請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58195
標題: | 使用和弦編碼轉換的流行音樂鋼琴樂曲自動生成 Pop Piano Music Generation Using Chord-encoded Transformer |
作者: | Yu-Siang Huang 黃郁翔 |
指導教授: | 張智星(Jyh-Shing Roger Jang) |
共同指導教授: | 楊奕軒(Yi-Hsuan Yang) |
關鍵字: | 音樂生成,流行樂,鋼琴,自注意力機制, music generation,pop,piano,Transformer, |
出版年 : | 2020 |
學位: | 碩士 |
摘要: | 音樂生成與影像生成及影片生成有著一些顯著的差異。首先,音樂是時間上的藝術,所以我們需要利用時序處理的方法。接著,音符不僅僅是純粹時序上的先後關係,鄰近的音群可以組成各式的音樂語法、結構,例如和弦、琶音與音階等等。本篇論文,在基於自注意力機制模型的框架下,我們探討如何生成數分鐘長的流行鋼琴音樂,我們也進一步地提出一套資料前處理的流程,藉由此流程我們可以從原始音訊轉換為音樂數位介面格式。為了分析生成結果,透過主觀的使用者問卷,我們得到許多深刻的見解,並且對模型的架構優缺點做一個通盤性的探討,進一步驗證了我們提出方法的有效性,從而了解深度學習技術的有效性與局限性。 Generating music has a few notable differences from generating images and videos. First, music is an art of the time, necessitating a temporal model. Second, musical notes are often grouped into chords, arpeggios, or melodies in polyphonic music, and therefore introducing a sequential ordering of notes into the generating model is critical. In this thesis, we investigated the framework of the Transformer model for generating minute-long pop piano music. We also proposed a data pre-processing pipeline to collect audio data and convert it to MIDI format. To evaluate the generated results, we adopted subjective user study to demonstrate the effectiveness of the proposed method. |
URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58195 |
DOI: | 10.6342/NTU202001511 |
全文授權: | 有償授權 |
顯示於系所單位: | 資訊網路與多媒體研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1407202014411900.pdf 目前未授權公開取用 | 3.54 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。