitiy of β-Si3N4.: II, Effect of Lattice Oxygen,” J. Am. Ceram. Soc., 83 [8] 1985-1992 (2000).
94. G. A. Slack, “Thermal Conductivity of MgO, Al2O3, MgAl2O4, and Fe3O4 Cystals from 3 to 300K,” Phys. Rev., 126 427-441 (1962).
95. G. L. Babcock, W. M. Bryant, C. A. Neugebauer and J. F. Burgess, “METHOD OF DIRECT BONDING METALS TO NON-METALLIC SUBSTRATES,” United States Patent 3,766,634 (1973).
96. J. F. Burgess, C. A. Neugebauer, “METHOD FOR BONDING METAL TO CERAMIC,” United States Patent 3,911,553 (1975).
97. G. L. Babcock, W. M. Bryant, C. A. Neugebauer and J. F. Burgess, “BONDS BETWEEN METAL AND A NON-METALLIC SUBSTRATE,” United States Patent 3,993,411 (1976).
98. D. A. Cusano, J. A. Loughran, Y. S. Edmund Sun, “DIRECT BONDING OF METALS TO CERAMICS AND METALS,” United States Patent 3,994,430 (1976).
99. E. P. Jochym, “BLSTER-FREE DIRECT BONDING OF METALS TO CERAMICS AND METALS,” United States Patent 4,409,278 (1983).
100. A. Neidig, D. Berndt, G. Wahl and M. Wittmer, “METHOD OF DIRECT BONDING COPPER FOILS TO OXIDE-CERAMIC SUBSTRATES,” United States Patent 4,505,418 (1985).
101. A. Neidig, K. Bunk, K. Thiele, G. Wahl and J. Gobrecht, “PROCESS FOR THE DIRECT BONDING OF METAL TO CERAMICS,” United States Patent 4,591,401 (1986).
102. C. H. Tsiranovits, J. G. Antonopoulos and J. Stoemenos, ”On the Growth of Cuprous Oxide Films,” Thin Solid Films, 71 133-140 (1980).
103. A. Lupu, “Thermogravimetry of Copper and Copper Oxides (Cu2O-CuO),” J. Therm. Anal., 2 445-458 (1970).
104. Y. L. Ellice, E. D. Leonard, H. E. Jack, and W. L. John, “Metallization behavior in Aluminum Nitride Electronic Packages,” Mat. Res. Soc. Symp. Proc., 203 247-252 (1991).
105. J. N. Bulter and R. S. Brokaw, “Thermal Conductivity of Gas Mixtures in Chemical Equilibrium,” J. Chemical Physics., 26 [6] 1359-1778 (1957).
106. W. M. Rohsenow, J. P. Hartnett, and E. N. Ganic, Handbook of Heat Transfer Fundamentals, 2nd ed, McGraw-Hill, New York, 1985.
107. John H. L. Pang, D. Y. R. Chong, and T. H. Low, “Thermal Cycling Analysis of Flip-Chip Solder Joint Reliability,” IEEE Trans. Compon. Packag. Technol., 24 [4] 705-712 (2001).
108. W. Engelmaier, “Fatigue Life of Leadless Chip Carrier Solder Joints During Power Cycling,” IEEE Trans. Compon. Packag. Manuf. Technol., CHMT-6 [3] 232- (1983).
109. C. Gillot, D. Henry, C. Schaeffer and C. Massit, “A New Packaging Technique for Power Multichip Modules,” Industry Applications Conference, 1999. Thirty-Fourth IAS Annual Meeting. Conference Record of the 1999 IEEE, 3 Oct- 7 Oct, Phoenix AZ, [3] 1765-1769 (1999).
110. J. Schulz-Harder, “DBC Substrates as a Base for Power MCM’s,” Electronics Packaging Technology Conference, 2000. (EPTC 2000). Proceedings of 3rd, 315-320 (2000).
111. J. Schulz-Harder and K. Exel, “Recent Developments of Direct Bonded Copper (DBC) Substrates For Power Modules,” Electronic Packaging Technology Proceedings, 2003. ICEPT 2003. 5th International Conference on Electronic Packaging Technology, Shanghai China, 491-496 (2003).
112. J. Schulz-Harder and K. Exel, “Advanced DBC (Direct Bonded Copper) Substrates for High Power and High Voltage Electronics,” Semiconductor Thermal Measurement and Management Symposium, 2006 IEEE Twenty-Second Annual IEEE, Dallas TX 230-231 (2006).
113. J. Schulz-Harder, “Review on Highly Integrated Solutions for Power Electronic Devices,” Integrated Power Systems (CIPS), 2008 5th International Conference on Integrated Power Systems, 11-13 March, Nuremberg Germany, 1-7 (2008).
114. P. G. Charalambides, J. Lund, A. G. Evans and R. M. McMeeking, “A Test Specimen for Determining the Fracture Resistance of Bimaterial Interfaces,” J. Appl. Mech., 56 77-81 (1989).
115. C. H. Hsueh, W. H. Tuan and W. C. J. Wei, “Analyses of Steady-State Interface Fracture of Elastic Multilayered Beams under Four-Point Bending,” Scripta Mater., 60 721-724 (2009).
116. W. J. Parker, R. J. Jenkins, C. P. Butler and G. L. Abbott, “Flash Method of Determining Thermal Diffusivity, Heat Capacity and Thermal Conductivity,” J. Appl. Phys., 32 [9] 1679-1684 (1961).
117. R. D. Cowan, “Pulse Method of Measuring Thermal Diffusivity at High Temperature,” J. Appl. Phys., 34 [4] 926-927 (1963).
118. ASTM International, Standard Test Method for Thermal Diffusivity by the Flash Method E1461-07, West Conshohocken, PA.
119. P. S. Kumar and P. K. Nair, “Studies on Crystallization of Electroless Ni-P Deposits,” J. Mater. Proc. Tech., 56 511-520 (1996).
120. H. J. Lee and J. Yu, “Study on the Effects of Copper Oxide Growth on the Peel Strength of Copper/Polyimide,” J. Electron. Mater., 37 [8] 1102-1110 (2008).
121. M. Günther, K. Wolter, M. Rittner, and W. Nüchter, “Failure Mechanism of Direct Copper Bonding Substrates,” 714-718 IEEE Electronics Systemintegration Technology Conference, Dresden, Germany (2006).
122. R. O. Ritchie, R. M. Cannon, B. J. Dalgleish, R. H. Dauskardt and J. M. McNaney,” Mechanics and Mechanisms of Crack Growth at or Near Ceramic-Metal Interfaces: Interface Engineering Strategies for Promoting Toughness,” Mater. Sci. Eng., A166 221-235 (1993).
123. M. McNaney, R. M. Cannon and R. O. Ritchie, “Near-Interfacial Crack Trajectories in Metal-Ceramic Layered Structures,” Inter. J. Fract., 66 227-240 (1994).
124. D. P. H. Hasselman and L. F. Johnson, “Effective Thermal Conductivity of Composites with Interfacial Thermal Barrier Resistance,” J. Compos. Mater., 21 508-515 (1987).
125. N. Araki, D. W. Tang, A. Makino, M. Hashimoto and T. Sano, “Transient Characteristics of Thermal Conduction in Dispersed Composites,” Int. J. Thermophys., 19 [4] 1239-1251 (1998).
126. H. J. T. Ellingham, “Reducibility of Oxides and Sulfides in Metallurgical Process,” J. Soc. Chem. Ind. London, 63 125 (1944).
127. T. Fujimura and S. Tanaka, “In-situ High Temperature X-ray Diffraction Study of Cu/Al2O3 Interface Reactions,” Acta mater., 46 [9] 3057-3061 (1998).
128. K. P. Trumble and M. R. Ruhle, “The Thermodynamics of Spinel Interphase Formation at Diffusion-Bonded Ni/Al2O3 Interfaces,” Acta metal. Mater., 39 [8] 1915-1924 (1991).
129. T. Fujimura and S. Tanaka, “In-situ High Temperature X-ray Diffraction Study of Ni/Al2O3 Interface Reactions,” Acta mater., 45 [12] 4917-4921 (1997).
130. M. Ruhle, “Structure and Composition of Metal/Ceramic Interfaces,” J. Eur. Ceram. Soc., 16 353-365 (1996).
131. G. Dehm, C. Scheu, G. Mobus, R. Brydson, M. Ruhle, “Synthesis of Analytical and High-Resolution Transmission Electron Microscopy to Determine the Interface Structure of Cu/Al2O3,” Ultramicroscopy, 67 207-217 (1997).
132. C. Scheu, W. Stein and M. Ruhle, “Electron Energy-Loss Near-Edge Structure Studies of a Cu/(1120) α-Al2O3 Interface,” Phys. Stat. Sol., (b) 222 199-211 (2000).
133. C. Scheu, W. Stein, S. Klein, T. Wagner, A. P. Tomsia and M. Ruhle, “Microstructure and Modifications of Cu/Al2O3 Interfaces,” Z. Metallkd., 92 7 707-711 (2001).
134. C. Scheu, S. Klein, A. P. Tomsia and M. Ruhle, “Chemical Reactions and Morphological Stability at the Cu/Al2O3 Interface,” Journal of Microscopy, 208 11-17 (2002).
135. C. Scheu, M. Gao, S. H. Oh, G. Dehm, S. Klein, A. P. Tomsia and M. Ruhle, “Bonding at Copper-Alumina Interfaces Established by Different Surface Treatments: a Critical Review,” J. Mater. Sci., 41 5161-5168 (2006).
136. J. K. Farrer and M. M. Nowell, “EBSD Analysis of Solid-State Reaction Between Al2O3 and Cu2O,” Microsc. Microanal., 11 Suppl 2 1780-1781 (2005).
137. I. Halevy, D. Dragoi, E. Üstündag, A. F. Yue, E. H. Arredondo, J. Hu and M. S. Somayazulu, “The Effect of Pressure on the Structure of NiAl2O4,” J. Phys. Condens. Matter., 14 10511-10516 (2002).
138. M. H. Manghnani, W. S. Brower and J. S. Parker, “Anomalous Elastic Behavior in Cu2O under Pressure,” Phys. Stat. Sol., 25 69-76 (1974).
139. Q. J. Liu, Z. Liu and L. Feng, “Theoretical Calculations of Mechanical, Electronic, Chemical Bonding and Optical Properties of Delafossite CuAlO2,” Physica B, 405 2028-2033 (2010).
140. B. J. Ingram, T. O. Mason, R. Asahi, K. T. Park, and A. J. Freeman, “Electronic Structure and Small Polaron Hole Transport of Copper Aluminate,” Phys. Rev. B, 64 155114 (2001).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58879-
dc.description.abstract本研究利用銅-氧共晶接合法,又通稱直接覆銅法,接合金屬銅與氧化鋁。藉此方法接合金屬與陶瓷時,氧在接合性質上扮演了關鍵性角色,因而研究陶瓷與不同氧含量之金屬接合之界面。為得含不同氧含量的銅金屬,進行改變溫度、時間以及氣氛搭配成多樣的預氧化處理。因預氧化處理改變了銅的表面氧含量,本研究同時也探討了銅之氧化機制。氧化過程中,於銅表面發現了氧化亞銅(Cu2O)和氧化銅(CuO),且氧化機制由擴散控制。透過氧化機制之研究,可有效調整預氧化處理參數(溫度、時間和氣氛)而得含不同氧含量之銅金屬。本實驗於氮氣下1075℃ 進行共晶接合,共晶液相於銅和氧化鋁的接觸面形成,潤濕氧化鋁表面,於冷卻後獲得接合良好之金屬-陶瓷界面。利用高解析度穿透式顯微鏡(HRTEM)觀察接合界面之微結構。微結構分析觀察到於銅/氧化鋁和氧化亞銅/氧化鋁界面上有界面反應相CuAlO2,本研究提出兩程式反應機制,並分別使用熱力學與動力學對界面反應進行探討,並探討反應相的熱穩定性,及維持界面上CuAlO2之臨界所需之氧含量。因此接合前之銅預氧化處理可確保界面上有足夠氧含量。對接合界面的性質,氧化亞銅(Cu2O)與銅鋁氧化合物界面相(CuAlO2)有著不同的影響。CuAlO2在界面上的存在,可阻止界面裂痕的成長,有效的提升了界面強度。然而,Cu2O的生成降低了界面強度同時也造成大量的殘留應力,對於得到最佳的銅-氧化鋁接合界面性質來說,適當氧含量的選擇相當重要。本研究利用閃光法以及彎曲強度法來評估接合之性質,本研究製備之雙層銅/氧化鋁試片之熱導係數可達30 Wm-1K-1以上,且擁有23 Jm-2 的界面穩態能量釋放率。因有著高熱導性和高界面強度,本實驗所得之銅-氧化鋁試片可應用散熱基板。zh_TW
dc.description.abstractThe present study applies the eutectic bonding, so called direct bonding, to join copper to alumina. The oxygen plays an important role on the joining of the metal to ceramic, and the ceramic/metal interfaces with various oxygen concentrations are investigated. In order to introduce various oxygen concentrations into copper, several pre-oxidation treatments were adopted. The oxidation behavior of Cu is also investigated in this work. Cu2O and CuO form at the copper surface during oxidation. The oxidation is controlled by diffusion. The eutectic bonding of copper to alumina is achieved at 1075℃ in nitrogen atmosphere. Eutectic melt forms and wets both copper and alumina, therefore intimate bonding is obtained after cooling. HRTEM is used to observe the microstructure at the interface. CuAlO2 is found at the Cu/Al2O3 and Cu2O/Al2O3 interfaces. Two chemical reactions for the formation of CuAlO2 are proposed. Thermodynamics and kinetics are used to elucidate the formation of CuAlO2 at the interface. Since the processing window for the stable CuAlO2 is narrow, to maintain a sufficient oxygen concentration at the Cu/Al2O3 interface is critical. The interfacial phases, Cu2O and CuAlO2, have contradictory influences on the joint properties. The presence of CuAlO2 improves the interfacial strength by crack pinning mechanism whereas Cu2O reduces the interfacial strength and introduces large residual stress. An adequate oxygen content should be used to join Cu to Al2O3 for optimum properties. Flash method and flexure bending test were used to characterize the laminate properties. The bilayer Cu/Al2O3 laminates fabricated in the present study exhibit a thermal conductivity above 30 Wm-1K-1 and a steady-state energy release rate of 23 Jm-2. Since the thermal conductivity and interfacial strength of the Cu-Al2O3 laminates are high, the use of the laminate as thermal dissipation substrate is high.en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:36:21Z (GMT). No. of bitstreams: 1
ntu-102-D98527003-1.pdf: 20127757 bytes, checksum: fd695c3646b4d6a279085d6466ea7782 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontentsContents
Chapter 1 1
Chapter 2 12
2-1 Basic of direct bonding 12
2-1.1 Thermodynamic assessment 12
2-1.2 Kinetic consideration 16
2-2 Effect of interfacial phases on mechanical properties 18
2-2.1 Cu2O precipitates at interface 19
2-2.2 CuAlO2 at the interface 21
2-2.3 Oxide/glass after oxidation on nitrides 24
2-3 Critical issues 27
2-3.1 Voids at the interface 28
2-3.2 Thermal cycling reliability 31
Chapter 3 33
3-1 Starting materials 33
3-2 Pre-oxidation of copper 34
3-3 Direct Bonding 37
3-4 Bond strength 40
3-5 Thermal conductivity 41
3-6 Reliability 42
3-7 Effect of porosity of alumina on bonding interface 45
Chapter 4 46
4-1 Raw materials 46
4-2 Microstructure observation on the joint 51
4-2.1 Integrity examination 51
4-2.2 Cross-section microstructure 56
4-2.3 Peeled surface examination 62
4-2.4 Interfacial analysis 88
4-3 Thermal diffusivity measurement 94
4-4 Mechanical properties 97
4-5 Temperature cycling test 101
4-6 Infrared imaging 105
4-7 Effect of the porosity of alumina on the interfacial condition 108
Chapter 5 111
5-1 Mechanism of void formation 111
5-2 Effect of interfacial phases on thermal properties 118
5-3 The influence of Ni on direct bonded copper/alumina interface 123
5-4 Thermal cycling reliability 130
Chapter 6 132
References 134
dc.language.isozh-TW
dc.subject直接覆銅法zh_TW
dc.subject銅/氧化鋁界面zh_TW
dc.subject熱導係數zh_TW
dc.subjectCuAlO2zh_TW
dc.subject界面強度zh_TW
dc.subject共晶接合法zh_TW
dc.subjectInterfacial strengthen
dc.subjectEutectic bondingen
dc.subjectCu/Al2O3 Interfaceen
dc.subjectCuAlO2en
dc.subjectThermal conductivityen
dc.subjectDirect bonding copperen
dc.title共晶接合銅-氧化鋁界面之微結構、熱傳導與接合強度性質研究zh_TW
dc.titleThe Microstructure, Thermal Conductivity and Joining Strength of Eutectic Bonded Cu/Al2O3 Laminatesen
dc.typeThesis
dc.date.schoolyear102-1
dc.description.degree博士
dc.contributor.oralexamcommittee薛承輝,謝宗霖,楊聰仁,施劭儒
dc.subject.keyword直接覆銅法,共晶接合法,銅/氧化鋁界面,CuAlO2,熱導係數,界面強度,zh_TW
dc.subject.keywordDirect bonding copper,Eutectic bonding,Cu/Al2O3 Interface,CuAlO2,Thermal conductivity,Interfacial strength,en
dc.relation.page155
dc.rights.note有償授權
dc.date.accepted2013-11-07
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
19.66 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved