請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57697
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林招松 | |
dc.contributor.author | Ko-Chun Lin | en |
dc.contributor.author | 林克駿 | zh_TW |
dc.date.accessioned | 2021-06-16T06:58:35Z | - |
dc.date.available | 2019-07-29 | |
dc.date.copyright | 2014-07-29 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-07-17 | |
dc.identifier.citation | 1. B. Mintz, Hot dip galvanising of transformation induced plasticity and other intercritically annealed steels. International Materials Reviews, 2001. 46: p. 169-197.
2. A.R. Marder, The metallurgy of zinc-coated steel. Progress in Materials Science, 2000. 45(3): p. 191-271. 3. L.G. Garza and C.J. Van Tyne, The effect of ζ -phase on the Frictional Behavior of galvannealed interstitial free sheet steels, in Galvatech'07, 2007. p. 248-253. 4. K. Matsumura, N. Fujita, and T. Nonaka, Development of Ultra-high strenght Galvannealed steel sheets with tensile strength of 980 MPa, in Galvatech'07 2007. p. 392-395. 5. T. Takasugi and J. Machida, Plastic Deformation and Fracture Behavior of Galvannealed Coating under Compressive Stress Circumstance, in Galvatech'07 2007. p. 230-235. 6. J.M. Mataign, Key Mechanisms in Galvanization of Steel Sheets, in Galvatech'07 2007. p. 333-338. 7. Y. Nunomura and T. Takasugi, Plastic deformation and fracture behavior of galvannealed coating, Isij International, 2003. 43(3): p. 454-460. 8. T. Nakamori, Y. Adachi, M. Arai, and A. Shibuya, Coating adhesion and interface structure of galvannealed steel. Isij International, 1995. 35(12): p. 1494-1501. 9. H. Bablik, F. Gotzl, and R. Kukaczka, The Causes of the Retarding Effect of Aluminum in Galvanizing Baths. Werkstoffe Korrosion, 1951. 2: p. 163-165. 10. M. Urednieck and J.S. Kirkaldy, Z. Metallkd., 1973. 64: p. 899–910. 11. I. Hertveldt, S. Claessens, and B.C. De Cooman, Hot dip galvanising and galvannealing of P and Mn strengthened TiNb IF steels. Materials Science and Technology, 2001. 17: p. 1508-1515. 12. I. Hertveldt, S. Claessens and B.C. De Cooman, Galvanising and galvannealing behaviour of B added TiNb IF high strength steel. Materials Science and Technology, 2001. 17: p. 1500-1507. 13. E.M. Bellhouse, A.I.M. Mertens, and J.R. McDermid, Development of the surface structure of TRIP steels prior to hot-dip galvanizing. Materials Science and Engineering a, 2007. 463(1-2): p. 147-156. 14. M. Blumenau, A. Barnoush, I. Thomas, H. Hofmann, and H. Vehoff, Impact of selective oxidation during inline annealing prior to hot-dip galvanizing on Zn wetting and hydrogen-induced delayed cracking of austenitic FeMnC steel. Surface and Coatings Technology, 2011. 206(2-3): p. 542-552. 15. P. Drillet, Z. Zermout, D. Bouleau, and J. M. Mataigne, Selective oxidation of IF Ti stabilized steels during recrystallization annealing, and steel/Zn reactivity. 5th Int. Conf. on Zinc and Zinc Alloy Coated Steel Sheet, Belgium,, 2001: p. 195. 16. J. Mahieu, B.C. De Cooman, J. Maki, and S. Claessens, Hot-dip galvanizing of Al alloyed TRIP steels. Iron Steelmaker, 2002. 29: p. 29-37. 17. K.K. Wang, C.W. Hsu, L. Chang, D. Gan, and K.C. Yang, Role of Al in Zn bath on the formation of the inhibition layer during hot-dip galvanizing for a 1.2 Si–1.5 Mn transformation-induced plasticity steel. Applied Surface Science, 2013. 285: p. 458-468. 18. J. Foct, G. Reumont, G. Dupont, and P. Perrot, How does silicon lead the kinetics of the galvanizing reaction to lose its solid-solid character. Journal of Physics IV France, 1993. 3: p. C961-C966. 19. R.W. Sandelin, Galvanizing Characteristics of Different Types of Steels. Wire and Wire Products, 1940. 15: p. 655. 20. J. Foct, P. Perrot, and G. Reumont, Interpretation of the Role of Silicon on the Galvanizing Reaction Based on Kinetics, Morphology and Thermodynamics. Scripta Metallurgica Et Materialia, 1993. 28(10): p. 1195-1200. 21. M.S. Kozdras and P. Niessen, Silicon-Induced Destabilization of Galvanized Coatings in the Sandelin Peak Region. Metallography, 1989. 22(3): p. 253-267. 22. H. Karbasian and A.E. Tekkaya, A review on hot stamping. Journal of Materials Processing Technology, 2010. 210(15): p. 2103-2118. 23. P.F. Bariani, S. Bruschi, A. Ghiotti, and A. Turetta, Testing formability in the hot stamping of HSS. Cirp Annals-Manufacturing Technology, 2008. 57(1): p. 265-268. 24. D.W. Fan,R.B. Park, Y.R. Cho, and B.C. De Cooman, Influence of Isothermal Deformation Conditions on The Mechanical Properties of 22MnB5 HPF Steel. Steel Research International, 2010. 81(4): p. 292-298. 25. C.W. Lee, D.W. Fan, S.J. Leem Il R. Sohn, and B.C. De Cooman, Liquid-Metal-Induced Embrittlement of Zn-Coated Hot Stamping Steel. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2012. 43A(13): p. 5122-5127. 26. A. Merklein and J. Lechler, Investigation of the thermo-mechanical properties of hot stamping steels. Journal of Materials Processing Technology, 2006. 177(1-3): p. 452-455. 27. D.W. Fan, H.S. Kim, J.K. Oh,K.G. Chin, and B.C. De Cooman, Coating Degradation in Hot Press Forming. Isij International, 2010. 50(4): p. 561-568. 28. F. Jenner, M.E. Walter, R.M. Iyengar, and R. Hughes, Evolution of Phases, Microstructure, and Surface Roughness during Heat Treatment of Aluminized Low Carbon Steel. Metallurgical and Materials Transactions a, 2010. 41A(6): p. 1554-1563. 29. J. Kondratiuk, P. Kuhn, E. Labrenz, and C. Bischoff, Zinc coatings for hot sheet metal forming: Comparison of phase evolution and microstructure during heat treatment. Surface & Coatings Technology, 2011. 205(17-18): p. 4141-4153. 30. D.W. Fan and B.C. De Cooman, State-of-the-Knowledge on Coating Systems for Hot Stamped Parts. Steel Research International, 2012. 83(5): p. 412-433. 31. R. Autengruber, G. Luckeneder, S. Kolnberger, J. Faderl, and A. W. Hassel, Surface and Coating Analysis of Press-Hardened Hot-Dip Galvanized Steel Sheet. Steel Research International, 2012. 83(11): p. 1005-1011. 32. R. Khondker, A. Mertens, and J.R. McDermid, Effect of annealing atmosphere on the galvanizing behavior of a dual-phase steel. Materials Science and Engineering A, 2007. 463(1-2): p. 157-165. 33. Y.F. Gong, H.S. Kim, and B.C. De Cooman, Formation of Surface and Subsurface Oxides during Ferritic, Intercritical and Austenitic Annealing of CMnSi TRIP Steel. Isij International, 2008. 48(12): p. 1745-1751. 34. L. Huachu, H. Yanlin, S. Srinivasan, R. Michael, and L. Lin, Effect of dew point on the surface selective oxidation and subsurface microstructure of TRIP-aided steel. Surface & Coatings Technology, 2011. 206: p. 1237-1243. 35. V.F.C. Lins, L. Madeira, J.M.C. Vilela, M.S. Andrade, V.T.L. Buono, J. P. Guimaraes, and E.A. Alvarenga, Selective oxidation of dual phase steel after annealing at different dew points. Applied Surface Science, 2011. 257: p. 5871-5878. 36. N.Y. Tang, Silicon in Galvanizing. in Galvatech '04: 6th International Conference on Zinc and Zinc Alloy Coated Steel. 2004. 37. J. Maki, J. Mahieu, B. C. De Cooman, and S. Claessens, Galvanisability of silicon free CMnAl TRIP steels. Materials Science and Technology, 2003. 19: p. 125-131. 38. L. Jintang, C. Chunshan, K. Gang, X. Qiaoyu, and C. Jinhong, Influence of silicon on the a-Fe/G interface of hot-dip galvanized steels. surface & Coatings Technology, 2006. 200: p. 5277-5281. 39. C.W. Lee, D.W. Fan, S.J. Leem Il R. Sohn, and B.C. De Cooman, Galvanized caoting evolution during hot stamping. in Galvantexh '11: 8th International Conference on Zinc and Zinc Alloy Coated Steel, 2011. 40. C. Beal, X. Kleber, D. Fabregue, and M. Bouzekri, Liquid zinc embrittlement of a high-manganese-content TWIP steel. Philosophical Magazine Letters, 2011. 91(4): p. 297-303. 41. R.W. Richards, R.D. Jones, P.D. Clements, and H. Clarke, Metallurgy of Continuous Hot-Dip Aluminizing. International Materials Reviews, 1994. 39(5): p. 191-212. 42. P. Drillet, R. Grigorieva, and G. Leuiller, Study of cracks propagation inside the steel on press hardened steel zinc based coatings. in Galvatech '11: 8th International Conference on Zinc and Zinc Alloy Coated Steel, 2011. 43. WorldAutoSteel, Advanced high strength steel (AHSS) application guidelines, 2009. 44. D.J. Schaeffler, Introduction to advanced high-strength steels. 2005. 45. J.V. Rensselar, The riddle of steel: A-UHSS, 2011: Tribology & Lubrication technology. p. 38-46. 46. M. Rashid, Dual phase steels. Annual Review of Materials Science, 1981. 11(1): p. 245-266. 47. V. Raghavan, Fe-Zn (Iron-Zinc). Journal of Phase Equilibria, 2003. 24: p. 544-545. 48. P.J. Brown, The structure of the -phase in the transition metal-zinc alloy systems. Acta Crystallographica, 1962. 15: p. 608-612 49. T. Massalski, Phase Diagrams. ASM Metals Handbook, 1992. 3: p. 206. 50. J. Mackowiak and N.R. Short, Metallurgy of galvanized coatings. International Metals Reviews, 1979. 24: p. 1-19. 51. P.J. Gellings, E.W.D. Bree, and G. Gierman, Synthesis and Characterization of Homogeneous Intermetallic Fe-Zn Compounds. Zeitschrift fur Metallkunde, 1979. 70: p. 312. 52. C.E. Jordan and A.R. Marder, Fe-Zn phase formation in interstitial-free steels hot-dip galvanized at 450°C: Part I 0.00 wt% Al-Zn baths. Journal of Materials Science, 1997. 32(21): p. 5593-5602. 53. V. Rangarajan, N. M. Giallourakis, D. K. Matlock, and G. Krauss, The effect of texture and microstructure on deformation of zinc coatings. Journal of Materials Shaping Technology, 1988. 6(4): p. 2170227. 54. D. Horstmann, Formation and Growth of Iron--Zinc Alloy Layers. Proceedings of 14th International Hot Dip Galvanization Conference, 1985. 55. L. Allegra, R. G. Hart, and H. E. Townsend, Intergranular Zinc Embrittlement and Its Inhibition by Phosphorus in 55 Pct AI-Zn-Coated Sheet Steel Metallurgical Transactions A, 1983. 14: p. 401-411.orus in 55 Pct AI-Zn-Coated Sheet Steel Metallurgical Transactions A, 1983. 14: p. 401-411. 56. J.M. Mataigne, Key Mechanisms in Galvanization of Steel Sheets. Revue de Metallurgie, 2009. 106: p. 27-33. 57. D.S. Han, J.H. Ahn, M.H. Hong, and H.W. Lee, Effect of Phosphate Amount and δ1/ζ Phase Ratio on Formability of GA Sheets for Automotive Outer Panels. Galvatech’07, 2007(266-270). 58. C.E. Jordan, K.M. Goggins, A.O. Benscoter, and A.R. Marder, Metallographic preparation technique for hot-dip galvanized and galvannealed coatings on steel. Materials Characterization, 1993. 31: p. 107–114. 59. J.R. Kilpatrick, A New Etching Technique for Galvanneal and Hot-Dipped Galvanized Coatings. Praktische Metallographie, 1991. 28: p. 649-658. 60. C.S. Lin, M. Mehii, and C.C. Cheng, Phase Evolution in Galvanneal Coatings on Steel Sheets. ISIJ International, 1995. 35: p. 503-511.K 61. .C. Lin, P.W. Chu, C.S. Lin, and H.B. Chen, Galvanizing and Galvannealing Behavior of CMnSiCr Dual-Phase Steels. Metallurgical and Materials Transactions A, 2013. 44A: p. 2690-2698. 62. X.G. Zhang and I.C. Bravo, Electrochemical Stripping of Galvannealed Coatings on Steel. Corrosion Science, 1994. 50: p. 308-317. 63. C. Xhoffer, H. Dillen, B. C. De Cooman, and A. Hubin, Quantitative phase analysis of galvannealed coatings by coulometric stripping. Journal of Applied Electrochemistry, 1999. 29(2): p. 209-219. 64. F.M. Queiroz and I. Costa, Electrochemical, chemical and morphological characterization of galvannealed steel coating. Surface & Coatings Technology, 2007. 201(16-17): p. 7024-7035. 65. A. Besseyrias, F. Dalard, J.J. Rameau, and H. Baudin, A Study of Galvanic Corrosion during Coulometric Dissolution of Galvannealed Steel. Corrosion Science, 1995. 37(4): p. 587-595. 66. A. Besseyrias, F. Dalard, J.J. Rameau, and H. Baudin, Electrochemical behaviour of zinc-iron intermetallic compounds in an aqueous solution containing nacl and ZnSO4. Corrosion Science, 1997. 39: p. 1883-1896. 67. D.C. Cook and R.G. Grant, Identification of multiple iron sites in Fe-Zn binary alloys. Galvatech '95, 1995: p. 497-508. 68. H. Park and C.S. Lee, Quantitative elemental analysis of FeZn-alloy coating by nondestructive method. X-Ray Spectrometry, 2008. 37: p. 561-564. 69. J. Angeli, J. Faderl, and J. Gerdenitsch, Identification of Zn-iron phases of galvannealed steel sheets. TMS, The Physical Metallurgy of Zinc Coated Steel, 1993: p. 221-241. 70. P. Angermayer, M. Mayr, J. Angeli, and J. Faderl, Identification of Zn-Fe phases on galvannealed steel sheets by low incident angle X-ray diffraction in combination with electrochemical preparation. Zeitschrift fur Metallkunde, 1993. 84(10): p. 716-720. 71. M.H. Hong and H. Saka, FIB and TEM observations of defects in hot-dip zinc coatings. Journal of Electron Microscopy, 2004. 53(5): p. 545-552. 72. T. Kato, M.H. Hong, K. Nunome, K. Sasaki, K. Kuroda, and H. Saka, Cross-sectional TEM observation of multilayer structure of a galvannealed steel. Thin Solid Films, 1995. 35(5): p. 494-502. 73. T. Kato, K. Nunome, K. Kaneko, and H. Saka, Formation of the ζ phase at an interface between an Fe substrate and a molten 0.2 mass% Al–Zn during galvannealing. Acta Materialia, 2000. 48(9): p. 2257-2262. 74. G. L'Esperance, J.D. L'Ecuyer, A. Simard, M.P. Barreto, and G. Botton, Analytical Transmission Electron Microscopy of Galvanneal Coatings. GALVATECH '92, 1992: p. 442-448. 75. C.S. Lin, M. Meshii, and C.C. Cheng, Microstructural characterization of galvanneal coatings by transmission electron microscopy. ISIJ international, 1995. 35(5): p. 494-502. 76. S. Dionne, The characterization of continuous hot-dip galvanized and galvannealed steels. JOM of TMS, 2006. 58(3): p. 32-40. 77. M.H. Hong, Characterization of surface defects in high strength galvannealed steels. Praktische Metallographie-Practical Metallography, 2004. 41(3): p. 111-125. 78. M.H. Hong and H. Saka, FIB and TEM observations of defects in hot-dip zinc coatings. Journal of electron microscopy, 2004. 53(5): p. 545-552. 79. M. Hong, Correlation between the microstructure of galvannealed coatings and the defoliation during press forming. ISIJ international, 2005. 45(6): p. 896-902. 80. C.S. Lin, Microstructure and mechanical properties of galvanneal coatings on steel sheets. Ph.D Thesis, Northwestern University, 1994. 81. T. Nakamori, Y. Adachi, T. Toki, and A. Shibuya, Effect of microstructure of base steel on Fe-Zn alloy growth during galvanizing of an interstitial free steel. Isij International, 1996. 36(2): p. 179-186. 82. C.E. Jordan, R. Zuhr, and A.R. Marder, Effect of phosphorous surface segregation on iron-zinc reaction kinetics during hot-dip galvanizing. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 1997. 28(12): p. 2695-2703. 83. S. Feliu Jr. and M.L. Perez-Revenga, Effect of alloying elements (Ti, Nb, Mn and P) and the water vapour content in the annealing atmosphere on the surface composition of interstitial-free steels at the galvanising temperature. Applied Surface Science, 2004. 229: p. 112-123. 84. C.S. Lin and M. Meshii, The Effect of Steel Chemistry on the Formation of Fe-Zn Intermetallic Compounds of GalvanneaI-Coated Steel Sheets. Metall. Mater. Trans. B, 1994. 25: p. 721-730. 85. Y. Hisamatsu, Science and technology of zinc and zinc alloy coated steel sheet. GALVATECH ’89. Tokyo, 1989: p. 3. 86. C.S. Lin and W. Chiou, Effect of Phosphorus Content in Base-Steel on the Formation of Alloy Layer of Hot-Dip Coated Steel Sheets. The Physical Metallurgy of Zinc Coated Steel, 1994: p. 31. 87. A.D. Mah and B.J. Boyle, Heats of Formation of Niobium Carbide and Zirconium Carbide from Combustion Calorimetry. Journal of the American Chemical Society, 1955. 77(24): p. 6512-6513. 88. A. Kelly, High Strength Materials. Contemporary Physics, 1967. 8(4): p. 313-329. 89. T. Toki, K. Oshima, T. Nakamori, Y. Saito, T. Tsuda, and Y. Hobo, Effect of P content in ultralow carbon Ti stabilized steel on the rate of Fe–Zn alloy formation through ferritic grain boundary diffusion during hot-dip galvanizing. The physical metallurgy of zinc coated steel, 1994: p. 169. 90. I. Hertveldt, B. C. De Cooman, and S. Claessens, Influence of annealing conditions on the galvanizability and galvannealing properties of TiNb interstitial-free steels, strengthened with phosphorous and manganese. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2000. 31(4): p. 1225-1232. 91. N.Y. Tang, Control of silicon reactivity in general galvanizing. Journal of Phase Equilibria and Diffusion, 2008. 29(4): p. 337-344. 92. J.Y. Dauphin, P. Perrot, and U.G. Tchissambot, Thermodynamic Description of the Iron-Zinc System. Memoires Et Etudes Scientifiques De La Revue De Metallurgie, 1987. 84(6): p. 329-336. 93. P. Perrot, J.C. Tissier, and J.Y. Dauphin, Stable and metastable equilibria in the Fe-Zn-Al system at 450° C. Zeitschrift fur Metallkunde, 1992. 83(11): p. 786. 94. M. Guttmann, Diffusion phase transformations in hot dip galvanizing. Materials Science Forum, 1994. 155-156: p. 527-548. 95. A.R.P. Ghuman and J.I. Goldstein, Reaction Mechanisms for the Coatings Formed During the Hot Dipping of Iron in 0 to 10 Pct Al-Zn Baths at 450° to 700°C. Metall. Trans. A, 1971. 2: p. 2903-2914. 96. W. Koster and T. Godecke, Z. Metallkd., 1970. 61: p. 649-658. 97. N.Y. Tang, 450C Isotherm of Zn-Fe-AI Phase Diagram Update. Journal of Phase Equilibria, 1996. 17(5): p. 396-398. 98. D. Horstmann, Die Hemmwirkung von Aluminium in Feuerverzinkungsbadern auf die Bildung der Eisen-Zink-Legierungsschichten Arch. Eisenhuttenwes, 1956. 27: p. 297-302. 99. A.R. Borzillo and W.C.J.R Hahn, Growth of the inhibiting aluminum-rich alloy layer on mild steel during galvanizing in zinc that contains aluminum. ASM TRANS QUART, 1969. 62: p. 899-910. 100. M. Udernicek and J.S. Kirkaldy, Mechanism of iron attack inhibition arising from additions of aluminum to liquid Zn (Fe) during galvanizing. Zeitschrift fur Metallkunde, 1987. 64: p. 649. 101. A. Nishmoto, J. Inagaki, and T. Kittaka, Effect of surface microstructure and chemical composition of steels on formation of Fe-Zn compounds during continuous galvanizing. Trans. ISIJ, 1986. 26: p. 807. 102. M. Abe and S. Kanbara, Effect of Ti Content in Steel and Al Content in Zn Bath on Iron-Zine Reactivity during Hot Dip Galvanizing. Tetsu-to-Hagang, 1983. 69: p. S1061. 103. T. Prosek,A. Nazarov, U. Bexell, D. Thierry, and J. Serak, Corrosion properties of model zinc-magnesium alloys. in GALVATECH 2007. 2007. 104. T. Prosek, A. Nazarov, U. Bexell, D. Thierry, and J. Serak, Corrosion mechanism of model zinc–magnesium alloys in atmospheric conditions. Corrosion Science, 2008. 50(8): p. 2216-2231. 105. K. Nishimura, K. Kato, and H. Shindo, Highly corrosion-resistant Zn-Mg Alloy galvanized steel sheet for building construction materials. Nippon Steel Technical Report, 2000. 81(0). 106. H. Shindo, T. Okada, K. Asai, K. Nishimura, and N. Nishimura, Developments and Properties of Zn-Mg Galvanized Steel Sheet DYMAZING Having Excellent Corrosion Resistance. Nippon steel technical report. Overseas, 1999(79): p. 63-67. 107. R. Lindstrom, J.E. Svensson, and L.G. Johansson, The influence of salt deposits on the atmospheric corrosion of zinc. The important role of the sodium ion. Journal of The Electrochemical Society, 2002. 149(2): p. B57-B64. 108. J. Strutzenberger and J. Faderl, Solidification and spangle formation of hot-dip-galvanized zinc coatings. Metallurgical and Materials Transactions A, 1998. 29(2): p. 631-646. 109. G. Vourlias, N. Pistofidis, G. Stergioudis, and D. Tsipas, The effect of alloying elements on the crystallization behaviour and on the properties of galvanized coatings. Crystal Research and Technology, 2004. 39(1): p. 23-29. 110. N. Katiforis and G. Papadimitriou, Influence of copper, cadmium and tin additions in the galvanizing bath on the structure, thickness and cracking behaviour of the galvanized coatings. Surface and Coatings Technology, 1996. 78(1): p. 185-195. 111. Y.F. Gong, H.S. Kim, and B.C. De Cooman, Internal Oxidation during Intercritical Annealing of CMnSi TRIP Steel. ISIJ International, 2009. 49(4): p. 557-563. 112. M. Nomura, H. Morimoto, and M. Toyama, Calculation of ferrite decarburizing depth, considering chemical composition of steel and heating condition. Isij International, 2000. 40(6): p. 619-623. 113. M. Suehiro, J. Maki, K. Kusumi, M. Ohgami, and T. Miyakoshi, Properties of Aluminum-coated Steels for Hot-forming. Nippon steel technical report, 2003: p. 16-21. 114. W.J. Cheng, Y.Y. Chang, and C.J. Wang, Observation of high-temperature phase transformation in the aluminide Cr–Mo steel using EBSD. Surface & Coatings Technology, 2008. 203: p. 401-406. 115. C.J. Chen and S.M. Chen, The high temperature oxidation behavior of hot-dipping Al–Si coating on low carbon steel. Surface & Coatings Technology, 2006. 200: p. 6601-6605. 116. G.H. Awan and F. Ul Hasan, The morphology of coating/substrate interface in hot-dip-aluminized steels. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2008. 472(1-2): p. 157-165. 117. M.B. Lin, C.J. Wang, and A.A. Volinsky, Isothermal and thermal cycling oxidation of hot-dip aluminide coating on flake/spheroidal graphite cast iron. Surface & Coatings Technology, 2011. 118. A. Osawa, On the equilibrium diagram of iron-aluminium system. Sci. Rep. Tohuku Univ., 1933. 22: p. 803. 119. A.J. Bradley and A. Taylor, An X-ray study of the iron-nickel-aluminium ternary equilibrium diagram. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, 1938. 166(A926): p. 0353-0375. 120. G. Phragmen, On the Phases Occurring in Alloys of Aluminium with Copper, Magnesium, Manganese, Iron, and Silicon. Journal of the Institute of Metals, 1950. 77(6): p. 489-551. 121. E. Barkmetew and Z. Kristall, 1934. A88: p. 179. 122. P.J. Black, The structure of FeAl3. Acta Crystallographica, 1955. 8(43): p. 175. 123. S.M. Allen and J.W. Cahn, Coherent and Incoherent Equilibria in Iron-Rich Iron-Aluminum Alloys. Acta Metallurgica, 1975. 23(9): p. 1017-1026. 124. W.B. Pearson, A handbook of lattice spacing and structures of metals and alloys. Vol. 1. 1958. 125. L.F. Mondolfo, Aluminum alloys, structure and properties. 1976, London, Butterworths. 126. V.G. Rivlin and G.V. Raynor, Critical evaluation of constitution of aluminium-iran-silicon system. Int. Met. Rev., 1981. 26: p. 133-152. 127. H.J. Im, S.M. Nam, M.B. Moon, and H. W. Oh, Effects of heating time on the material properties in hot stamping process. CAMP-ISIJ, 2009. 22(1): p. 595. 128. L.N. Larikov, V.M. Fal'chenko, D.F. Polishchuk, V.R. Ryabov, and A.V. Lonovskays, Protective Coatings on Metals. 1971. III,Consultant Bureau, New York: p. 56. 129. S.G. Denner and R.D. Jones, Kinetic Interactions Between Aluminum Liquid and Iron/SteelSolid for Conditions Applicable to Hot Dip Aluminizing. Met. Technol., 1977. 4: p. 167-174. 130. D. Wang and Z. Shi, Aluminizing and oxidation treatment of 1Cr18Ni9 stainless steel. Applied surface science, 2004. 227(1): p. 255-260. 131. K. Stein-Fechner, J. Konys, and O. Wedemeyer, Investigations on the transformation behavior of the intermetallic phase (Fe, Cr)2 Al5 formed on MANET II steel by aluminizing. Journal of nuclear materials, 1997. 249(1): p. 33-38. 132. A.D. Smigelskas and E.O. Kirkendall, Zinc Diffusion in Alpha-Brass. Transactions of the American Institute of Mining and Metallurgical Engineers, 1947. 171: p. 130-142. 133. A.D. Le Claire, Numerical Data and Functional Relationships in Science and Technology, Springer, 1990. 129: p. 26. 134. B. Cockeram and R.A. Rapp, Isothermal and cyclic oxidation resistance of boron-modified and germanium-doped silicide coatings for titanium alloys. Oxidation of Metals, 1996. 45(5-6): p. 427-468. 135. A. Bahadur and O.N. Mohanty, Structural Studies of Hot Dip Aluminized Coatings on Mild-Steel. Materials Transactions Jim, 1991. 32(11): p. 1053-1061. 136. D.O. Gittings, D.H. Rowland, and J.O. Mack, Effect of Bath Composition on Aluminum Coatings on Steel. Transactions of the American Society for Metals, 1951. 43: p. 587-610. 137. G.C. Rybicki and J.L. Smialek, Effect of the θ-α-Al2O3 transformation on the oxidation behavior of β-NiAl+ Zr. Oxidation of Metals, 1989. 31(3-4): p. 275-304. 138. S.C. Kwon and J.Y. Lee, Interface Morphology between the Aluminide Layer and Iron Substrate in the Hot-Dip Aluminizing Process. Canadian Metallurgical Quarterly, 1981. 20(3): p. 351-357. 139. G. Eggeler, W. Auer, and H. Kaesche, On the Influence of Silicon on the Growth of the Alloy Layer during Hot Dip Aluminizing. Journal of Materials Science, 1986. 21(9): p. 3348-3350. 140. M.A. Shady, A.R. ElSissi, A.M. Attia, N.A. ElMahallawy, M.A. Taha, and W. Reif, On the technological properties of steel strips aluminized in Al-Si baths. Journal of Materials Science Letters, 1996. 15(12): p. 1032-1036. 141. K.G. Coburn, Met. Eng. Q. Feb., 1964. 57: p. 59. 142. P.T. Stroup and G.A. Purdy, Aluminum Coating of Steel—A Comparison of Various Processes. Metal Progr, 1950. 57: p. 59. 143. W.J. Cheng and C.J. Wang, EBSD study of crystallographic identification of Fe–Al–Si intermetallic phases in Al–Si coating on Cr–Mo steel. Applied Surface Science, 2011. 257: p. 4637-4642. 144. Y.Y. Chang, W.J. Cheng, and C.J. Wang, Growth and surface morphology of hot-dip Al–Si on 9Cr-1Mo steel. Materials Characterization, 2009. 60(2): p. 144-149. 145. W.J. Cheng and C.J. Wang, Effect of silicon on the formation of intermetallic phases in aluminide coating on mild steel. Intermetallics, 2011. 19(10): p. 1455-1460. 146. Y.R. Zheng, Y.L. Cai, L.S. Mo, and Z.G. Yang, Formation of Si-Containing Barrier in Al-Si Coatings and Its Effect on Protective Capability of Superalloy. Journal of Materials Engineering, 1991. 13(1): p. 39-46. 147. C.C. Lee, E.S. Machlin, and H. Rathore, Roles of Ti‐intermetallic compound layers on the electromigration resistance of Al‐Cu interconnecting stripes. Journal of applied physics, 1992. 71(12): p. 5877 - 5887. 148. S.G. Young and D.L. Deadmore, An experimental low cost silicon/aluminide high temperature coating for superalloys. Thin Solid Films, 1980. 73(2): p. 373-378. 149. S. Goedicke, S. Sepeur, G. Frenzer, and C. Breyer, Wet chemical coating materials for hot sheet forming—anti scaling and corrosion protection. 1st International conference on Hot Sheet Metal Forming of high-performance steel, Kassel, Germany, 2008. 150. S. Goedicke, S. Sepeur, C. Breyer, M. Koeyer, and J. Lewandowski, Development of an anti scaling coating with active corrosion protection for hot sheet metal forming. 2nd International conference on hot sheet metal forming of high-performance steel, Lulea, Sweden, 2009: p. 265-271. 151. S. Sepeur, S. Goedicke, and C. Breyer, Asia Steel International Conference, Busan, Korea, 2009. 152. S. Goedicke, S. Sepeur, and C. Breyer, Asia Steel International Conference, Busan, Korea, 2009. 153. R. Autengruber, G.L., and A.W. Hassel, Corrosion of press-hardened galvanized steel. Corrosion Science, 2012. 63: p. 12-19. 154. S.P. Lynch, Failures of Structures and Components by Metal-Induced Embrittlement. Journal of Failure Analysis and Prevention, 2008. 8(3): p. 259-274. 155. O. Kubaschewski and C. Alcock, Metallurgical Thermochemistry. Am. Ceram. Soc.(Fifth ed.), 72Pergamon, New York. 1979. 156. K. Imai, Y. Yoshikawa, T. Toki, T. Nishibata, K. Uematsu, M. Uchihara, and T. Takayama, Properties of hot stamped Galvannealed steel sheet. Seaisi Quarterly, 2005. 34(4): p. 47. 157. C.W. Lee, D.W. Fan, S.J. Lee SJ, and B.C. De Cooman, Galvanizied coating evolution during hot stamping, in 8th International conference on zinc and zinc alloy coated steel sheet2011: Genova, Italy. p. 327-334. 158. A. Einstein, Investigations on the Theory of the Brownian Movement. 1956: Courier Dover Publications. 159. R. Kavitha and J.R. McDermid, On the in-situ aluminothermic reduction of manganese oxides in continuous galvanizing baths. Surface & Coatings Technology, 2012. 212: p. 152-158. 160. E.M. Bellhouse and J.R. McDermid, Analysis of the Fe–Zn interface of galvanized high Al–low Si TRIP steels. Materials Science and Engineering: A, 2009. 491(1-2): p. 39-46. 161. B. Schuhmacher, T. Heller, M. Steinhorst, and W. Warnecke, Recent Development of High Strength Steels with Zinc or Zinc Alloy Coating in Europe. in Galvatech’07-7th International Conference on Zinc and Zinc Alloy Coated Steel Sheet. 2007. 162. M. Fujine, Experctation for steel sheet in view of future atomotive aoolication, in Galvatech’07-7th International Conference on Zinc and Zinc Alloy Coated Steel Sheet2007: Osaka. p. 374-379. 163. J. Mahieu, B.C. De Cooman, and S. Claessens, Galvanizability of high-strength steels for automotive applications. metallurgical and materials transactions A, 2001. 32(11): p. 2905-2908. 164. J. Mahieu, S. Claessens, B.C. De Cooman, and F. Goodwin, Surface and sub-surface characterization of Si-, Al- and P-alloyed TRIP-aided steel, in 6th International Conference on Zinc and Zinc Alloy Coated steel sheet2004: Chicago. p. 529–538. 165. X. Su, F. Yin, Z. Li, N.Y. Tang, and M. Zhao, Thermodynamic calculation of the Fe–Zn–Si system. Journal of alloys and compounds, 2005. 396(1): p. 156-163. 166. N.Y. Tang, X.B. Yu, and X. Su, A study of the Zn-Rich corner of the Zn-Fe-Sn system. Journal of phase equilibria, 2003. 24(6): p. 528-532. 167. X. Su, N.Y. Tang, and J.M. Toguri, 450 C Isothermal Section of the Fe-Zn-Si Ternary Phase Diagram. Canadian metallurgical quarterly, 2001. 40(3): p. 377-384. 168. A.R. Borzillo and W.C.J.R Hahn, Growth of the inhibiting aluminum-rich alloy layer on mild steel during galvanizing in zinc that contains aluminum. ASM TRANS QUART, 1969. 62(3): p. 729-739. 169. K. Watkins, R. Jones, and K. Lo, Electrochemical investigation of the corrosion rate of sacrificial coatings on steel. Materials Letters, 1989. 8(1): p. 21-25. 170. W. Wang, W. Hartt, and S. Chen, Sacrificial Anode Cathodic Polarization of Steel in Seawater: Part 1-A Novel Experimental and Analysis Methodology. Corrosion, 1996. 52(6): p. 419-427. 171. M. Budinski and B. Wilde, Technical Note: An Electrochemical Criterion for the Development of Galvanic Coating Alloys for Steel. Corrosion, 1987. 43(1): p. 60-62. 172. D. Huin, P. Flauder, and J. Leblond, Numerical simulation of internal oxidation of steels during annealing treatments. Oxidation of metals, 2005. 64(1-2): p. 131-167. 173. A. Rist, M.F. Ancey Moret, C. Gatellier, and P.V. Riboud, Equilibres thermodynamiques dans l'elaboration de la fonte et de l'acier. Techniques de l'ingenieur. Materiaux metalliques, 1974. 2(M1730): p. 1-42. 174. I.H. Jung, S.A. Decterov, and A.D. Pelton, A thermodynamic model for deoxidation equilibria in steel. Metallurgical and Materials Transactions B, 2004. 35(3): p. 493-507. 175. J. Long, D. Haynes, and P. Hodgson. Characterisation of galvanneal coatings on strip steel. in Materials forum. 2004. 176. A.C.L. de Oliveira and P.R. Rios, A novel iron enrichment isothermal kinetic model proposal for galvanneal coatings. Journal of Materials Research and Technology, 2013. 2(2): p. 117-124. 177. T. Yasui, M. Nakazawa, and A. Miyasaka, Factors affecting Galvanealing Behavior of Si-Containing Steel Sheets, in Galvatech’07, 2007. p. 493-498. 178. M. Hopkins and T. Toye, The determination of the viscosity of molten metals. Proceedings of the Physical Society. Section B, 1950. 63(10): p. 773. 179. W. Hagel, The Oxidation of Iron, Nickel and Cobalt-Base Alloys Containing Aluminum. Corrosion, 1965. 21(10): p. 316-326. 180. B. S. Ryl'nikov, G. V. Arkhangel'skaya, and L. V. Lyubetskaya, Oxidation kinetics of iron-aluminum alloys. Protection Met., 1981. 17: p. 290-291. 181. C. Sykes and J.W. Bampfylde, The Physical Properties of Iron-Aluminium Alloys. The Journal of the Iron And Steel Institute, London, 1934. 12: p. 22. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57697 | - |
dc.description.abstract | 本論文主要針對高強度鋼熱浸鍍鋅鍍層分成兩部分作探討,即高強度鋼之合金元素對熱浸鍍鋅性質的影響與經高溫熱處理後鍍層顯微結構的變化與其高溫氧化性質。探討高強度鋼合金元素對熱浸鍍鋅鍍層影響的部分,本研究使用四種雙相高強度鋼並與IF鋼做比較。而探討高溫熱處理後鍍層之結構與氧化行為部分,將使用較簡單合金元素添加之雙相鋼,進行熱浸鍍鋅處理後進行高溫熱處理之研究。研究結果顯示,在利用XPS分析下發現,即使鋼材於退火處理時使用極低的露點溫度(-60~-70℃)及還原氣氛(N2+10% H2),鋼材表面仍然生成許多種的氧化物,然而大部份的氧化物皆在熱浸鍍鋅處理時被鋅浴內的Al發生鋁熱還原而去除。而在合金化處理後的試片中發現,大部份的Al皆固溶在Fe-Zn相內,因此本研究中初始Fe-Zn相的成長機制,是Zn向Fe-Al障蔽層擴散,且當Fe-Al相內的Zn達其固溶極限時,即會發生相變態形成Fe-Zn(Al)之介金屬化合物。雖然高Si元素添加的雙相鋼(0.44 wt%)具有良好的潤濕性與熱浸鍍性質,然而合金化的效果卻明顯地被抑制。此現象主要歸因於一個原因,即鍍層內的Si元素。當鍍層內的Si元素含量增加,Fe元素在鍍鋅層內的固溶度將降低,導致鍍層內Fe元素含量太低,至使無法形成完整的介金屬化合物層。而鍍層內Si元素的來源主要可分成兩部分,第一個是鋼材表面Si的氧化物於熱浸鍍鋅時鋁熱還原反應,導致於鍍層與鋼底材界面處附近產生元素態的Si堆積,且當鋼底材內Si元素含量增加,界面處生成的Si元素亦增加。其二是於熱浸鍍初期及合金化過程中,Si元素從鋼底材融出。由於每個Fe-Zn介金屬化合物對Si元素的固溶度不同,因此,從鋼底材擴散出來的Si元素將使得ζ相無法緊鄰著鍍層與鋼底材之界面成核成長,而是必須到較遠離界面,至沒有或較少Si元素的地方才能成核成長,亦或是ζ相成核時固溶微量的Si,而於成長階段時將Si排出ζ相外。然而不管ζ相之成長機制為何,皆將提高鍍層內Si的含量比,進而影響到Fe溶出的速率,導致高Si添加的雙相鋼材經熱浸鍍鋅處理後,鍍層內的Fe-Zn相為散亂狀而非層狀堆疊。熱浸鍍鋅鍍層於800℃以上之高溫熱處理5分鐘後,鍍層顯微結構有較明顯的改變,且在X光繞射分析下得知,當熱處理溫度低於700℃並持溫5分鐘後,鍍層結構轉變成單一Γ相結構,若於800℃以上之溫度持溫5分鐘後,鍍層結構則轉變成單一α-Fe相,且鍍層表面除了有氧化鋅的訊號外,於氧化鋅與鍍層界面處亦有氧化鋁的訊號。利用化學反應式之熱力學計算後得知,Al脫離固溶體而在表面發生氧化行為的自由能較其他合金元素低,且鋅浴內添加的Al含量較少(0.12wt.%),因此在經高溫熱處理後,鍍層表面首先生成不具保護性的氧化鋁,接著為Zn及Mn之氧化物。於化學剝除試驗下可發現,除了可以藉由不同電位值明確辨別GI (galvanized)及GA (galvannealed)內的介金屬化合物外,當熱浸鍍鋅鍍層經高溫熱處理過後,鍍層皆呈現明顯鈍態的現象,在7.5 vol%的鹽酸測試下,至少需2000秒的剝除時間才顯露出鋼底材的電位值,甚至GA-25s的試樣必須經10000秒以上的化學剝除時間才顯露出鋼底材的電位值,顯示經高溫熱處理後之熱浸鍍鋅鍍層,具有很好的抗蝕性質,且此鍍層之起始電位值低於鋼底材之電位,顯示亦具有一定之犧牲保護作用。 | zh_TW |
dc.description.abstract | The aims of the present dissertation were to understand the hot-dip galvanized advanced high strength steel (AHSS) on alloy element reaction and high temperature oxidation behaviors. Four kinds of CMnSiCr dual-phase steels using a hot-dip simulator to investigate the effect of the alloying elements on the microstructure of the galvanizing (GI) and galvannealing (GA) coatings in first part. The results show that the dual-phase steels had good galvanizability because no bare spot was observed and the Fe-Zn phases were readily formed at the interface in GI specimens. However, the alloy reaction during the GA process was significantly hindered with increasing Si content in the steel substrate. XPS results show that external selective oxidation took place under an extremely low dew point (-60~-70℃) atmosphere during the annealing prior to hot dipping. However, most of the oxides were reduced during the hot-dipping process by the aluminothermic reduction. After the hot-dipping process, the Al was solid-soluted in the Fe-Zn phase, suggesting that the Fe-Zn phase was formed from the transformation of the Fe-Al inhibition alloy. Meanwhile, the Si enriched at the interface owing to the aluminothermic reduction and dissolued from the steel substrate during the GI and GA reaction. Owing to the solubility of Si in the ζ phase is extremely low, hence, the ζ phase cannot homogeneously nucleate at the steel substrate/Zn coating interface, but can be found at the area away from the interface. Moreover, the coating enriched with Si leads to decreas the solubility of Fe in the Zn coating, and results in lower Fe content than general GA steels does. Therefore, the Fe-Zn phases on the high Si content dual-phase steels were relatively non-uniform compared to those on interstitial-free (IF) steel. High temperature oxidation behavior on hot-dip galvanizied coating was thoroughly discussed in second part. The results of second part show that the morphologies of galvanized coating layers on GI and GA-25s specimens were obviously different from as-received to 800 and 900 ℃ heat-treated specimens. The specific microstructure of coating layers were thoroughly identified by X-ray diffraction, which show that the microstructure of coating layers were mainly with Γ phase when heat treatment temperature was below 700 ℃, whereas the coating layers were mainly with α-Fe(Zn) and ZnO when heat treatment temperature was above 800 ℃. Moreover, two oxide layers were observed by EPMA mapping and EDS analyses, where the upper part was identified as an oxide layer with the composition of Zn and Mn, and the lower part was an incompact alumina oxide layer beacuse lower Al content in the Zn bath. The chemical stripping tests were used to analyze the anticorrosion properties of heat-treated coating layers. The results show that heat-treated GI and GA-25s specimens at 800 and 900 ℃ presented in nobler properties in 7.5 vol% HCl solution than those of as-received specimens, which heat-treated GI specimen took at least 2000s of stripping to present in final stable steel substrate potential. More than 10000s of stripping time is needed for the 900℃ heat-treated GA-25s specimen. Otherwise, compared to the heat-treated steel substrates, lower start potential of heat-treated coating suggests the coating with sacrificial properties. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T06:58:35Z (GMT). No. of bitstreams: 1 ntu-103-D99527017-1.pdf: 9876640 bytes, checksum: 462e3c0d92f0afc9e735c6856244907e (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 口試委員審定書...............................................i
致謝......................................................ii 中文摘要...................................................iv Abstract..................................................vi 目錄....................................................viii 圖目錄...................................................xii 表目錄...................................................xvi 第一章 前言.................................................1 第二章 文獻回顧..............................................4 2.1. 高強度鋼板..........................................4 2.2. 先進高強度鋼板.......................................5 2.2.1. 雙相鋼..............................................6 2.2.2. 複相鋼..............................................7 2.2.3. 相變誘發塑性鋼.......................................8 2.2.4. 麻田散鐵鋼..........................................8 2.3. 熱浸鍍鋅............................................9 2.3.1. 鐵鋅介金屬化合物之結構與性質............................9 2.3.2. 鐵鋅介金屬化合物之形成................................11 2.3.3. 熱浸鍍鋅合金化處理及微結構分析.........................13 2.3.3.1. 光學金相技術................................13 2.3.3.2. 電化學剝除法................................14 2.3.3.3. X光繞射分析................................15 2.3.3.4. 穿透式電子顯微鏡分析.........................16 2.3.4. 熱浸鍍鋅鋼板之加工成型性與破壞機構......................17 2.3.5. 影響熱浸鍍鋅鍍層的結構因素............................18 2.3.5.1. 鋼底材之合金元素.............................19 2.3.5.2. 熔融鋅浴合金元素的添加........................22 A. 鋁元素的添加.............................................22 B. 鎂元素的添加.............................................26 C. 鉛元素的添加.............................................26 D. 其它合金元素的添加........................................27 2.3.5.3. 退火爐的使用條件.............................27 2.4. 熱沖壓.............................................31 2.5. 常用於熱沖壓製程之鍍層................................32 2.5.1. 熱浸鍍鋁/鋁矽鍍層....................................32 2.5.1.1. 熱浸鍍鋁之鍍層結構...........................33 2.5.1.1.1. Kirkendall效應............................36 2.5.1.2. 熱浸鍍鋁矽之鍍層結構.........................36 2.5.2. Zn-Ni合金鍍層......................................39 2.5.3. 混合式鍍層.........................................40 2.5.4. 常用熱沖壓鍍層綜合比較................................41 2.6. 熱浸鍍鋅鍍層高溫熱處理................................43 2.6.1. 高溫熱處理對熱浸鍍鋅鍍層結構之影響......................43 2.6.2. 液態鋅脆化現象......................................43 2.6.3. 鍍層之抗高溫氧化能力.................................46 第三章 實驗方法.............................................47 3.1. 實驗流程...........................................47 3.1.1. 熱浸鍍鋅...........................................47 3.1.2. 熱浸鍍鋁矽.........................................49 3.2. 橫截面試樣製備......................................50 3.3. 試樣微結構觀察......................................51 3.3.1. 彩色化學腐蝕金相.....................................51 3.3.2. 掃描式電子顯微鏡觀察.................................51 3.3.3. 電子背向散射繞射分析.................................51 3.3.4. 電子探測微分析儀.....................................51 3.4. 化學剝除法.........................................52 3.5. X光繞射...........................................53 3.6. 高解析X射線光電子能譜儀...............................53 3.7. 輝光放電分光分析儀...................................54 3.8. 熱處理.............................................54 第四章 實驗結果.............................................55 4.1 熱浸鍍鋅...........................................55 4.1.1 鋼材經退火處理後表面氧化物之分析........................55 4.1.2 橫截面OM觀察.......................................59 4.1.3 GDOES、EPMA元素分佈縱深分析..........................62 4.1.4 橫截面SEM觀察、EDS分析與EPMA元素分佈分析...............65 4.2 熱浸鍍鋁矽.........................................69 4.2.1 熱浸鍍鋁矽鍍層結構分析................................69 4.2.1.1 化學剝除法........................................70 4.2.1.2 X光繞射分析........................................72 4.2.1.3 EBSD與EPMA介金屬化合物鑑定...........................74 4.2.2 高溫熱處理對鍍層顯微組織的影響觀察......................76 4.2.2.1 橫截面SEM觀察......................................76 4.2.2.2 EPMA合金元素分佈分析.................................78 4.2.2.3 X光繞射分析........................................81 4.3 熱浸鍍鋅的高溫熱處理.................................83 4.3.1 熱浸鍍鋅原材.......................................83 4.3.2 高溫熱處理對熱浸鍍鋅鍍層之影響.........................84 4.3.3 X光繞射相鑑定.......................................89 4.3.4 高溫熱處理後鍍鋅層表面氧化物分析........................92 4.3.5 EPMA元素分佈分析....................................95 4.3.6 高溫熱處理對鍍鋅層抗蝕性質之影響........................97 第五章 討論...............................................103 5.1 選擇性氧化熱力學計算................................103 5.2 熱浸鍍鋅之鋁熱還原反應...............................107 5.3 抑制鐵鋅相成長之機制探討.............................111 5.4 熱處理溫度對不同合金化程度之熱浸鍍鋅鍍層顯微組織的影響.....115 5.5 熱浸鍍鋅鍍層高溫氧化行為.............................119 第六章 結論...............................................121 未來展望..................................................123 參考文獻..................................................124 | |
dc.language.iso | zh-TW | |
dc.title | 雙相鋼鋼板熱浸鍍鋅鍍層合金化與高溫氧化行為之研究 | zh_TW |
dc.title | Alloy reaction and high temperature oxidation behaviors of hot-dip galvanized dual phase steels | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 蔡文達,開物,王朝正,林新智,陳宗榮 | |
dc.subject.keyword | 高強度鋼,熱浸鍍鋅,露點溫度,合金化,障蔽層,化學剝除, | zh_TW |
dc.subject.keyword | AHSS,galvanized,dew point,alloy,inhibition layer,chemical stripping, | en |
dc.relation.page | 143 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-07-17 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 9.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。