Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 心理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57809
標題: 結構方程模型之懲罰概似方法與其大樣本性質
A Penalized Likelihood Method for Structural Equation Modeling and Its Asymptotic Properties
作者: Po-Hsien Huang
黃柏僩
指導教授: 翁儷禎(Li-Jen Weng),陳宏(Hung Chen)
關鍵字: 結構方程模型,懲罰概似,模型選擇,因素分析模型,MIMIC模型,
structural equation modeling,penalized likelihood,model selection,factor analysis model,MIMIC model,
出版年 : 2014
學位: 博士
摘要: 結構方程模型(structural equation modeling,簡稱SEM)乃心理學研究常用之多變量統計方法。在SEM的架構下,研究者可根據現有的心理學理論建立假設模型,並檢驗該模型之適切性;然而,當心理學理論發展尚未臻成熟時,SEM亦可能用以探索變項間的可能關係(Joreskog, 1993)。有鑒於實徵研究很可能同時兼具驗証性與探索性成分,以協助研究者對人類行為有更廣泛的了解,故此,本論文試圖提出一針對SEM模型的懲罰概似(penalized likelihood,簡稱PL)方法,以進行兼具驗証性與探索性成分之SEM分析。在此PL方法下,SEM的模型界定由驗証性與探索性兩部分所構成,前者包含了根據理論所推衍出來的變項關係與限制,後者則由一組被懲罰的參數(penalized parameters)所構成。此PL方法可產生稀疏估計值(sparse estimate),得以有效率地了解變項間關係,並控制最終模型的複雜度。為優化所提出的PL估計準則,本論文發展了期望條件最大化(expectation-conditional maximization,簡稱ECM)算則。透過大樣本理論,本研究建立PL於SEM的理論特性,包括PL估計式的局部與總體神諭性質(oracle property),以及赤池(Akaike)訊息指標與貝氏(Bayesian)訊息指標於PL的模型選擇特性。最後,本研究亦以模擬實驗與真實資料範例評估並展示此PL方法的實徵表現與應用價值。
Structural equation modeling (SEM) is a commonly used multivariate statistical method in psychological studies. The application of SEM involves a confirmatory testing of the models proposed by researchers based on available theories. Yet, in practice, a model generating approach, where modifications of the models are being explored, may well take place (Joreskog, 1993), especially when the development of the substantive theory is still in its infancy. A method for SEM that can embrace the existing theories on one hand and the ambiguous relations that await further exploration on the other will be of great value to advancing scientific theories. In this dissertation, a penalized likelihood (PL) method for SEM is proposed as an attempt to target this goal. Under the proposed PL method, an SEM model is formulated with a confirmatory part and an exploratory part. The confirmatory part contains all the theory-derived relations and constraints. The exploratory part, wherein a set of penalized parameters is specified to represent the ambiguous relations, is data-driven yet with model complexity controlled by the penalty term. Through the sparse estimation of PL, the relationships among variables can be efficiently explored. As the penalty level is chosen appropriately, PL can lead to a SEM model that balances the tradeoff between model goodness-of-fit and model complexity. An expectation-conditional maximization (ECM) algorithm is developed to maximize the PL estimation criterion with several state-of-art penalty functions. Four theorems on the asymptotic behaviors of PL are derived, including the local and global oracle property of PL estimators and the selection consistency of Akaike and Bayesian information criterion. Two simulations are conducted to evaluate the empirical performance of the proposed PL method, and finally the practical utility of PL is demonstrated using two real data examples.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57809
全文授權: 有償授權
顯示於系所單位:心理學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
1.23 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved