Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57506| Title: | 權重區塊圖上的成對支配點問題 Paired Domination on Block Graph |
| Authors: | Cheng-Yu Hsieh 謝政佑 |
| Advisor: | 陳健輝(Gen-Huey Chen) |
| Co-Advisor: | 林清池(Ching-Chi Lin) |
| Keyword: | 成對支配點問題,區塊圖,動態規劃, paired domination problem,block graph,dynamic programming, |
| Publication Year : | 2014 |
| Degree: | 碩士 |
| Abstract: | 本論文提出一演算法來解決權重區塊圖上的成對支配 點問題。試想一由點與線構成的圖,支配集是圖上的點 構成的點集合,而圖上每個不在支配集裡的點都會至少 與一在支配集裡的點相鄰,如此就構成了支配集。而對 於一圖上的成對支配點集,就是既滿足支配集的定義又 滿足支配集裡點形成的誘導子圖上,點兩兩成對。在一 圖上無數成對支配集中,如何找到一成對支配集且此集 合點的數量為無數成對支配點中最少的,就是成對支配 點問題。此外,對於一區塊圖上的每一個點,我們都賦 予它一權重,如此在權重區塊圖上的成對支配點問題就 是在一點有權重的區塊圖上,找到一點的數量為最小且 點權重加總也為最小的成對支配點集合。在本論文中, 提出了 O(m + n) 時間複雜度的眼算法來解決這個問題。 AdominatingsetofagraphG=(V,E)isasubsetS ⊆V if every vertex not in S is adjacent to a vertex in S. A domi- nating set S of a graph G is called a paired dominating set if the induced subgraph G[S] contains a perfect matching. The paired domination problem is to find a minimum size of a paired dominating set of a graph. Suppose moreover that ev- ery vertex v ∈ V associate with a weight w(v). The weight paired domination problem is to find a paired dominating set S such that its total weight W(S) = ∑{w(v) : v ∈ S} is min- imum. In this paper, we provide an dyanmic programming algorithm with O(m + n)-time for the weight paired domina- tion problem on block graphs. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57506 |
| Fulltext Rights: | 有償授權 |
| Appears in Collections: | 資訊工程學系 |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-103-1.pdf Restricted Access | 1.24 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
