請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58439
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 游佳欣(Jiashing Yu) | |
dc.contributor.author | I-Hsiang Liao | en |
dc.contributor.author | 廖羿翔 | zh_TW |
dc.date.accessioned | 2021-06-16T08:15:11Z | - |
dc.date.available | 2021-08-01 | |
dc.date.copyright | 2020-07-17 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-07-15 | |
dc.identifier.citation | 1. Abeliovich, A.; Gitler, A. D., Defects in trafficking bridge Parkinson's disease pathology and genetics. Nature 2016, 539 (7628), 207-216. 2. Van Damme, P.; Robberecht, W.; Van Den Bosch, L., Modelling amyotrophic lateral sclerosis: progress and possibilities. Disease models mechanisms 2017, 10 (5), 537-549. 3. Zaichick, S. V.; McGrath, K. M.; Caraveo, G., The role of Ca2+ signaling in Parkinson's disease. Disease models mechanisms 2017, 10 (5), 519-535. 4. Pearn, M. L.; Niesman, I. R.; Egawa, J.; Sawada, A.; Almenar-Queralt, A.; Shah, S. B.; Duckworth, J. L.; Head, B. P., Pathophysiology associated with traumatic brain injury: current treatments and potential novel therapeutics. Cellular and molecular neurobiology 2017, 37 (4), 571-585. 5. Fitch, M. T.; Silver, J., CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure. Experimental neurology 2008, 209 (2), 294-301. 6. Filbin, M. T., Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nature Reviews Neuroscience 2003, 4 (9), 703-713. 7. Li, B., Cells Transplantation for the Repair of Peripheral Nerve Injuries. In Advanced Trauma and Surgery, Springer: 2017; pp 409-435. 8. Ichihara, S.; Inada, Y.; Nakada, A.; Endo, K.; Azuma, T.; Nakai, R.; Tsutsumi, S.; Kurosawa, H.; Nakamura, T., Development of new nerve guide tube for repair of long nerve defects. Tissue Engineering Part C: Methods 2009, 15 (3), 387-402. 9. Taras, J. S.; Jacoby, S. M., Repair of lacerated peripheral nerves with nerve conduits. Techniques in hand upper extremity surgery 2008, 12 (2), 100-106. 10. Rutecki, P. A., Neuronal excitability: voltage-dependent currents and synaptic transmission. Journal of clinical neurophysiology: official publication of the American Electroencephalographic Society 1992, 9 (2), 195-211. 11. Frantz, C.; Stewart, K. M.; Weaver, V. M., The extracellular matrix at a glance. Journal of cell science 2010, 123 (24), 4195-4200. 12. Huang, G.; Li, F.; Zhao, X.; Ma, Y.; Li, Y.; Lin, M.; Jin, G.; Lu, T. J.; Genin, G. M.; Xu, F., Functional and biomimetic materials for engineering of the three-dimensional cell microenvironment. Chemical reviews 2017, 117 (20), 12764-12850. 13. Liang, D.; Hsiao, B. S.; Chu, B., Functional electrospun nanofibrous scaffolds for biomedical applications. Advanced drug delivery reviews 2007, 59 (14), 1392-1412. 14. Ma, Q.; Yang, L.; Jiang, Z.; Song, Q.; Xiao, M.; Zhang, D.; Ma, X.; Wen, T.; Cheng, G., Three-dimensional stiff graphene scaffold on neural stem cells behavior. ACS applied materials interfaces 2016, 8 (50), 34227-34233. 15. Janson, I. A.; Putnam, A. J., Extracellular matrix elasticity and topography: Material‐based cues that affect cell function via conserved mechanisms. Journal of biomedical materials research Part A 2015, 103 (3), 1246-1258. 16. Tsimbouri, P. M.; McNamara, L. E.; Alakpa, E. V.; Dalby, M. J.; Turner, L.-A., Cell–Material Interactions. In Tissue Engineering, Elsevier: 2014; pp 217-251. 17. Salih, V.; Thomas, D., Fundamentals of cell and matrix biology for tissue engineering. In Standardisation in Cell and Tissue Engineering, Elsevier: 2013; pp 3-17. 18. Greene, L. A.; Tischler, A. S., Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proceedings of the National Academy of Sciences 1976, 73 (7), 2424-2428. 19. Walker, A.; Turnbull, J. E.; Gallagher, J. T., Specific heparan sulfate saccharides mediate the activity of basic fibroblast growth factor. Journal of Biological Chemistry 1994, 269 (2), 931-935. 20. Tischler, A. S.; Perlman, R. L.; Morse, G. M.; Sheard, B. E., Glucocorticoids increase catecholamine synthesis and storage in PC 12 pheochromocytoma cell cultures. Journal of neurochemistry 1983, 40 (2), 364-370. 21. Westerink, R.; Ewing, A. G., The PC12 cell as model for neurosecretion. Acta Physiologica 2008, 192 (2), 273-285. 22. Leppik, L.; Oliveira, K. M. C.; Bhavsar, M. B.; Barker, J. H., Electrical stimulation in bone tissue engineering treatments. European Journal of Trauma and Emergency Surgery 2020, 1-14. 23. Tsai, N. C.; She, J. W.; Wu, J. G.; Chen, P.; Hsiao, Y. S.; Yu, J., Poly (3, 4‐ethylenedioxythiophene) polymer composite bioelectrodes with designed chemical and topographical cues to manipulate the behavior of pc12 neuronal cells. Advanced Materials Interfaces 2019, 6 (5), 1801576. 24. Hutmacher, D. W., Scaffolds in tissue engineering bone and cartilage. Biomaterials 2000, 21 (24), 2529-2543. 25. Kabiri, K.; Omidian, H.; Hashemi, S.; Zohuriaan-Mehr, M., Synthesis of fast-swelling superabsorbent hydrogels: effect of crosslinker type and concentration on porosity and absorption rate. European Polymer Journal 2003, 39 (7), 1341-1348. 26. Gorain, B.; Choudhury, H.; Pandey, M.; Kesharwani, P.; Abeer, M. M.; Tekade, R. K.; Hussain, Z., Carbon nanotube scaffolds as emerging nanoplatform for myocardial tissue regeneration: a review of recent developments and therapeutic implications. Biomedicine Pharmacotherapy 2018, 104, 496-508. 27. Zarei, M.; Karbasi, S., Evaluation of the effects of multiwalled carbon nanotubes on electrospun poly (3-hydroxybutirate) scaffold for tissue engineering applications. Journal of Porous Materials 2018, 25 (1), 259-272. 28. O'brien, F. J., Biomaterials scaffolds for tissue engineering. Materials today 2011, 14 (3), 88-95. 29. Dong, C.; Lv, Y., Application of collagen scaffold in tissue engineering: recent advances and new perspectives. Polymers 2016, 8 (2), 42. 30. Wang, C.-C.; Yang, K.-C.; Lin, K.-H.; Liu, H.-C.; Lin, F.-H., A highly organized three-dimensional alginate scaffold for cartilage tissue engineering prepared by microfluidic technology. Biomaterials 2011, 32 (29), 7118-7126. 31. Li, Z.; Ramay, H. R.; Hauch, K. D.; Xiao, D.; Zhang, M., Chitosan–alginate hybrid scaffolds for bone tissue engineering. biomaterials 2005, 26 (18), 3919-3928. 32. Ma, L.; Gao, C.; Mao, Z.; Zhou, J.; Shen, J.; Hu, X.; Han, C., Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials 2003, 24 (26), 4833-4841. 33. Oryan, A.; Sahvieh, S., Effectiveness of chitosan scaffold in skin, bone and cartilage healing. International journal of biological macromolecules 2017, 104, 1003-1011. 34. Caicedo-Carvajal, C. E.; Liu, Q.; Remache, Y.; Goy, A.; Suh, K. S., Cancer tissue engineering: a novel 3D polystyrene scaffold for in vitro isolation and amplification of lymphoma cancer cells from heterogeneous cell mixtures. Journal of tissue engineering 2011, 2011. 35. Hu, J.; Sun, X.; Ma, H.; Xie, C.; Chen, Y. E.; Ma, P. X., Porous nanofibrous PLLA scaffolds for vascular tissue engineering. Biomaterials 2010, 31 (31), 7971-7977. 36. Zhang, J.; Yang, S.; Yang, X.; Xi, Z.; Zhao, L.; Cen, L.; Lu, E.; Yang, Y., Novel fabricating process for porous polyglycolic acid scaffolds by melt-foaming using supercritical carbon dioxide. ACS Biomaterials Science Engineering 2018, 4 (2), 694-706. 37. Kumbar, S. G.; Nukavarapu, S. P.; James, R.; Nair, L. S.; Laurencin, C. T., Electrospun poly (lactic acid-co-glycolic acid) scaffolds for skin tissue engineering. Biomaterials 2008, 29 (30), 4100-4107. 38. Landau, S.; Szklanny, A. A.; Yeo, G. C.; Shandalov, Y.; Kosobrodova, E.; Weiss, A. S.; Levenberg, S., Tropoelastin coated PLLA-PLGA scaffolds promote vascular network formation. Biomaterials 2017, 122, 72-82. 39. Balint, R.; Cassidy, N. J.; Cartmell, S. H., Conductive polymers: Towards a smart biomaterial for tissue engineering. Acta biomaterialia 2014, 10 (6), 2341-2353. 40. Ghasemi‐Mobarakeh, L.; Prabhakaran, M. P.; Morshed, M.; Nasr‐Esfahani, M. H.; Baharvand, H.; Kiani, S.; Al‐Deyab, S. S.; Ramakrishna, S., Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering. Journal of tissue engineering and regenerative medicine 2011, 5 (4), e17-e35. 41. Huang, L.; Zhuang, X.; Hu, J.; Lang, L.; Zhang, P.; Wang, Y.; Chen, X.; Wei, Y.; Jing, X., Synthesis of biodegradable and electroactive multiblock polylactide and aniline pentamer copolymer for tissue engineering applications. Biomacromolecules 2008, 9 (3), 850-858. 42. Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J., Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene,(CH) x. Journal of the Chemical Society, Chemical Communications 1977, (16), 578-580. 43. Kim, D. H.; Richardson‐Burns, S. M.; Hendricks, J. L.; Sequera, C.; Martin, D. C., Effect of immobilized nerve growth factor on conductive polymers: electrical properties and cellular response. Advanced Functional Materials 2007, 17 (1), 79-86. 44. Bousalem, S.; Mangeney, C.; Chehimi, M. M.; Basinska, T.; Miksa, B.; Slomkowski, S., Synthesis, characterization and potential biomedical applications of N-succinimidyl ester functionalized, polypyrrole-coated polystyrene latex particles. Colloid and Polymer Science 2004, 282 (12), 1301-1307. 45. Akkouch, A.; Shi, G.; Zhang, Z.; Rouabhia, M., Bioactivating electrically conducting polypyrrole with fibronectin and bovine serum albumin. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 2010, 92 (1), 221-231. 46. Li, Y.; Neoh, K. G.; Kang, E.-T., Plasma protein adsorption and thrombus formation on surface functionalized polypyrrole with and without electrical stimulation. Journal of colloid and interface science 2004, 275 (2), 488-495. 47. Zou, Y.; Xiang, C.; Yang, L.; Sun, L.-X.; Xu, F.; Cao, Z., A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material. International Journal of Hydrogen Energy 2008, 33 (18), 4856-4862. 48. George, P. M.; Lyckman, A. W.; LaVan, D. A.; Hegde, A.; Leung, Y.; Avasare, R.; Testa, C.; Alexander, P. M.; Langer, R.; Sur, M., Fabrication and biocompatibility of polypyrrole implants suitable for neural prosthetics. Biomaterials 2005, 26 (17), 3511-3519. 49. Gomez, N.; Lee, J. Y.; Nickels, J. D.; Schmidt, C. E., Micropatterned polypyrrole: a combination of electrical and topographical characteristics for the stimulation of cells. Advanced functional materials 2007, 17 (10), 1645-1653. 50. Borriello, A.; Guarino, V.; Schiavo, L.; Alvarez-Perez, M.; Ambrosio, L., Optimizing PANi doped electroactive substrates as patches for the regeneration of cardiac muscle. Journal of Materials Science: Materials in Medicine 2011, 22 (4), 1053-1062. 51. Yu, Q.-Z.; Shi, M.-M.; Deng, M.; Wang, M.; Chen, H.-Z., Morphology and conductivity of polyaniline sub-micron fibers prepared by electrospinning. Materials Science and Engineering: B 2008, 150 (1), 70-76. 52. Baker, C. O.; Huang, X.; Nelson, W.; Kaner, R. B., Polyaniline nanofibers: broadening applications for conducting polymers. Chemical Society Reviews 2017, 46 (5), 1510-1525. 53. Lee, J. Y.; Bashur, C. A.; Goldstein, A. S.; Schmidt, C. E., Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials 2009, 30 (26), 4325-4335. 54. Zhang, Z.; Roy, R.; Dugré, F. J.; Tessier, D.; Dao, L. H., In vitro biocompatibility study of electrically conductive polypyrrole‐coated polyester fabrics. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 2001, 57 (1), 63-71. 55. Luo, X.; Weaver, C. L.; Zhou, D. D.; Greenberg, R.; Cui, X. T., Highly stable carbon nanotube doped poly (3, 4-ethylenedioxythiophene) for chronic neural stimulation. Biomaterials 2011, 32 (24), 5551-5557. 56. Chae, H. G.; Kumar, S., Rigid‐rod polymeric fibers. Journal of Applied Polymer Science 2006, 100 (1), 791-802. 57. Wang, S.; Sun, C.; Guan, S.; Li, W.; Xu, J.; Ge, D.; Zhuang, M.; Liu, T.; Ma, X., Chitosan/gelatin porous scaffolds assembled with conductive poly (3, 4-ethylenedioxythiophene) nanoparticles for neural tissue engineering. Journal of Materials Chemistry B 2017, 5 (24), 4774-4788. 58. Shahini, A.; Yazdimamaghani, M.; Walker, K. J.; Eastman, M. A.; Hatami-Marbini, H.; Smith, B. J.; Ricci, J. L.; Madihally, S. V.; Vashaee, D.; Tayebi, L., 3D conductive nanocomposite scaffold for bone tissue engineering. International journal of nanomedicine 2014, 9, 167. 59. Wan, A. M.-D.; Inal, S.; Williams, T.; Wang, K.; Leleux, P.; Estevez, L.; Giannelis, E. P.; Fischbach, C.; Malliaras, G. G.; Gourdon, D., 3D conducting polymer platforms for electrical control of protein conformation and cellular functions. Journal of Materials Chemistry B 2015, 3 (25), 5040-5048. 60. Cooper, S. J.; Bertei, A.; Finegan, D. P.; Brandon, N. P., Simulated impedance of diffusion in porous media. Electrochimica Acta 2017, 251, 681-689. 61. und Halbach, O. v. B., Immunohistological markers for staging neurogenesis in adult hippocampus. Cell and tissue research 2007, 329 (3), 409-420. 62. Menezes, J.; Luskin, M. B., Expression of neuron-specific tubulin defines a novel population in the proliferative layers of the developing telencephalon. Journal of Neuroscience 1994, 14 (9), 5399-5416. 63. Sarnat, H. B.; Nochlin, D.; Born, D. E., Neuronal nuclear antigen (NeuN): a marker of neuronal maturation in the early human fetal nervous system. Brain and Development 1998, 20 (2), 88-94. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58439 | - |
dc.description.abstract | 隨著組織工程的發展,許多研究致力於合成更具生物相似性的生醫材料以模擬人體中的環境,而具有孔洞結構的三維生物支架便是其中一種,神經系統是人體不可或缺的構造之一,然而,因為意外造成的斷裂往往造成神經系統難以修復,許多研究顯示,導電高分子PEDOT的支架擁有良好的生物相容性與導電性,利用PEDOT所製成的孔洞支架在引導神經生長的方面具有非常好的潛力,然而在許多以PEDOT支架進行神經培養的研究中,同時結合電刺激的神經分化成果並不多。在我們的研究中,我們製備了混合了不同濃度奈米碳管(MWCNTs)的PEDOT:PSS導電多孔支架,奈米碳管不僅增加支架的機械強度也提升了導電度,此外,我們將PC12神經細胞培養於立體裝置中並在培養過程中施予電刺激,在電刺激的促使之下,培養於PEDOT:PSS/MWCNT的神經細胞有分化為更成熟的形態的成果。 | zh_TW |
dc.description.abstract | Three dimensional porous scaffold has been considered as a more appropriate platform for tissue engineering as it better mimic the topological environment if well designed. Nerve tissue can fail to self-regenerate due to the separation of neurons. PEDOT-based conductive scaffold has shown its great performance in biocompatibility and electrical conductivity. Much research has been done on the PEDOT-based scaffolds as a promising guidance channel for neuroregeneration. However, neural culture combined with electrical stimulation was missed. In this study, PEDOT:PSS/MWCNT scaffolds was fabricated with enhanced mechanical properties and electrical conductivity. Also we display a 3D assembled device for electrical-stimulated neural cell culture. Our scaffolds support cell attachment and migration. In addition, PC12 cultured on MWCNT doped scaffolds was induced to differentiate toward more mature neuronal phenotype with the treatment of electrical stimulation. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T08:15:11Z (GMT). No. of bitstreams: 1 U0001-1307202015494901.pdf: 2341250 bytes, checksum: 7158b3cb2827b2ff5a5948c58da683ce (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 口試委員審定書 i 致謝 ii 摘要 iii ABSTRACT iv CONTENTS v LIST OF FIGURES viii LIST OF TABLES x Chapter 1 Introduction 1 1.1 Tissue engineering 1 1.1.1 Nerve tissue engineering 1 1.1.2 Factors affecting cell behavior 3 1.1.3 Electrical stimulation on PC12 6 1.2 Three-dimensional scaffold 7 1.2.1 Properties of scaffold materials 7 1.2.2 Conductive polymers 9 1.2.3 Conductivity of PEDOT:PSS 11 1.2.4 Incorporation of carbon nanotubes 14 1.3 Fabrication methods for PEDOT-based porous scaffolds 15 1.3.1 Interfacial polymerization 15 1.3.2 Ice-templating technique 17 1.4 Motivation and aims 19 1.5 Research Framework 19 Chapter 2 Materials and Methods 21 2.1 Chemicals 21 2.2 Instruments 23 2.3 Solution Formula 25 2.4 Methods 27 2.4.1 Preparation of the PEDOT:PSS/MWCNT scaffold 27 2.4.2 Morphological characterization of the scaffold 28 2.4.3 Electrochemical characterization of the scaffold 30 2.4.4 Liquid uptake behavior of the scaffold 31 2.4.5 Compression test 32 2.4.6 Cell culture and seeding 32 2.4.7 Cell culture platform for electrical stimulation 33 2.4.8 Electrical stimulation 36 2.4.9 Biocompatibility analysis 36 2.4.10 In vitro cytotoxicity test 37 2.4.11 Cell adhesion and morphology 38 2.4.12 Immunofluorescence 40 Chapter 3 Results and discussion 42 3.1 Morphological characteristics 42 3.1.1 Microstructure of PEDOT:PSS/MWCNT scaffolds 42 3.1.2 Porosity and pore size distribution 44 3.2 Physical characteristics 47 3.2.1 Liquid uptake behavior 47 3.2.2 Mechanical properties 49 3.2.3 Electrochemical properties 51 3.3 In-vitro experiments 55 3.3.1 Cytotoxicity assay 55 3.3.2 Cell adhesion 57 3.3.3 Cell proliferation 58 3.3.4 Cell migration 60 3.3.5 Cell morphology 63 3.3.6 Gene expression 65 Chapter 4 Conclusions and Future Work 69 Chapter 5 References 71 | |
dc.language.iso | en | |
dc.title | 施加電刺激以促進神經分化之高孔洞導電支架 | zh_TW |
dc.title | Highly Porous Conductive Scaffolds for Electrically-Stimulated Neural Differentiation | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 羅世強(Shyh-Chyang Luo),蕭育生(Yu-Sheng Hsiao) | |
dc.subject.keyword | 神經再生,導電高分子,神經支架,孔洞材料,奈米碳管, | zh_TW |
dc.subject.keyword | Neuroregeneration,conductive polymer,PEDOT,MWCNT,3D scaffold,porous scaffold, | en |
dc.relation.page | 82 | |
dc.identifier.doi | 10.6342/NTU202001475 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-07-15 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1307202015494901.pdf 目前未授權公開取用 | 2.29 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。