Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57753
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor何傳愷(Chuan-Kai Ho)
dc.contributor.authorChung-Huey Wuen
dc.contributor.author吳忠慧zh_TW
dc.date.accessioned2021-06-16T07:01:41Z-
dc.date.available2016-07-29
dc.date.copyright2014-07-29
dc.date.issued2014
dc.date.submitted2014-07-15
dc.identifier.citationAljetlawi, A.A., Sparrevik, E. & Leonardsson, K. (2004) Prey–predator size-dependent functional response: derivation and rescaling to the real world. Journal of Animal Ecology, 73, 239-252.
Amano, T. & Sutherland, W.J. (2013) Four barriers to the global understanding of biodiversity conservation: wealth, language, geographical location and security. Proceedings of the Royal Society B: Biological Sciences, 280
Atkinson, D. (1994) Temperature and Organism Size—A Biological Law for Ectotherms? Advances in Ecological Research (ed. by M. Begon and A.H. Fitter), pp. 1-58. Elsevier.
Beckwith, R.C. (1982) Effects of Constant Laboratory Temperatures on the Douglas-Fir Tussock Moth (Lepidoptera: Lymantriidae). Environmental Entomology, 11, 1159-1163.
Beniston, M. (2003) Climatic Change in Mountain Regions: A Review of Possible Impacts. Climate Variability and Change in High Elevation Regions: Past, Present & Future (ed. by H. Diaz), pp. 5-31. Springer Netherlands.
Bergmann, C. (1847) Ueber die verhaltnisse der warmeokono-mie der thiere zu ihrer grosse. Gottinger studien, 595-708.
Betzholtz, P.-E. & Franzen, M. (2011) Mobility is related to species traits in noctuid moths. Ecological Entomology, 36, 369-376.
Blackburn, T.M. & Gaston, K.J. (1994) Animal body size distributions: patterns, mechanisms and implications. Trends in Ecology & Evolution, 9, 471-474.
Bonebrake, T.C. & Deutsch, C.A. (2011) Climate heterogeneity modulates impact of warming on tropical insects. Ecology, 93, 449-455.
Brehm, G. & Fiedler, K. (2004) Bergmann's rule does not apply to geometrid moths along an elevational gradient in an Andean montane rain forest. Global Ecology and Biogeography, 13, 7-14.
Brose, U. (2008) Complex food webs prevent competitive exclusion among producer species. Proceedings of the Royal Society B: Biological Sciences, 275, 2507-2514.
Brose, U., Dunne, J.A., Montoya, J.M., Petchey, O.L., Schneider, F.D. & Jacob, U. (2012) Climate change in size-structured ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 2903-2912.
Brusca, R.C., Wiens, J.F., Meyer, W.M., Eble, J., Franklin, K., Overpeck, J.T. & Moore, W. (2013) Dramatic response to climate change in the Southwest: Robert Whittaker's 1963 Arizona Mountain plant transect revisited. Ecology and Evolution, 3, 3307-3319.
Caruso, N.M., Sears, M.W., Adams, D.C. & Lips, K.R. (2014) Widespread rapid reductions in body size of adult salamanders in response to climate change. Glob Chang Biol, 20, 1751-1759.
Caswell, H. (2005) Food webs : from connectivity to energetics. Elsevier, Amsterdam.
Chen, I.-C., Hill, J.K., Ohlemuller, R., Roy, D.B. & Thomas, C.D. (2011a) Rapid Range Shifts of Species Associated with High Levels of Climate Warming. Science, 333, 1024-1026.
Chen, I.-C., Shiu, H.-J., Benedick, S., Holloway, J.D., Chey, V.K., Barlow, H.S., Hill, J.K. & Thomas, C.D. (2009) Elevation increases in moth assemblages over 42 years on a tropical mountain. Proceedings of the National Academy of Sciences, 106, 1479-1483.
Chen, I.-C., Hill, J.K., Shiu, H.-J., Holloway, J.D., Benedick, S., Chey, V.K., Barlow, H.S. & Thomas, C.D. (2011b) Asymmetric boundary shifts of tropical montane Lepidoptera over four decades of climate warming. Global Ecology and Biogeography, 20, 34-45.
Cohen, J.E., Jonsson, T. & Carpenter, S.R. (2003) Ecological community description using the food web, species abundance, and body size. Proceedings of the National Academy of Sciences, 100, 1781-1786.
Colwell, R.K., Brehm, G., Cardelus, C.L., Gilman, A.C. & Longino, J.T. (2008) Global Warming, Elevational Range Shifts, and Lowland Biotic Attrition in the Wet Tropics. Science, 322, 258-261.
Daufresne, M., Lengfellner, K. & Sommer, U. (2009) Global warming benefits the small in aquatic ecosystems. Proceedings of the National Academy of Sciences, 106, 12788-12793.
Denno, R.F., McClure, M.S. & Ott, J.R. (1995) Interspecific Interactions in Phytophagous Insects: Competition Reexamined and Resurrected. Annual Review of Entomology, 40, 297-331.
Deutsch, C.A., Tewksbury, J.J., Huey, R.B., Sheldon, K.S., Ghalambor, C.K., Haak, D.C. & Martin, P.R. (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences, 105, 6668-6672.
Diaz, H. & Bradley, R. (1997) Temperature Variations During the Last Century at High Elevation Sites. Climatic Change at High Elevation Sites (ed. by H. Diaz, M. Beniston and R. Bradley), pp. 21-47. Springer Netherlands.
DirnbOCk, T., Essl, F. & Rabitsch, W. (2011) Disproportional risk for habitat loss of high-altitude endemic species under climate change. Global Change Biology, 17, 990-996.
Dossena, M., Yvon-Durocher, G., Grey, J., Montoya, J.M., Perkins, D.M., Trimmer, M. & Woodward, G. (2012) Warming alters community size structure and ecosystem functioning. Proceedings of the Royal Society B: Biological Sciences, 279, 3011-3019.
Eastman, L.M., Morelli, T.L., Rowe, K.C., Conroy, C.J. & Moritz, C. (2012) Size increase in high elevation ground squirrels over the last century. Global Change Biology, 18, 1499-1508.
Freeman, B.G. & Class Freeman, A.M. (2014) Rapid upslope shifts in New Guinean birds illustrate strong distributional responses of tropical montane species to global warming. Proceedings of the National Academy of Sciences, 111, 4490-4494.
Gardner, J.L., Peters, A., Kearney, M.R., Joseph, L. & Heinsohn, R. (2011) Declining body size: a third universal response to warming? Trends in Ecology & Evolution, 26, 285-91.
Gotthard, K., Berger, D. & Walters, R. (2007) What keeps insects small? Time limitation during oviposition reduces the fecundity benefit of female size in a butterfly. American Naturalist, 169, 768-779.
Harris, J.B.C., Dwi Putra, D., Gregory, S.D., Brook, B.W., Prawiradilaga, D.M., Sodhi, N.S., Wei, D. & Fordham, D.A. (2014) Rapid deforestation threatens mid-elevational endemic birds but climate change is most important at higher elevations. Diversity and Distributions,
Hassall, C., Keat, S., Thompson, D.J. & Watts, P.C. (2014) Bergmann's rule is maintained during a rapid range expansion in a damselfly. Global Change Biology, 20, 475-482.
Heckmann, L., Drossel, B., Brose, U. & Guill, C. (2012) Interactive effects of body-size structure and adaptive foraging on food-web stability. Ecology Letters, 15, 243-250.
Hildrew, A.G., Raffaelli, D.G. & Edmonds-Brown, R. (2007) Body size: the structure and function of aquatic ecosystems. Cambridge University Press.
Hillebrand, H., Soininen, J. & Snoeijs, P. (2010) Warming leads to higher species turnover in a coastal ecosystem. Global Change Biology, 16, 1181-1193.
Ho, C.K., Pennings, Steven C. & Carefoot, Thomas H. (2010) Is Diet Quality an Overlooked Mechanism for Bergmann’s Rule? American Naturalist, 175, 269-276.
Holloway, J.D. (1970) The biogeographical analysis of a transect sample of the moth fauna of Mt. Kinabalu, Sabah, using numerical methods. Biological Journal of the Linnean Society, 2, 259-286.
James, F.C. (1970) Geographic Size Variation in Birds and Its Relationship to Climate. Ecology, 51, 365-390.
Jochum, M., Schneider, F.D., Crowe, T.P., Brose, U. & O'Gorman, E.J. (2012) Climate-induced changes in bottom-up and top-down processes independently alter a marine ecosystem. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 2962-70.
Jones, G. (1990) Prey Selection by the Greater Horseshoe Bat (Rhinolophus ferrumequinum): Optimal Foraging by Echolocation? Journal of Animal Ecology, 59, 587-602.
Jones, R., Hart, J. & Bull, G. (1982) Temperature, Size and Egg Production in the Cabbage Butterfly, Pieris Rapae L. Australian Journal of Zoology, 30, 223-231.
Kaustuv, R., Jablonski, D. & Valentine, J.W. (2001) Climate change, species range limits and body size in marine bivalves. Ecology Letters, 4, 366-370.
Kelly, A.E. & Goulden, M.L. (2008) Rapid shifts in plant distribution with recent climate change. Proceedings of the National Academy of Sciences, 105, 11823-11826.
Kitayama, K. (1992) An altitudinal transect study of the vegetation on Mount Kinabalu, Borneo. Vegetatio, 102, 149-171.
Kitayama, K. (1995) Biophysical Conditions of the Montane Cloud Forests of Mount Kinabalu, Sabah, Malaysia. Tropical Montane Cloud Forests (ed. by L. Hamilton, J. Juvik and F.N. Scatena), pp. 183-197. Springer US.
Le Roux, P.C. & McGeoch, M.A. (2008) Rapid range expansion and community reorganization in response to warming. Global Change Biology, 14, 2950-2962.
Lenoir, J., Gegout, J.C., Marquet, P.A., de Ruffray, P. & Brisse, H. (2008) A Significant Upward Shift in Plant Species Optimum Elevation During the 20th Century. Science, 320, 1768-1771.
Loder, N., Gaston, K.J., Warren, P.H. & Arnold, H.R. (1998) Body size and feeding specificity: macrolepidoptera in Britain. Biological Journal of the Linnean Society, 63, 121-139.
Lurgi, M., Lopez, B.C. & Montoya, J.M. (2012a) Novel communities from climate change. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 2913-22.
Lurgi, M., Lopez, B.C. & Montoya, J.M. (2012b) Climate change impacts on body size and food web structure on mountain ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 3050-7.
McCauley, S.J. & Mabry, K.E. (2011) Climate change, body size, and phenotype dependent dispersal. Trends in Ecology & Evolution, 26, 554-5; author reply 555-6.
Muthukrishnan, J. & Pandian, T.J. (1983) Effect of temperature on growth and bioenergetics of a tropical moth. Journal of Thermal Biology, 8, 361-367.
Narins, P.M. & Meenderink, S.W.F. (2014) Climate change and frog calls: long-term correlations along a tropical altitudinal gradient. Proceedings of the Royal Society B: Biological Sciences, 281
Nentwig, W. & Wissel, C. (1986) A comparison of prey lengths among spiders. Oecologia, 68, 595-600.
Nieminen, M., Rita, H. & Uuvana, P. (1999) Body size and migration rate in moths. Ecography, 22, 697-707.
Novotny, V. & Basset, Y. (2000) Rare species in communities of tropical insect herbivores: pondering the mystery of singletons. Oikos, 89, 564-572.
Ockendon, N., Baker, D.J., Carr, J.A., White, E.C., Almond, R.E.A., Amano, T., Bertram, E., Bradbury, R.B., Bradley, C., Butchart, S.H.M., Doswald, N., Foden, W., Gill, D.J.C., Green, R.E., Sutherland, W.J., Tanner, E.V.J. & Pearce-Higgins, J.W. (2014) Mechanisms underpinning climatic impacts on natural populations: altered species interactions are more important than direct effects. Global Change Biology, 20, 2221-2229.
Ockinger, E., Schweiger, O., Crist, T.O., Debinski, D.M., Krauss, J., Kuussaari, M., Petersen, J.D., Poyry, J., Settele, J., Summerville, K.S. & Bommarco, R. (2010) Life-history traits predict species responses to habitat area and isolation: a cross-continental synthesis. Ecology Letters, 13, 969-979.
Ohlberger, J. (2013) Climate warming and ectotherm body size – from individual physiology to community ecology. Functional Ecology, 27, 991-1001.
Otto, S.B., Rall, B.C. & Brose, U. (2007) Allometric degree distributions facilitate food-web stability. Nature, 450, 1226-1229.
Ozgul, A., Childs, D.Z., Oli, M.K., Armitage, K.B., Blumstein, D.T., Olson, L.E., Tuljapurkar, S. & Coulson, T. (2010) Coupled dynamics of body mass and population growth in response to environmental change. Nature, 466, 482-485.
Pagel, M.D., Harvey, P.H. & Godfray, H. (1991) Species-abundance, biomass, and resource-use distributions. American Naturalist, 138, 836-850.
Parmesan, C. (2006a) Ecological and Evolutionary Responses to Recent Climate Change. Annual Review of Ecology, Evolution, and Systematics, 37, 637-669.
Parmesan, C. (2006b) Ecological and evolutionary responses to recent climate change. Annual Review of Ecology Evolution and Systematics, 37, 637-669.
Parmesan, C. & Yohe, G. (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 37-42.
Parmesan, C., Ryrholm, N., Stefanescu, C., Hill, J.K., Thomas, C.D., Descimon, H., Huntley, B., Kaila, L., Kullberg, J., Tammaru, T., Tennent, W.J., Thomas, J.A. & Warren, M. (1999) Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature, 399, 579-583.
Pepin, N.C. & Lundquist, J.D. (2008) Temperature trends at high elevations: Patterns across the globe. Geophysical Research Letters, 35, L14701.
Perry, A.L., Low, P.J., Ellis, J.R. & Reynolds, J.D. (2005) Climate Change and Distribution Shifts in Marine Fishes. Science, 308, 1912-1915.
Petchey, O.L., Beckerman, A.P., Riede, J.O. & Warren, P.H. (2008) Size, foraging, and food web structure. Proceedings of the National Academy of Sciences, 105, 4191-4196.
Pounds, J.A., Fogden, M.P.L. & Campbell, J.H. (1999) Biological response to climate change on a tropical mountain. Nature, 398, 611-615.
Poykko, H. (2006) Females and Larvae of a Geometrid Moth, Cleorodes lichenaria, Prefer a Lichen Host That Assures Shortest Larval Period. Environmental Entomology, 35, 1669-1676.
POYry, J., Luoto, M., Heikkinen, R.K., Kuussaari, M. & Saarinen, K. (2009) Species traits explain recent range shifts of Finnish butterflies. Global Change Biology, 15, 732-743.
Reuman, D.C., Holt, R.D. & Yvon-Durocher, G. (2014) A metabolic perspective on competition and body size reductions with warming. Journal of Animal Ecology, 83, 59-69.
Riede, J.O., Binzer, A., Brose, U., de Castro, F., Curtsdotter, A., Rall, B.C. & Eklof, A. (2011) Size-based food web characteristics govern the response to species extinctions. Basic and Applied Ecology, 12, 581-589.
Sagarin, R.D., Gaines, S.D. & Gaylord, B. (2006) Moving beyond assumptions to understand abundance distributions across the ranges of species. Trends in Ecology & Evolution, 21, 524-530.
Sheridan, J.A. & Bickford, D. (2011) Shrinking body size as an ecological response to climate change. Nature Climate Change, 1, 401-406.
Shirai, Y. (1995) Longevity, flight ability and reproductive performance of the diamondback moth, Plutella xylostella (L.)(Lepidoptera: Yponomeutidae), related to adult body size. Researches on population ecology, 37, 269-277.
Shurin, J.B., Clasen, J.L., Greig, H.S., Kratina, P. & Thompson, P.L. (2012) Warming shifts top-down and bottom-up control of pond food web structure and function. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 3008-17.
Sibly, R. & Atkinson, D. (1994) How rearing temperature affects optimal adult size in ectotherms. Functional Ecology, 8, 486-493.
Sommer, U. & Lengfellner, K. (2008) Climate change and the timing, magnitude, and composition of the phytoplankton spring bloom. Global Change Biology, 14, 1199-1208.
Stouffer, D.B., Rezende, E.L. & Amaral, L.A.N. (2011) The role of body mass in diet contiguity and food-web structure. Journal of Animal Ecology, 80, 632-639.
Sullivan, J.B. & Miller, W.E. (2007) Intraspecific body size variation in macrolepidoptera as related to altitude of capture site and seasonal generation. Journal of the Lepidopterists Society, 61, 72-77.
Sunday, J.M., Bates, A.E. & Dulvy, N.K. (2011) Global analysis of thermal tolerance and latitude in ectotherms. Proceedings of the Royal Society B: Biological Sciences, 278, 1823-1830.
Sunday, J.M., Bates, A.E. & Dulvy, N.K. (2012) Thermal tolerance and the global redistribution of animals. Nature Climate Change, 2, 686-690.
Tammaru, T. (1998) Determination of adult size in a folivorous moth: constraints at instar level? Ecological Entomology, 23, 80-89.
Tammaru, T., RuohomAKi, K.A.I. & Saikkonen, K. (1996a) Components of male fitness in relation to body size in Epirrita autumnata (Lepidoptera, Geometridae). Ecological Entomology, 21, 185-192.
Tammaru, T., Kaitaniemi, P. & Ruohomaki, K. (1996b) Realized fecundity in Epirrita autumnata (Lepidoptera: Geometridae): relation to body size and consequences to population dynamics. Oikos, 77, 407-416.
Vindenes, Y., Edeline, E., Ohlberger, J., Langangen, O., Winfield, I.J., Stenseth, N.C. & Vollestad, L.A. (2014) Effects of climate change on trait-based dynamics of a top predator in freshwater ecosystems. American Naturalist, 183, 243-56.
Vuille, M. & Bradley, R.S. (2000) Mean annual temperature trends and their vertical structure in the tropical Andes. Geophysical Research Letters, 27, 3885-3888.
Wilson, R.J., Gutierrez, D., Gutierrez, J., Martinez, D., Agudo, R. & Monserrat, V.J. (2005) Changes to the elevational limits and extent of species ranges associated with climate change. Ecology Letters, 8, 1138-1146.
Woodward, G., Ebenman, B., Emmerson, M., Montoya, J.M., Olesen, J.M., Valido, A. & Warren, P.H. (2005) Body size in ecological networks. Trends in Ecology & Evolution, 20, 402-409.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57753-
dc.description.abstract生態群聚中物種或個體的體型分布,又稱群聚體型結構(community body size structure),是影響群聚食物網結構、動態、和穩定性的重要因子。群聚體型結構可能受到氣候暖化的影響,例如暖化可引起物種種內體型大小的變化(intraspecific body size change)以及物種分布範圍和物種組成的改變(range-shift-induced composition change),進而改變原有的群聚體型結構。然而,我們對這些機制如何共同影響群聚體型結構所知甚少。本研究以馬來西亞婆羅洲神山(Mt. Kinabalu)的尺蛾(Geometrid moth)群聚作為研究系統(共396物種,海拔範圍1,450-3,675 m a.s.l.),探究在四十二年(1965-2007)的區域性暖化下 (1) 尺蛾群聚體型結構(以物種間平均體型為指標)是否有改變、(2) 尺蛾物種的種內體型大小是否有變化、(3) 海拔分布範圍的變遷是否造成各海拔物種組成的改變、(4) 前兩者對於群聚體型結構是否造成影響,兩機制間孰強孰弱。結果顯示,在四十二年的暖化下,高海拔的尺蛾群聚體型結構有小型化的現象,造成此現象的原因並非是暖化改變了尺蛾的種內體型大小,而是暖化改變了物種的海拔分布範圍,進而改變了群聚的物種組成與體型結構。在高海拔區域,物種分布的變遷造成群聚平均體型下降,代表小物種/個體在群聚中所佔的比例顯著上升,這主要是由於往高海拔遷徙的物種(平均體型較小)在高海拔地點數量增加、以及往低海拔遷徙的物種(平均體型較大)在高海拔地點數量減少所造成。上述發現有助於進一步瞭解熱帶高山生物群聚在氣候變遷下的整體反應,同時也警示了氣候暖化對於生物體型的衝擊可能展現在不同的生態層級,即使暖化在物種層級的影響尚未顯著,仍可以在同樣的時間尺度下對群聚層級造成顯著的影響。zh_TW
dc.description.abstractCommunity body size structure (e.g. the distribution or average of body size of different species) is fundamental in determining food web structure, dynamics and stability. This size structure across environmental gradients (e.g. altitude) can be affected by climate warming, because warming has reportedly led to changes in intraspecific body size or species range (affecting species composition), consequently shaping community body size structure. However, few studies examined both mechanisms together, and therefore little is known about whether and how intraspecific body size change and species range shift will collectively affect community body size structure under warming. We collected Geometrid moths in the year of 1965 and 2007 from Mt. Kinabalu (396 species from 1,450 to 3,675 m a.s.l.), which had experienced a 0.7oC warming during these 42 years. This study investigated 1) whether community body size structure (i.e. average interspecific body size) of Geometrid moths across altitude had shifted over the 42 years of warming, 2) whether intraspecific body size had changed under this warming, 3) whether species range shift had occurred, consequently changing species composition, and 4) what is the relative contribution of the two mechanisms above (intraspecific body size change and species range shift) to changes in community body size structure, if any. The results showed that species range shift, instead of intraspecific body size change, significantly contributed to the detected change in community body size structure. In specific, species range shift changed local species composition and reduced both average species body size and average individual body size at high altitude, based on either non-abundance-weighted or abundance-weighted analyses. This altitude-dependent pattern was driven mainly by an increase in the number and population size of upward-shifting species (relatively small body size) and a decrease in the population size of downward-shifting species (relatively large body size). This study is among the first ones to show that species range shift may precede intraspecific body size change in terms of shaping community body size structure under climate warming. In other words, this study provides a warning that we may not observe significant warming impact at lower ecological level (e.g. species-level body size), but warming may have caused significant impact at higher level (e.g. community level) during the same time period (e.g. 42 years in this study).en
dc.description.provenanceMade available in DSpace on 2021-06-16T07:01:41Z (GMT). No. of bitstreams: 1
ntu-103-R01b44011-1.pdf: 4674496 bytes, checksum: b3bbb6367a520149ece535fb84c3832d (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員審定書 i
謝誌 ii
摘要 iii
Abstract iv
Introduction 1
Materials and Methods 11
(A) Altitudinal transact on Mt. Kinabalu 12
(B) Measuring specimens and calculating species body size 13
(C) Random subsampling of catch records 15
(D) Data Analysis, nested in each of the 500 subsamplings 16
(1) Determining species range shift 16
(2) Shifts in community body size structure and average body size 17
(3) Intraspecific body size change (Mechanism 1) 18
(4) Range-shift-induced species composition change (Mechanism 2) 19
(5) Relative contributions (intraspecific body size change vs. range-shift-induced species composition change) to shifts in community body size structure 22
Results 23
Shifts in community body size structure 24
Intraspecific body size change (Mechanism 1) 25
Range-shift-induced species composition change (Mechanism 2) 25
Body size differences among composition change groups 26
Relative contributions (intraspecific body size change vs. range-shift-induced species composition change) to shifts in community body size structure 27
Discussion 29
References 38
Tables 46
Figures 51
Appendix 61
dc.language.isoen
dc.subject群聚體型結構zh_TW
dc.subject分布範圍變遷zh_TW
dc.subject海拔zh_TW
dc.subject尺蛾zh_TW
dc.subject體型zh_TW
dc.subject氣候變遷zh_TW
dc.subjectGeometrid mothen
dc.subjectcommunity body size structureen
dc.subjectbody sizeen
dc.subjectrange shiften
dc.subjectaltitudeen
dc.subjectclimate changeen
dc.title暖化下物種海拔分布變遷與物種內體型變化對尺蛾群聚體型結構的影響zh_TW
dc.titleAltitudinal range shift outpaced intraspecific body size change in shaping community body size structure of Geometrid moths over 42 years of warmingen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳一菁(I-Ching Chen),謝志豪(Chih-hao Hsieh),林雨德(Yu-Teh Lin)
dc.subject.keyword氣候變遷,群聚體型結構,體型,分布範圍變遷,海拔,尺蛾,zh_TW
dc.subject.keywordclimate change,community body size structure,body size,range shift,altitude,Geometrid moth,en
dc.relation.page71
dc.rights.note有償授權
dc.date.accepted2014-07-15
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生態學與演化生物學研究所zh_TW
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
4.56 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved