請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58105
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊哲人(Jer-Ren Yang) | |
dc.contributor.author | Po-Kai Chiu | en |
dc.contributor.author | 邱柏凱 | zh_TW |
dc.date.accessioned | 2021-06-16T08:06:03Z | - |
dc.date.available | 2014-07-08 | |
dc.date.copyright | 2014-07-08 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-06-23 | |
dc.identifier.citation | 1. T. Inukai, M. Matsuoka, K. Ono, Thin Solid Films 257 (1995) 22.
2. V. Craciun, J. Elders, J.G.E. Gardeniers, J. Geretovsky, I.W. Boyd, Thin Solid Films 259 (1995) 1. 3. L. J. Meng, M.P. Dos Santos, Thin Solid Films 250 (1994) 26. 4. T.K. Subramanyam, B. Srinivasulu Naidu, S. Uthanna, Crystal Research and Technology 8 (34) (1999) 981. 5. Kassis, M. Saad, Solar Energy Materials and Solar Cells 80 (2003) 491. 6. J.B. Lee, H.J. Kim, S.G. Kim, C.S. Hwang, S.-H. Hong, Y.H. Shin, N.H. Lee, Thin Solid Films 435 (2003) 179. 7. S. Ben Amor, G. Baud, M. Jacquet, N. Pichon, Surface and Coatings Technology 102 (1998) 63. 8. S.J. Henley, M.N.R. Ashfold, D. Cherns, Surface and Coatings Technology 177–178 (2004) 271. 9. Bougrine, A. El Hichou, M. Addou, J. Ebothe’, A. Kachouane, M. Troyon, Materials Chemistry and Physics 80 (2003) 43. 10. R. Ondo-Ndong, G. Ferblantier, F. Pascal-Delannoy, A. Foucaran, Microelectronics Journal 34 (2003) 1087. 11. R. Ondo-Ndong, F. Pascal-Dellanoy, A. Boyer, A. Giani, A. Foucaran, Materials Science and Engineering B97 (2003) 68. 12. H.Z. Wu, K.M. He, D.J. Qiu, D.M. Huang, Journal of Crystal Growth 217 (2000) 131. 13. N.R. Aghamalyan, I.A. Gambaryan, E.K. Goulanian, R.K. Hovsepyan, R.B. Kostanyan, S.I. Petrosyan, E.S. Vardanyan, A.F. Zerrouk, Semiconductor Science and Technology 18 (2003) 525. 14. L.C. Tien, D.P. Norton, S.J. Pearton, Hung-Ta Wang, F. Ren, Applied Surface Science 253 (2007) 4620. 15. R. Konishi, K. Noda, H. Harada, H. Sasakura, J Crystal Growth 117 (1992) 939. 16. M. A. Martinez, J. Herrero, M.T. Gutierrez, Solar Energy Mater Solar Cells, 45 (1997) 75. 17. A.P. Roth, J.B. Webb, D. Williams, Phys Rev 25 (1982) 7836. 18. C.C. Wu, D.S. Wu, P.R. Lin, T.N. Chen, R.H. Horng, Nanoscale Research Letters 4 (2009) 377. 19. A. Suzuki, T. Matsushita, N. Wada, Y. Sakamoto, M. Okuda, Jpn J Appl Phys 35 (1996) L56. 20. A. Tiburcio-Silver, J.C. Joubert, M. Laveau, Thin Solid Films 197 (1991) 195. 21. C. W. Lin, K. P. Chen, C. N. Hsiao, S. Lin and C. K. Lee, Sens. Actuators B 113 (2006) 169. 22. C. N. Hsiao, H. P. Chen, P. K. Chiu, W. H. Cho, Y. W. Lin, F. Z. Chen, D. P. Tsai, J. Vac. Sci. Technol. A 28(4) (2010) 867. 23. C. C. Jaing, H. C. Chen and C. C. Lee, Optical Review 16 (2009) 396. 24. C. C. Lee, T. Y. Lee, and Y. J. Jen, Thin Solid Films 359 (2000) 95. 25. C. N. Hsiao, P. K. Chiu, W. H. Cho, H. B. Chen, F. Z. Chen, C. L. Huang, Thin Solid Films 518 (2010) 7421. 26. A. Matthews, J. Vac. Sci. Technol. A 21(5) (2003) S224. 27. Y. Jin, M. Shimada, T. Ono, J. Vac. Technol. A 22(6) (2004) 2431. 28. S. Bauer, L. Klippe, U. Rothhaar, and M. Kuhr, Thin Solid Films 442 (2003) 189. 29. Y.Chi, E. Lay, T. Y. Chou, Y. H. Song, A. Carty, Chem. Vap. Deposition 11 (2005) 206. 30. Logeeswaran, V. J., Chan, M. L., Bayam, Y., Islam, M. S., Horsley, D. A., Li, X., Wu, W., Wang, S. Y., Williams, R. S., Appl. Phys. A: Mater. Sci. Process. 87 (2007) 187. 31. V. J.Logeeswaran, P. K.Nobuhiko, M. S.Islam, W. Wu, P.Chaturvedi, N. X.Fang, S. Y. Wang, R. S.Williams, Nano Lett. 99(1) (2009) 178. 32. H. J. Cho, S. U. Lee, B. Hong, Thin solid films 518 (2010) 2941. 33. H. Y. Liu, V. Avrutin, N. Izyumskaya, Superlattices and Microstructures 48 (2010) 458. 34. T. Minami, J. I. Oda, J. I. Nomoto, Thin Solid Films 519 (2010) 385. 35. C. W. Jeong, C. H. Shin, D. Kim, Transactions on electrical and electronic materials 11(2) (2010) 77. 36. Y. S. Lin, P. W. Chen, D. J. Lin, Surface & Coatings Technology 205 (2010) S216. 37. P. Yianoulis, M. Giannouli, Journal of Nano Research 2 (2008) 49. 38. F. Parmigiani, E. Kay, T. C. Huang, J. Perrin, M. Jurich, J. D. Swalen, Phys. Rev. B 33 (1986) 879. 39. M. Sawada, M. Higuchi, S. Kondo, H. Saka, Jap. J. Appl. Phys. 40. (2001) 3332. 40. S.A. Tjugum, J. Frieling, G.A. Johansen, Nuclear Instruments and Methods in Physics Research B 197 (2002) 30. 41. K.H. Choi, J.Y. Kim, Y.S. Lee, H.J. Kim, Thin Solid Films 341 (1999) 152. 42. A. Kloppel, W. Kriegseis, B.K. Meyer, A. Scharmann, C. Daube, J. Stollenwerk, J. Trube, Thin Solid Films 365 (2000) 139. 43. Kloppel A, Meyer B, Trube J: Influence of substrate temperature and sputtering atmosphere on electrical and optical properties of double silver layer systems. Thin Solid Films 392 (2001) 311. 44. Sawada M, Higuchi M, Kondo S, Saka H: Characteristics of indium tin-oxide/silver/ indium tin-oxide sandwich films and their application to simple-matrix liquid-crystal displays. Jpn J Appl Phys 40 (2001) 3332. 45. Jung YS, Choi YW, Lee HC, Lee DW: Effects of thermal treatment on the electrical and optical properties of silver-based indium tin oxide/metal/indium tin oxide structures. Thin Solid Films 440 (2003) 278. 46. M. Bender, W. Seelig, C. Daube, H. Frankenberger, B. Ocker, and J. Stollenwerk, Thin Solid Films 326 (1998) 72. 47. D. R. Sahu, S. Lin, and J. Huang, Appl. Surf. Sci. 252 (2006) 7509. 48. P. K. Chiu, W. H. Cho, H. P. Chen, C. N. Hsiao and J. R. Yang, Nanoscale Research Letters 7 (2012) 304. 49. S. Kim, Y. Moon, D. Moon, M. Hong, Y. Jeon, and J. Park, J. Korean Phys. Soc. 49 (2006) 1256. 50. G. Leftheriotis, S. Papaefthimou, P. Yianouli, Solid State Ionics 136–137 (2000) 655. 51. E. Kusano, J. Kawaguchi, K. Enjouj, J. Vac. Sci. Technol. A 4 (1986) 2907. 52. K. Chiba, K. Nakatani, Thin Solid Films 112 (1984) 359. 53. I. Dima, B. Popescu, F. Iova, G. Popescu, Thin Solid Films 200 (1991) 11. 54. Kloppel,A. Scharmann, Thin Solid Films 365 (2000) 139. 55. J. Lewis, S. Grego, Appl. Phys. Lett. 85 (2004) 3450. 56. S. W. Kim, Y. W. Shin, Thin Solid Films 437 (2003) 242. 57. Y. R. Seung, H. N. Joo, H. H. Byoung, S. K. Chang, J. J. Sung, T. K. Jong, S. H. Hyeon, K. B. Hong, S. J. Hee, H. L. Chang, S. S. Yong, H. C. Seung, Y. P. Si, APPLIED PHYSICS LETTERS 92 (2008) 023306. 58. J. J. McNally, K. C. Jungling, F. L. Williams, and J. R. McNeil, J. Vac. Sci. Technol. A 5 (4) (1987) 2145. 59. S. Pongratz and a. Zoller, J. Vac. Sci. Technol. A 10 (4) (1992) 1897. 60. H. A. Macleod, Thin-Film Optical Filters, 3rd Edition, Institute of Physics Publishing, Bristol and Philadelphia, 1999. 61. P. F. Gu, Y. M. Chen, X. Q. Hu, and J. F. Tang, Applied Optics, 28, 15 (1989) 3318. 62. Z. Z. Ye, Q. Qian, G. D. Yuan, B. H. Zhao, D. W. Ma, Journal of Crystal Growth 274 (2005) 178. 63. S. Reinke, R.Freudenstein, W. Kulisch, Suface and Coatings Technology 97 (1997) 263. 64. W. Guo, A. Allenic, Y.B. Chen, X.Q. Pan, Y. Che, Z.D. Hu, B. Liu, Appied Phys. Letters 90 (2007) 242108. 65. J.W. Gerlacha,, S. Sienza, W. Attenbergerb, B. Rauschenbach, Physica B 308–310 (2001) 81. 66. David J. Semin, Kathy L. Rowlen, Anal Chem. 66 (1994) 4324 67. Y. S. Lin, P. W. Chen and D. J. Lin, Surface & Coatings Technology 205 (2010) S216. 68. K. Sivaramakrishnan, N. D. Theodore, J. F. Moulder, and T. L. Alford, J. Appl. Phys. 106 (2009) 063510. 69. Charles Kittel, in Introduction to Solid State Physics 8th, (John Wiley & Sons, Inc. Publishers, 2004) p.139. 70. D. C. Look, Semicond. Sci. Technol. 20 (2005) S55. 71. V. Dose, W. Altmann, A. Goldmann, U. Kolac, and J. Rogozik, Phys. Rev. Lett. 52 (1984) 1919. 72. M. J. Hostetler, J. E. Wingate, C. J. Zhong, J. E. Harris, R. W. Vachet, M. R. Clark, J. D. Londono, S. J. Green, J. J. Stokes, G. D. Wignall, G. L. Glish, M. D. Porter, N. D. Evans, R. W. Murray, Core and Monolayer Properties as a Function of Core Size Langmuir 14 (1998) 17. 73. C.J. Youn, T.S. Jeong, M.S. Han, J.H. Kim, Journal of Crystal Growth 261 (2004) 526. 74. X. Gang, S. Rui, C. D. Timothy, G. J. Alan, M. B. Kenneth, A. C. Scott, P. H. Wayne, Advanced Functional Materials 17 (2007) 2133. 75. E. R. Hugo, S. Ning, J. Prasoon, R. G. Humberto, A. T. Srinivas, O. S. Jorge, C. E. Pete, Acs Nano 2 (2008) 2037, 76. J. F. Moulder, W. F. Stickle, P. E. Sobol,K. D. Bomben: Handbook of X-ray Photoelectron Spectroscopy, eds. J. Chastain and R. C. King, Jr. (Physical Electronics, Eden Prairie, MN,1995) p. 25. 77. M. Alistair, H. B. Donald, W. E. Smith, J. Chem. Soc. Dalton Trans. (1980) 767. 78. P. K. Chiu, W. H. Cho, H. P. Chen, C. N. Hsiao, J. R. Yang, Nanoscale Research Letters 7 (2012) 304. 79. M. Bender, W. Seelig, C. Daube, H. Frankenberger, B. Ocker, J. Stollemwerk, Thin Solid Films 326 (1998) 67. 80. M. Bender, W. Seelig, Thin Solid Films 326 (1998) 67. 81. A S. Kloppel, Thin Solid Films 365 (2000) 139. 82. J. S. David, L. R. Kathy, Anal Chem. 66 (1994) 4324. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58105 | - |
dc.description.abstract | 近年來,熱鏡節能窗與透明導電薄膜(TCO),因環保節能之議題而正被廣泛研究,其產業價值和潛力亦隨之水漲船高,伴隨著半導體技術的進步與奈米科技的蓬勃發展,如何將此2種熱門商品合而為一,是現今產業界最為需求之技術。本研究將以蒸鍍機與濺鍍機為鍍膜設備,利用田口法進行參數調配,可以更有效率的得到最佳參數。本研究以熱鏡結構為藍圖,係採用高折射率材料與氣水阻障材料搭配金屬層之三明治結構,利用金屬薄膜於厚度10 nm左右時,對可見光區與熱幅射區具有相當高的反射率與導電性,並透過Maxwell方程式為基礎的電磁場模擬軟體設計,來製作一具熱鏡節能特性之透明導電薄膜。本研究所開發之節能薄膜,將可以同時具備透明導電膜與熱鏡薄膜之優點,本論文所開發之薄膜導電性片電阻將小於7 Ω/sq,可見光穿透率平均值高於80%,熱輻射光區穿透率小於20%(2000 nm),並可透過薄膜材料與薄膜厚度之選擇,開發出可任意調控導電性與光選擇性之新節能導電薄膜,本研究開發反射式高效率節能透明導電薄膜製程,可大量增加熱能的反射以達到高效率節能之特性,並可利用離子源輔助系統達的低溫製程的開發,除可提高生產效率與有效降低材料成本外,亦可藉由機台之設計來達到捲曲式量產之可行性。 | zh_TW |
dc.description.abstract | Smart window began to emerge in Taiwan 10 years ago. Because of the lack of industrial support and cheap technology, the hot global issue gradually cooled down. However, following the trend of the energy issues and nanotechnology improved, the attention to this field began to grow now. A dielectric–metal–dielectric (DMD) layer structure is a low-energy film structure. It can effectively decrease the transmitted light in the near-infrared (NIR) region, usually by reflection and without affecting visible-light transmission properties. In our research, we propose the new conception which combines low-emissivity (Low-E) with and improve smart window. More particularly, the invention relates to a TCO coating that is manufactured according to electromagnetic field simulation software basing on the Maxwell Equations and that is manufactured by a steam plating system or a sputter plating system under the room temperature or lower temperatures to enable the TCO coating to have wider applications. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T08:06:03Z (GMT). No. of bitstreams: 1 ntu-103-D96527004-1.pdf: 2898263 bytes, checksum: fd656d4ad81ff10f8bb894d5c49f0a6a (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | Contents
摘要 ............................................... i Abstract ............................................... ii 致謝 .............................................. iii Figures Caption List ................................ vii Tables Caption List ................................ xi Chapter One .......................................... 1 Introduction .......................................... 1 Chapter Two .......................................... 4 Literatures Survey ................................. 4 2-1 Development and Microstructure of ZnO................. 4 2-2 Technology of angstrom-scale ultra smooth IBAD metal thin films .......................................... 5 2-3 Development and Microstructure of TCO................. 5 2-4 Development of DMD and application in TCO..............6 2-5 Electron beam evaporation with IAD system at room temperature...............................................10 2-6 Theory of evaporation rate............................11 Chapter Three.............................................13 Experimental Procedure....................................13 3-1 EPMA quantitative and qualitative analysis............13 3-2 TEM and FEG-TEM microstructure observation............14 3-3 Deposition of ZnO thin film Specimes..................15 3-4 Deposition of metal thin film Specimes................16 3-5 Deposition of ZnO/ metal / ZnO structure Specimes.....17 3-6 Fabrication of ZnO / Ag/ ZnO (ZAZ) structure Specimes ..........................................................18 3-7 Fabrication of TiO2/ Ag/ SiO2 (TAS) structure Specimes ..........................................................19 3-8 Optical, electrical properties and microstructure Analysis..................................................19 Chapter Four..............................................21 4-1 Fabrication and characterization of n-ZnO on glass by IAD at low temperature....................................21 4-1-1 Introduction........................................21 4-1-2 Experimental Details................................21 4-1-3 Results and discussion..............................22 4-1-4 Conclusions.........................................24 4-2 Extreme smooth noble metal films by in-situ monitored IBAD......................................................33 4-2-1 Introduction........................................33 4-2-2 Experiment Details..................................33 4-2-3 Rsdults.............................................33 4-2-4 Conclusion..........................................35 4-3 Investigation of the metal layer in a dielectric–metal–dielectric sandwich structure at room temperature.........39 4-3-1 Introduction........................................39 4-3-2 Experimental Details................................39 4-3-3 Results and Discussion..............................40 4-3-4 Conclusions.........................................44 4-4 Study of a sandwich structure ZnO / Ag / ZnO of transparent conducting oxide films prepared by electron beam evaporation at room temperature...........................52 4-4-1 Introduction........................................52 4-4-2 Experimental Details................................52 4-4-3 Results and Discussion..............................53 4-4-4 Conclusions.........................................55 4-5 Conductive and Transparent Multilayer Films for Low-Temperature TiO2 /Ag/ SiO2 Electrodes by E-Beam Evaporation with IAD..................................................63 4-5-1 Introduction........................................63 4-5-2 Experimental Details................................63 4-5-3 Results and Discussion..............................64 4-5-4 Conclusions.........................................68 Chapter Five..............................................82 General Conclusions.......................................82 Future Work...............................................84 References................................................85 Appendix..................................................91 | |
dc.language.iso | en | |
dc.title | 極平整超薄金屬與金屬氧化物結構應用於透明導電膜之研究 | zh_TW |
dc.title | Study on the angstrom-scale ultra-smooth metal and metal oxide structure application of TCO at room temperature | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 王星豪(Shing-Hoa Wang),王樂民(Le-Min Wang),陳敏章(Miin-Jang Chen),蕭健男(Chien-Nan Hsiao),朱明文(Ming-Wen Chu) | |
dc.subject.keyword | 熱鏡,透明導電薄膜,節能導電薄膜,離子源輔助蒸鍍系統,極平整透明金屬薄膜, | zh_TW |
dc.subject.keyword | Dielectric–Metal–Dielectric (DMD),Transparent Conducting Oxide (TCO), E-Beam system,energy-saving films,Extreme smooth metal films, | en |
dc.relation.page | 94 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-06-24 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 2.83 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。