Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 心理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57809
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor翁儷禎(Li-Jen Weng),陳宏(Hung Chen)
dc.contributor.authorPo-Hsien Huangen
dc.contributor.author黃柏僩zh_TW
dc.date.accessioned2021-06-16T07:04:56Z-
dc.date.available2015-07-16
dc.date.copyright2014-07-16
dc.date.issued2014
dc.date.submitted2014-07-11
dc.identifier.citationAdachi, K. (2013). Factor analysis with EM algorithm never gives improper solutions when sample covariance and initial parameter matrices are proper. Psychometrika, 78, 380–394.
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723.
Anderson, T. W. (1984). An introduction to multivariate statistical analysis (2nd ed). Wiley, New York.
Arminger, G., & Schoenberg, R. J. (1989). Pseudo maximum-likelihood estimation and a test for misspecification in mean and covariance structure models. Psychometrika, 54, 409–425.
Asparouhov, T., & Muthen, B. (2009). Exploratory structural equation modeling. Structural Equation Modeling: A Multidisciplinary Journal, 16, 397–438.
Baer, R. A., Smith, G. T., Hopkins, J., Krietemeyer, J., & Toney, L. (2006). Using self-report assessment methods to explore facets of mindfulness. Assessment, 13, 27–45.
Bentler, P. M., & Chou, C.-P. (1993). Some new covariance structure model improvement statistics. In K. A. Bollen & J. S. Long (Eds.), Testing structural equation models (pp. 259–282). Newbury Park, CA: Sage.
Bentler, P. M., & Dudgeon, P. (1996). Covariance structure analysis: statistical practice, theory, and directions. Annual Review of Psychology, 47, 63–92.
Bentler, P. M., & Mooijaart, A. (1989). Choice of structural model via parsimony: A rationale based on precision. Psychological Bulletin, 106, 315–317.
Bentler, P. M., & Weeks, D. G. (1980). Linear structural equations with latent variables. Psychometrika, 45, 289–308.
Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika, 46, 443–459.
Bollen, K. A. (1989). Structural equations with latent variables. New York: Wiley.
Bollen, K. A. (1996). An alternative Two Stage Least Squares (2SLS) estimator for latent variable equations. Psychometrika, 61, 109–121.
Bollen, K. A., & Long, J. S. (1993). Testing structural equation models. Newbury Park, CA: Sage.
Bollen, K. A., & Davis, W. R. (2009). Two rules of identification for structural equation models. Structural Equation Modeling: A Multidisciplinary Journal, 16, 523–536.
Bollen, K. A., Harden, J. J., Ray, S., & Zavisca, J. (2012). BIC and alternative Bayesian information criteria in the selection of structural equation models. Structural Equation Modeling: A Multidisciplinary Journal, 21, 1–19.
Box, G. E. P., & Norman, R. D. (1987). Empirical Model-building and Response Surfaces. New York: Wiley.
Breheny, P., & Huang, J. (2011). Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection. Annals of Applied Statistics, 5, 232–253.
Breiman, L. (1996). Heuristics of instability and stabilization in model selection. Annals of Statistics, 24, 2350–2383.
Browne, M. W. (1972a). Orthogonal rotation to a partially specified target. British Journal of Mathematical and Statistical Psychology, 25, 115–120.
Browne, M. W. (1972b). Oblique rotation to a partially specified target. British Journal of Mathematical and Statistical Psychology, 25, 207–212.
Browne, M. W. (1974). Generalized least squares estimators in the analysis of covariance structures. South African Statistical Journal, 8, 1–24.
Browne, M. W. (1984). Asymptotic distribution-free methods for the analysis of covariance structures. British Journal of Mathematical and Statistical Psychology, 37, 62–83.
Browne, M. W. (2001). An overview of analytic rotation in exploratory factor analysis. Multivariate Behavioral Research, 36, 111–150.
Browne, M. W., & Arminger, G. (1995). Specification and estimation of mean and covariance structure models. In G. Arminger, C. C. Clogg, & M. E. Sobel (Eds.), Handbook of statistical modeling for the social and behavioral sciences (pp. 185–249). New York: Plenum Press.
Browne, M. W., & Cudeck, R. (1989). Single sample cross-validation indices for covariance structures. Multivariate Behavioral Research, 24, 445–455.
Buhlmann, P., & van de Geer, S. (2011). Statistics for High dimensional Data: Methods, Theory and Applications. Heidelberg, Berlin: Springer.
Chang, J. H., Lin, Y. C., & Huang, C. L. (2010). Exploring the mechanism of mindfulness: From attention to self-integration. The 11th annual meeting of the Society for Personality and Social Psychology, Las Vegas, USA.
Chaudhuri, S., Drton, M., & Richardson, T. S. (2007). Estimation of a covariance matrix with zeros. Biometrika, 94, 199–216.
Choi, J., Zou, H., & Oehlert, G. (2011). A penalized maximum likelihood approach to sparse factor analysis. Statistics and Its Interface, 3, 429–436.
Chou, C.-P., & Bentler, P. M. (1990). Model modification in covariance structural modeling: A comparison among likelihood ratio, Lagrange multiplier, and Wald tests. Multivariate Behavioral Research, 25, 115–136.
Cox, D. D., & O’sullivan, F. (1990). Asymptotic analysis of penalized likelihood and related estimators. Annals of Statistics, 18, 1676–1695.
Cudeck, R., & Browne, M. W. (1983). Cross-validation of covariance structures. Multivariate Behavioral Research, 18, 147–167.
Cudeck, R., & Henly, S. J. (1991). Model selection in covariance-structures analysis and the “problem” of sample size - a clarification. Psychological Bulletin, 109, 512–519.
Curran, P. J., Bollen, K. A., Chen, F., Paxton, P., & Kirby, J. (2003). The finite sampling properties of the RMSEA: Point estimates and confidence intervals. Sociological Methods and Research, 32, 208–252.
Curran, P. J., West, S. G., & Finch, J. (1996). The robustness of test statistics to non-normality and specification error in confirmatory factor analysis. Psychological Methods, 1, 16–29.
Davis, W. R. (1993). The FC1 rule of identification for confirmatory factor analysis: A general sufficient condition. Sociological Methods & Research, 21, 403–437.
Demyanov, V. F. (2000). Exhausters and convexificators - new tools in nonsmooth analysis. In V. Demyanov & A. Rubinov (Eds.), Quasidifferentiability and related topics (pp. 85–137). Dordrecht: Kluwer Academic Publishers.
Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood from incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical Society, Series B, 39, 1–38.
Donoho, D. L., & Johnstone, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika, 81, 425–455.
Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004). Least angle regression (with discussion). Annals of Statistics, 32, 407–499.
Fan, J.-Q. (1997). Comments on “Wavelets in Statistics: A Review”. Journal of the Italian Statistical Association, 6, 131–138.
Fan, J.-Q., & Li, R.-Z. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96, 1348–1360.
Fan, J.-Q., & Lv, J.-C. (2010). A selective overview of variable selection in high dimensional feature space. Statistica Sinica, 20, 101–148.
Fan, J.-Q., & Lv, J.-C. (2011). Non-concave penalized likelihood with NP-Dimensionality. IEEE - Information Theory, 57, 5467–5484.
Fan, J.-Q., & Peng, H. (2004). Nonconcave penalized likelihood with a diverging number of parameters. Annals of Statistics, 32, 928–961.
Fan, Y.-Y., & Li, R.-Z. (2012). Variable selection in linear mixed effects models. Annals of Statistics, 40, 2043–2068.
Fang, K.-T., & Lin, K.-J. D. (2003). Uniform experimental designs and their applications in industry. In R. Khattree, & C. R. Rao (Eds.), Handbook of Statistics (vol. 22, pp. 131–170). Amsterdam: North-Holland.
Friedman, J., Hastie, H., Hofling, H., & Tibshirani, R. (2007). Pathwise coordinate Optimization. Annals of Applied Statistics, 1, 302–332.
Friedman, J., Hastie, T., & Tibshirani, R. (2007). Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9, 432–441.
Fu, W.-J. (1998). Penalized regressions: The bridge versus the lasso. Journal of Computational and Graphical Statistics, 7, 397–416.
Green, S. B., Thompson, M. S., & Babyak, M. A. (1998). A Monte Carlo investigation of methods for controlling Type-I errors with specification searches in structural equation modeling. Multivariate Behavioral Research, 33, 365–383.
Groll, A., & Tutz, G. (2014). Variable selection for generalized linear mixed models by l_1-penalized estimation. Statistics and Computing, 24, 137–154.
Guo, B., Perron, B. E., & Gillespie, D. F. (2009). A systematic review of structural equation modeling in social work research. British Journal of Social Work, 39, 1556–1574.
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning (2nd ed.). New York, NY: Springer.
Haughton, D. M. A., Oud, J. H. L., & Jansen, R. A. R. G. (1997). Information and other criteria in structural equation model selection. Communication in Statistics, Part B: Simulation & Computation, 26, 1477–1516.
Hirose, K., & Yamamoto, M. (in press). Sparse estimation via nonconcave penalized likelihood in a factor analysis model. Statistics and Computing.
Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression-biased estimation for nonorthogonal Problems. Technometrics, 42, 80–86.
Homburg, C. (1991). Cross-validation and information criteria in causal modeling. Journal of Marketing Research, 28, 137–144.
Hu, L. T., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 3, 424–453.
Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6, 1–55.
Huang, C. M., Lee, Y. J., Lin, K.-J. D., & Huang, S.-Y. (2007). Model selection for support vector machines via uniform design. Computational Statistics and Data Analysis, 52, 335–346.
Jackson, D. L., Gillaspy, J. A., Jr., & Purc-Stephenson, R. (2009). Reporting practices in confirmatory factor analysis: An overview and some recommendations. Psychological Methods, 14, 6–23.
Jennrich, R. I. (2006). Rotation to simple loadings using component loss functions: The oblique case. Psychometrika, 71, 173–191.
Joreskog, K. G. (1967). Some contributions to maximum likelihood factor analysis. Psychametrika, 32, 443–482.
Joreskog, K. G. (1969). A general approach to confirmatory maximum likelihood factor analysis. Psychometrika, 34, 183–202.
Joreskog, K. G. (1970). A general method for analysis of covariance structures. Biometrika, 57, 239–251.
Joreskog, K. G. (1971). Simultaneous factor analysis in several populations; Psychometrika, 36, 409–426.
Joreskog, K. G. (1973). A general method for estimating a linear structural equation system. In A. S. Goldberger & O. D. Duncan (Eds.), Structural equation models in the social sciences (pp. 85–112). New York: Seminar Press.
Joreskog, K. G. (1974). Analyzing psychological data by structural analysis of covariance matrices. In D. H. Krantz, R. C. Atkinson, R. D. Luce, & P. Suppes (Eds.), Contemporary developments in mathematical psychology (vol. 2, pp. 1–56). San Francisco: Freeman.
Joreskog, K. G. (1993). Testing structural equation models. In K. A. Bollen & J. S. Lang (Eds.), Testing structural equation models (pp. 294–316). Newbury Park, CA: Sage.
Joreskog, K. G., & Goldberger, A. S. (1975). Estimation of a model with multiple indicators and multiple causes of a single latent variable, Journal of the American Statistical Association, 10, 631–639.
Jung, S. (2012). Structural equation modeling with small sample sizes using two-stage ridge least-squares estimation. Behavior Research Methods, 45, 75–81.
Kaplan, D., & Depaoli, S. (2012). Bayesian structural equation modeling. In R. Hoyle (Ed.), Handbook on structural equation modeling. New York, NY: Guilford Press.
Knight, K., & Fu, W. (2000). Asymptotics for lasso-type estimators. Annals of Statistics, 28, 1356–1378.
Kolenikov, S. (2011). Biases of parameter estimates in misspecified structural equation models. Sociological Methodology, 41, 119–157.
Kwon, S., & Kim, Y. (2012). Large sample properties of the SCAD-penalized maximum likelihood estimation on high dimensions. Statistica Sinica, 22, 629–653.
Lee, S. Y. (1986). Estimation for structural equation models with missing data. Psychometrika, 51, 93–99.
Lee, S. Y. (2007). Structural equation modeling: A Bayesian approach. Chichester, United Kindom: Wiley.
Lee, S. Y., & Jennrich, R. I. (1979). A study of algorithms for covariance structure analysis with specific comparison using factor analysis. Psychometrika, 44, 99–113.
Lee, S. Y., Poon, W. Y. & Bentler, P. M. (1990). A three-stage estimation procedure for structural equation models with polytomous variables. Psychometrika, 55, 45–51.
Lehmann, E., & Casella, G. (1998), Theory of point estimation (2nd ed.). New York: Springer-Verlag.
Lu, L., & Lin, Y.-Y. (1998). Family roles and happiness in adulthood. Personality and Individual Differences, 25, 195–207.
MacCallum, R. C. (1986). Specification searches in covariance structure modeling. Psychological Bulletin, 100, 107–120.
MacCallum, R. C. (2003). Working with imperfect models. Multivariate Behavioral Research, 38, 113–139.
MacCallum, R. C., Roznowski, M., & Necowitz, L. B. (1992). Model modification in covariance structure analysis: The problem of capitalization on chance. Psychological Bulletin, 111, 490–504.
MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determination of sample size for covariance structure modeling. Psychological Methods, 1, 130–149.
Marsh, H. W., Nagengast, B., & Morin, A. J. S. (2013). Measurement invariance of big-five factors over the life span: ESEM tests of gender, age, plasticity, maturity, and la dolce vita effects. Developmental Psychology, 49, 1194–1218.
Marsh, H. W., Ludtke, O., Muthen, B., Asparouhov, T., Morin, A. J. S., Trautwein, U. & Nagengast, B. (2010). A new look at the big-five factor structure through exploratory structural equation modeling. Psychological Assessment, 22, 471–491.
Mazumder, R., Friedman, J., & Hastie, T. (2011). SparseNet: Coordinate descent with nonconvex penalties. Journal of the American Statistical Association, 106, 1125–1138.
McDonald, R. P. (1982). A note on the investigation of local and global identifiability, Psychometrika, 47, 101–103.
McDonald, R. P., & Ho, M. R. (2002). Principles and practice in reporting structural equation analyses. Psychological Methods, 7, 64–82.
Meinshausen, N., & Buhlmann, P. (2006). High-dimensional graphs and variable selection with the lasso. Annals of Statistics, 34, 1436–1462.
Micceri, T. (1989). The unicorn, the normal curve, and other improbable creatures. Psychological Bulletin, 105, 156–166.
Meng, X.-L. (2008). Discussion: one-step sparse estimates in nonconcave penalized likelihood models: Who cares if it is a white cat or a black cat? Annals of Statistics, 36, 1542–1552.
Meng, X.-L., & Rubin, D. B. (1993). Maximum likelihood estimation via the ECM algorithm: A general framework. Biometrika, 80, 267–278.
Millsap, R. (2011). Statistical approaches to measurement invariance. New York, NY: Routledge.
Mulaik, S. A. (2009). Foundations of factor analysis (2nd ed.). New York: Chapman and Hall/CRC.
Mulaik, S. A., James, L. R., Van Alstine, J., Bennett, N., Lind, S., & Stilwell, C. D. (1989). An evaluation of goodness-of-fit indices for structural equation models. Psychological Bulletin, 105, 430–445.
Muthen, B., & Asparouhov, T. (2012). Bayesian structural equation modeling: A more flexible representation of substantive theory. Psychological Methods, 17, 313–335.
Muthen, B. (1984). A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators. Psychometrika, 49, 115–132.
Myung, I. J. (2000). The importance of complexity in model selection. Journal of Mathematical Psychology, 44, 190–204.
Nelder, J. A., & Wedderburn R. W. M. (1972). Generalized linear models. Journal of the Royal Statistical Society, Series A, 135, 370–384.
Ning, L., & Georgiou, T. T. (2011). Sparse factor analysis via likelihood and l_1 regularization, in 50th IEEE Conference on Decision and Control and European Control Conference, pp. 5188–5192.
Nishii, R. (1984). Asymptotic properties of criteria for selection of variables in multiple regression. Annals of Statistics, 12, 758–765.
Palomo, J., Dunson, D. B., & Bollen, K. (2007). Bayesian structural equation modeling. In S. Y. Lee (Ed.), Handbook of latent variable and related models (pp. 163–188). New York, NY: Elsevier.
Paulhus, D. L. (1991). Measurement and control of response bias. In J. P. Robinson, P. R. Shaver, & L. S. Wrightsman (Eds.), Measures of personality and social psychological attitudes (pp. 17–59). San Diego, CA: Academic Press.
Peugh, J. L., & Enders, C. K. (2010). Specification searches in multilevel structural equation modeling: A Monte Carlo investigation. Structural Equation Modeling: A Multidisciplinary Journal, 17, 42–65.
Poon, W. Y., & Lee, S. Y. (1987). Maximum likelihood estimation of multivariate polyserial and polychoric correlation coefficient. Psychometrika, 52, 409–430.
Preacher, K. J. (2006). Quantifying parsimony in structural equation modeling. Multivariate Behavioral Research, 41, 227–259.
R Development Core Team (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Rao, C. R. (1945). Information and the accuracy attainable in the estimation of statistical parameters. Bulletin of the Calcutta Mathematical Society 37, 81–89.
Rhemtulla, M., Brosseau-Liard, P. E., & Savalei, V. (2012). When can categorical variables be treated as continuous? A comparison of robust continuous and categorical SEM estimation methods under suboptimal conditions. Psychological Methods, 17, 354–373.
Rigdon, E. E. (1995). A necessary and sufficient identification rule for structural models estimated in practice. Multivariate Behavioral Research, 30, 359–383.
Rubin, D., & Thayer, D. (1982). EM algorithms for ML factor analysis. Psychometrika, 47, 69–76.
Satorra, A. (1989). Alternative test criteria in covariance structure analysis - a unified approach. Psychometrika, 54, 131–151.
Schelldorfer, J., Buhlmann, P., & van de Geer, S. (2011). Estimation for high-dimensional linear mixed-effects models using l_1-penalization. The Scandinavian Journal of Statistics, 38, 197–214.
Scheines, R., Hoijtink, H., & Boomsma, A. (1999). Bayesian estimation and testing of structural equation models. Psychometrika, 64, 37–52.
Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 19, 461–464.
Shah, R., & Goldstein, S. M. (2006). Use of structural equation modeling in operations management research: Looking back and forward. Journal of Operations Management, 24, 148 –169.
Shao, J. (1997). An asymptotic theory for linear model selection. Statistica Sinica, 7, 221–264.
Shapiro, A. (1983). Asymptotic distribution theory in the analysis of covariance structures (a unified theory). South African Statistical Journal, 17, 33–81.
Shapiro, A. (2007). Statistical inference of moment structures. In S.-Y. Lee (Ed.), Handbook of latent variable and related models (pp. 229–260). Amsterdam: Elsevier.
Shapiro, A., & Browne, M. W. (1983). On the investigation of local identifiability - a counterexample. Psychometrika, 48, 303–304.
Silvia, E. S. M., & MacCallum, R. C. (1988). Some factors affecting the success of specification searches in covariance structure modeling. Multivariate Behavioral Research, 23, 297–326.
Sorbom, D. (1974). A general method for studying differences in factor means and factor structures between groups. British Journal of Mathematical and Statistical Psychology, 27, 229–239.
Stadler, N., Buhlmann, P., & van de Geer, S. (2010). l_1-penalization for mixture regression models (with discussion). Test, 19, 209–256.
Steiger, J. H., & Lind, J. C. (1980, May). Statistically based tests for the number of common factors. Paper presented at the annual meeting of the Psychometric Society, Iowa City, IA.
Steiger, J., Shapiro, A., & Browne, M. (1985). On the multivariate asymptotic distribution of sequential Chi-square statistics. Psychometrika, 50, 253–263.
Strawderman, R., Wells, M. T., & Schifano, E. D. (2013). Hierarchical bayes, maximum a posteriori estimators, and minimax concave penalized likelihood estimation. Electronic Journal of Statistics, 7, 973–990.
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B, 58, 267–288.
Tikhonov, A. N. (1943). On the stability of inverse problems. Doklady Akademii Nauk SSSR, 39, 195–198.
Tutz, G., & Schauberger, G. (in press). A penalty approach to differential item functioning in Rasch models. Psychometrika.
Vandenberg, R. J., & Lance, C. E. (2000). A review and synthesis of the measurement invariance literature: Suggestions, practices, and recommendations for organizational research. Organizational Research Methods, 3, 4–69.
Vrieze, S. I. (2012). Model selection and psychological theory: A discussion of the differences between the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). Psychological Methods, 17, 228–243.
Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: The PANAS scales. Journal of Personality and Social Psychology, 54, 1063–1070.
Wellner, J., & Zhang, T. (2012). Introduction to the special issue on sparsity and regularization Methods. Statistical Science, 27, 447–449.
Wasserman, L., & Roeder, K. (2009). High-Dimensional Variable Selection. Annals of Statistics, 37, 2178–2201.
West, S. G., Taylor, A. B., & Wu, W. (2012). Model fit and model selection in structural equation modeling, In R. H. Hoyle (Ed.), Handbook of Structural Equation Modeling. New York: Guilford Press.
White, H. (1982). Maximum likelihood estimation of misspecified models. Econometrica, 50, 1–25.
Wu, C.-F. J. (1983). On the convergence properties of the EM algorithm. Annals of Statistics, 11, 95–103.
Wu, J., Devlin, B., Ringquist, S., Trucco, M., & Roeder, K. (2010). Screen and clean: A tool for identifying interactions in genome-wide association studies. Genetic Epidemiology, 34, 275–285.
Wu, T.-T., & Lange, K. (2008). Coordinate descent algorithms for lasso penalized regression. Annals of Applied Statistics, 2, 224–244.
Yuan, K.-H., & Bentler, P. M. (1999). On normal theory and associated test statistics in covariance structure analysis under two classes of nonnormal distributions. Statistica Sinica, 9, 831–853.
Yuan, K.-H., & Bentler, P. M. (2007). Structural equation modeling. In C. R. Rao & S. Sinharay (Eds.), Handbook of statistics (vol. 26, pp. 297–358). Amsterdam: North-Holland.
Yuan, K.-H., & Chan, W. (2008). Structural equation modeling with near singular covariance. Computational Statistics and Data Analysis, 52, 4842–4858.
Yuan, K.-H., & Hayashi, K. (2006). Standard errors in covariance structure models: Asymptotics versus bootstrap. British Journal of Mathematical and Statistical Psychology, 59, 397–417.
Yuan, K.-H., Wu, R., & Bentler, P. M. (2011). Ridge structural equation modelling with correlation matrices for ordinal and continuous data. British Journal of Mathematical and Statistical Psychology, 64, 107–133.
Yuan, K.-H., Marshall, L. L., & Bentler, P. M. (2003). Assessing the effect of model misspecifications on parameter estimates in structural equation models. Sociological Methodology, 33, 241–265.
Yuan, M., & Lin, Y. (2007). Model selection and estimation in the Gaussian graphical model. Biometrika, 94, 19–35.
Zhang, C.-H. (2008). Discussion: One-step sparse estimates in nonconcave penalized likelihood models. Annals of Statistics, 36, 1553–1560.
Zhang, C.-H. (2010). Nearly unbiased variable selection under minimax concave penalty. Annals of Statistics, 38, 894–942.
Zhang, Y.-Y., Li, R.-Z., & Tsai, C.-L. (2010). Regularization parameter selections via generalized information criterion. Journal of the American Statistical Association, 105, 312–323.
Zhao, P., & Yu, B. (2006). On model selection consistency of lasso. Journal of Machine Learning Research, 7, 2541–2563.
Zou, H. (2006). The adaptive Lasso and its oracle properties. Journal of the American Statistical Association, 101, 1418–1429.
Zou, H., Hastie, T., & Tibshirani, R. (2006). Sparse Principal Component Analysis. Journal of Computational and Graphical Statistics, 15, 265–286.
Zou, H., & Li, R.-Z. (2008). Rejoinder: One-step sparse estimates in nonconcave penalized likelihood models. Annals of Statistics, 36, 1561–1566.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57809-
dc.description.abstract結構方程模型(structural equation modeling,簡稱SEM)乃心理學研究常用之多變量統計方法。在SEM的架構下,研究者可根據現有的心理學理論建立假設模型,並檢驗該模型之適切性;然而,當心理學理論發展尚未臻成熟時,SEM亦可能用以探索變項間的可能關係(Joreskog, 1993)。有鑒於實徵研究很可能同時兼具驗証性與探索性成分,以協助研究者對人類行為有更廣泛的了解,故此,本論文試圖提出一針對SEM模型的懲罰概似(penalized likelihood,簡稱PL)方法,以進行兼具驗証性與探索性成分之SEM分析。在此PL方法下,SEM的模型界定由驗証性與探索性兩部分所構成,前者包含了根據理論所推衍出來的變項關係與限制,後者則由一組被懲罰的參數(penalized parameters)所構成。此PL方法可產生稀疏估計值(sparse estimate),得以有效率地了解變項間關係,並控制最終模型的複雜度。為優化所提出的PL估計準則,本論文發展了期望條件最大化(expectation-conditional maximization,簡稱ECM)算則。透過大樣本理論,本研究建立PL於SEM的理論特性,包括PL估計式的局部與總體神諭性質(oracle property),以及赤池(Akaike)訊息指標與貝氏(Bayesian)訊息指標於PL的模型選擇特性。最後,本研究亦以模擬實驗與真實資料範例評估並展示此PL方法的實徵表現與應用價值。zh_TW
dc.description.abstractStructural equation modeling (SEM) is a commonly used multivariate statistical method in psychological studies. The application of SEM involves a confirmatory testing of the models proposed by researchers based on available theories. Yet, in practice, a model generating approach, where modifications of the models are being explored, may well take place (Joreskog, 1993), especially when the development of the substantive theory is still in its infancy. A method for SEM that can embrace the existing theories on one hand and the ambiguous relations that await further exploration on the other will be of great value to advancing scientific theories. In this dissertation, a penalized likelihood (PL) method for SEM is proposed as an attempt to target this goal. Under the proposed PL method, an SEM model is formulated with a confirmatory part and an exploratory part. The confirmatory part contains all the theory-derived relations and constraints. The exploratory part, wherein a set of penalized parameters is specified to represent the ambiguous relations, is data-driven yet with model complexity controlled by the penalty term. Through the sparse estimation of PL, the relationships among variables can be efficiently explored. As the penalty level is chosen appropriately, PL can lead to a SEM model that balances the tradeoff between model goodness-of-fit and model complexity. An expectation-conditional maximization (ECM) algorithm is developed to maximize the PL estimation criterion with several state-of-art penalty functions. Four theorems on the asymptotic behaviors of PL are derived, including the local and global oracle property of PL estimators and the selection consistency of Akaike and Bayesian information criterion. Two simulations are conducted to evaluate the empirical performance of the proposed PL method, and finally the practical utility of PL is demonstrated using two real data examples.en
dc.description.provenanceMade available in DSpace on 2021-06-16T07:04:56Z (GMT). No. of bitstreams: 1
ntu-103-F97227110-1.pdf: 1256997 bytes, checksum: a7898990482c4c42ec44ea8c6df6eacc (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents1. Introduction...................................................................................1
1.1 Background and Motivation..........................................................1
1.2 Structural Equation Modeling.......................................................4
1.3 Penalized Likelihood....................................................................9
1.4 Purpose of the Dissertation........................................................15
2. A Penalized Likelihood Method for Structural Equation Modeling..17
2.1 PL Estimation Criterion...............................................................17
2.2 An Expectation-Conditional Maximization Algorithm.................23
2.3 Properties of the ECM Algorithm................................................27
2.4 Practical Considerations in Implementing PL...............................29
2.5 Real Data Examples....................................................................32
3. Asymptotic Properties of the Penalized Likelihood Method...........37
3.1 Notations and Settings...............................................................37
3.2 Asymptotic Properties of PL Estimators......................................39
3.3 Asymptotics of AIC and BIC........................................................48
4. Numerical Experiments................................................................53
4.1 Overview of the Numerical Experiments.....................................53
4.2 Simulation 1: True Models with Clear Patterns............................55
4.3 Simulation 2: True Models Including Minor Effects.....................67
5. General Discussion.......................................................................73
5.1 Main Results and Contributions..................................................73
5.2 Connecting PL with Related SEM Approaches..............................76
5.3 Limitations and Future Directions...............................................78
References.......................................................................................81
Appendices......................................................................................97
Appendix A. The E-Step of the ECM Algorithm.................................97
Appendix B. The CM-Steps for Regression-Type Coefficients...........97
Appendix C. The CM-Steps for Variances of Exogenous Variables....99
Curriculum Vitae............................................................................101
dc.language.isoen
dc.title結構方程模型之懲罰概似方法與其大樣本性質zh_TW
dc.titleA Penalized Likelihood Method for Structural Equation Modeling and Its Asymptotic Propertiesen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree博士
dc.contributor.oralexamcommittee陳素雲(Su-Yun Huang),黃信誠(Hsin-Cheng Huang),楊志堅(Chih-Chien Yang),鄭中平(Chung-Ping Cheng),蔡蓉青(Rung-Ching Tsai)
dc.subject.keyword結構方程模型,懲罰概似,模型選擇,因素分析模型,MIMIC模型,zh_TW
dc.subject.keywordstructural equation modeling,penalized likelihood,model selection,factor analysis model,MIMIC model,en
dc.relation.page102
dc.rights.note有償授權
dc.date.accepted2014-07-11
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept心理學研究所zh_TW
顯示於系所單位:心理學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
1.23 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved