請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57014完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李培芬(Pei-Fen Lee) | |
| dc.contributor.author | Szu-Yi Wang | en |
| dc.contributor.author | 王思懿 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:32:57Z | - |
| dc.date.available | 2014-08-08 | |
| dc.date.copyright | 2014-08-08 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-05 | |
| dc.identifier.citation | 中央氣象局。1991。中華民國台灣地區氣候圖集第一冊。中央氣象局,交通部,臺北。
王定心。2008。氣候變遷下生物多樣性保護區網絡規劃。國立臺北大學碩士論文,臺北。 行政院農委會林務局。2009。保育類野生動物名錄。農委會林務局,臺北。 行政院農委會林務局。2009。野生動物評估分類作業要點。農委會林務局,臺北。 林良恭、姜博仁、陳美汀、陳家鴻、張燕伶。2009。保育類哺乳動物生息現況分析與生態資訊建置。農業委員會,臺北。 吳海音。2001。生物多樣性概念在保育規劃上的落實-以保護區的選取為例。生物多樣性保育策略研討會論文集。國立臺灣大學,臺北。 李培芬。2004。臺灣的自然資源與生態資料庫--I 生物多樣性。農委會林務局,臺北。 李培芬、陳怡秀、李承恩、柯佳吟。2009。台灣陸域生物多樣性熱點評估計畫。生物多樣性行動計畫研討會論文集。農委會特有生物研究保育中心,南投。 李培芬、廖倩瑜、李玉琪、潘彥宏、傅維馨、陳宣汶。1997。臺灣地區生態與環境因子地理資訊資料庫。農業委員會,臺北。 裴家騏。2008。新竹、苗栗之淺山地區小型食肉目動物之現況與保育研究(3/3)。農業委員會,臺北。 歐恒佑。2008。臺灣陸域蛇類分布預測與熱點分析。國立臺灣大學碩士論文,臺北。 Allouche, O., A. Tsoar, and R. Kadmon. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43:1223-1232. Araujo, M. B. and M. New. 2007. Ensemble forecasting of species distributions. Trends in Ecology and Evolution 22:42-47. Araujo, M. B., R. J. Whittaker, R. J. Ladle, and M. Erhard. 2005. Reducing uncertainty in projections of extinction risk from climate change. Global Ecology and Biogeography 14:529-538. Araujo, M. B. and P. H. Williams. 2000. Selecting areas for species persistence using occurrence data. Biological Conservation 96:331-345. Bourg, N. A., W. J. McShea., and D. E. Gill. 2005. Putting a CART before the search: successful habitat prediction for a rare forest herb. Ecology 86:2793-2804. Bruner, A. G., R. E. Gullison, R. E. Rice, and G. A. B. Da Fonseca. 2001. Effectiveness of parks in protecting tropical biodiversity. Science 291:125-128. Butchart, S. H. M., M. Walpole, B. Collen, A. van Strien, J. P. W. Scharlemann, R. E. A. Almond, J. E. M. Baillie, B. Bomhard, C. Brown, J. Bruno, K. E. Carpenter, G. M. Carr, J. Chanson, A. M. Chenery, J. Csirke, N. C. Davidson, F. Dentener, M. Foster, A. Galli, J. N. Galloway, P. Genovesi, R. D. Gregory, M. Hockings, V. Kapos, J. F. Lamarque, F. Leverington, J. Loh, M. A. McGeoch, L. McRae, A. Minasyan, M. H. Morcillo, T. E. E. Oldfield, D. Pauly, S. Quader, C. Revenga, J. R. Sauer, B. Skolnik, D. Spear, D. Stanwell-Smith, S. N. Stuart, A. Symes, M. Tierney, T. D. Tyrrell, J. C. Vie, and R. Watson. 2010. Global Biodiversity: Indicators of recent declines. Science 328:1164-1168. Ceballos, G. and P. R. Ehrlich. 2006. Global mammal distributions, biodiversity hotspots, and conservation. Proceedings of the National Academy of Sciences 103:19374-19379. Crossman, N. D. and D. A. Bass. 2008. Application of common predictive habitat techniques for post-border weed risk management. Diversity and Distributions 14:213-224. Dormann, C. F., O. Purschke, J. R. G. Marquez, S. Lautenbach, and B. Schroder. 2008. Components of uncertainty in species distribution analysis: a case study of the great grey shrike. Ecology 89:3371-3386. Elith, J., S. J. Phillips, T. Hastie, M. Dudik, Y. E. Chee, and C. J. Yates. 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions 17:43-57. Ferrier, S., G. Watson, J. Pearce, and M. Drielsma. 2002. Extended statistical approaches to modelling spatial pattern in biodiversity in northeast New South Wales. I. Species-level modelling. Biodiversity and Conservation 11:2275-2307. Fielding, A. H. and J. F. Bell. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24:38-49. Freeman, E. A. and G. G. Moisen. 2008. A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa. Ecological Modelling 217:48-58. Graham, C. H., S. R. Ron, J. C. Santos, C. J. Schneider, and C. Moritz. 2004. Integrating phylogenies and environmental niche models to explore speciation mechanisms in dendrobatid frogs. Evolution 58:1781-1793. Grenyer, R., C. D. L. Orme, S. F. Jackson, G. H. Thomas, R. G. Davies, T. J. Davies, K. E. Jones, V. A. Olson, R. S. Ridgely, P. C. Rasmussen, T. S. Ding, P. M. Bennett, T. M. Blackburn, K. J. Gaston, J. L. Gittleman, and I. P. F. Owens. 2006. Global distribution and conservation of rare and threatened vertebrates. Nature 444:93-96. Guisan, A. and W. Thuiller. 2005. Predicting species distribution: offering more than simple habitat models. Ecology Letters 8:993-1009. Guisan, A. and N. E. Zimmermann. 2000. Predictive habitat distribution models in ecology. Ecological Modelling 135:147-186. Hernandez, P. A., C. H. Graham, L. L. Master, and D. L. Albert. 2006. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29:773-785. Hirzel, A. H., J. Hausser, D. Chessel, and N. Perrin. 2002. Ecological-niche factor analysis: How to compute habitat-suitability maps without absence data? Ecology 83:2027-2036. Hirzel, A. H., J. Hausser, and N. Perrin. 2007. Biomapper 4.0. Laboratory for Conservation Biology, Department of Ecology and Evolution, University of Lausanne, Switzerland. Available at http://www.unil.ch/biomapper. Hutchinson, G. E. 1957. Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology 22:415–427. Iverson, L. R. and A. M. Prasad. 1998. Predicting abundance of 80 tree species following climate change in the eastern United States. Ecological Monographs 68:465-485. Jaynes, E. T. 1957. Information theory and statistical mechanics. Physical Review 106:620. Jenkins, C. N., and L. Joppa. 2009. Expansion of the global terrestrial protected area system. Biological Conservation 142:2166-2174. Kirkpatrick, J. B. 1983. An iterative method for establishing priorities for the selection of nature reserves: an example from Tasmania. Biological Conservation 25:127-134. Landis, J. R. and G.G. Koch. 1977. The measurement of observer agreement for categorical data. Biometrics 33:159. Liu, C., P. M. Berry, T. P. Dawson, and R. G. Pearson. 2005. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385-393. Liu, C., M. White, and G. Newell. 2013. Selecting thresholds for the prediction of species occurrence with presence‐only data. Journal of Biogeography 40:778-789. Margules, C. R., and R. L. Pressey. 2000. Systematic conservation planning. Nature 405:243-253. Marmion, M., M. Parviainen, M. Luoto, R. K. Heikkinen, and W. Thuiller. 2009. Evaluation of consensus methods in predictive species distribution modelling. Diversity and Distributions 15:59-69. Myers, N. 1988. Threatened biotas: 'hot spots' in tropical forests. The Environmentalist 8:187-208. Myers, N., R. A. Mittermeier, C. G. Mittermeier, G. A. B. da Fonseca, and J. Kent. 2000. Biodiversity hotspots for conservation priorities. Nature 403:853-858. Pearson, R. G. and T. P. Dawson. 2003. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography 12:361-371. Pearson, R. G., C. J. Raxworthy, M. Nakamura, and A. T. Peterson. 2007. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography 34:102-117. Pearson, R. G., W. Thuiller, M. B. Araujo, E. Martinez-Meyer, L. Brotons, C. McClean, L. Miles, P. Segurado, T. P. Dawson, and D. C. Lees. 2006. Model-based uncertainty in species’ range prediction. Journal of Biogeography 33:1704-1711. Peterson, A. T. 2003. Predicting the geography of species’ invasions via ecological niche modelling. Quarterly Review of Biology 78:419-433. Peterson, A. T., M. A. Ortega-Huerta, J. Bartley, V. Sanchez-Cordero, J. Soberon, R. H. Buddemeier, and D. R. B. Stockwell. 2002. Future projections for Mexican faunas under global climate change scenarios. Nature 416:626-629. Peterson, A. T., M. Papeş, and M. Eaton. 2007. Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent. Ecography 30:550-560. Peterson, A.T., J. Soberon, and V. Sanchez-Cordero. 1999. Conservatism of ecological niches in evolutionary time. Science 285:1265-1267. Phillips, S. J., R. P. Anderson, and R. E. Schapired. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190:231-259. Phillips, S. J. and M. Dudik. 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161-175. Phillips, S. J., M. Dudik, J. Elith, C. H. Graham, A. Lehmann, J. Leathwick, and S. Ferrier. 2009. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecological Applications 19:181-197. Phillips, S. J., M. Dudik, and R. E. Schapire. 2004. A maximum entropy approach to species distribution modeling. Page 83 in Proceedings of the twenty-first international conference on Machine learning. ACM, Banff, Alberta, Canada. Phillips, S. J., M. Dudik, and R. E. Schapire 2007. Maxent software for species habitat modeling. Available at http://www.cs.princeton.edu/~schapire /maxent/. Phillips, S. J., M. Dudik, and R. E. Schapire. 2009. Maximum entropy species distribution modeling. Possingham, H., K. A. Wilson, S. J. Andelman, and C. H. Vynne, editors. 2006. Protected areas: Goals, limitations, and design. Sinauer Associates, Sunderland, Massachusetts. Running, S. W., and R. R. Nemani. 1988. Relating seasonal patterns of the AVHRR vegetation index to simulated photosynthesis and transpiration of forests in different climates. Remote Sensing of Environment 24:347-367. Schouten, M. A., P. A. Verweij, A. Barendregt, R. M. J. C. Kleukers, V. J. Kalkman, and P. C. de Ruiter. 2009. Determinants of species richness patterns in the Netherlands across multiple taxonomic groups. Biodiversity and Conservation 18:203-217. Scott, J. M., F. W. Davis, R. G. McGhie, R. G. Wright, C. Groves, and J. Estes. 2001. Nature reserves: Do they capture the full range of America's biological diversity? Ecological Applications 11:999-1007. Segurado, P. and M. B. Araujo. 2004. An evaluation of methods for modelling species distributions. Journal of Biogeography 31:1555-1568. Smith, R. J., P. S. Goodman, and W. S. Matthews. 2006. Systematic conservation planning: a review of perceived limitations and an illustration of the benefits, using a case study from Maputaland, South Africa. Oryx 40:400-410. Stockwell, D. R. B. 1999. The GARP modelling system: problems and solutions to automated spatial prediction. International Journal of Geographical Information Science 13:143-158. Stockwell, D. R. B. 2005. DesktopGarp 1.1.6. San Diego Supercomputer Center. Available at http://www.nhm.ku.edu/desktopgarp/ Stockwell, D. R. B., J. H. Beach, A. Stewart, G. Vorontsov, D. Vieglais, and R. S. Pereira. 2006. The use of the GARP genetic algorithm and Internet grid computing in the Lifemapper world atlas of species biodiversity. Ecological Modelling 195:139-145. Stockwell, D. R. B. and I. R. Noble. 1992. Induction of sets of rules from animal distribution data: a robust and informative method of data analysis. Mathematics and Computers in Simulation 33:385-390. Thomas, C. D., A. Cameron, R. E. Green, M. Bakkenes, L. J. Beaumont, Y. C. Collingham, B. F. N. Erasmus, M. F. de Siqueira, A. Grainger, L. Hannah, L. Hughes, B. Huntley, A. S. van Jaarsveld, G. F. Midgley, L. Miles, M. A. Ortega-Huerta, A. T. Peterson, O. L. Phillips, and S. E. Williams. 2004. Extinction risk from climate change. Nature 427:145-148. Thuiller, W., D. M. Richardson, P. Pysek, G. F. Midgley, G. O. Hughes, and M. Rouget. 2005. Niche-based modelling as a tool for predicting the global risk of alien plant invasions at a global scale. Global Change Biology 11:2234-2250. Waltari, E. and R. P. Guralnick. 2009. Ecological niche modelling of montane mammals in the Great Basin, North America: examining past and present connectivity of species across basins and ranges. Journal of Biogeography 36:148-161. Williams, P., D. Gibbons, C. Margules, A. Rebelo, C. Humphries, and R. Pressey. 1996. A comparison of richness hotspots, rarity hotspots, and complementary areas for conserving diversity of British birds. Conservation Biology 10:155-174. Wolters, V., J. Bengtsson, and A. S. Zaitsev. 2006. Relationship among the species richness of different taxa. Ecology 87:1886-1895. Wu, T. Y. 2012. Spatial Distribution, Protected Area Coverage and Hotspot Analysis of Breeding Birds in Taiwan. Dissertation. National Taiwan University, Taipei, Taiwan. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57014 | - |
| dc.description.abstract | 生物的空間分布是進行研究與保育的重要資訊,當面對稀有、調查困難、出現記錄少或分布範圍廣大無法全面調查的物種時,可以利用物種分布預測模式(species distribution modeling)推估出物種的潛在棲地分布,以利進一步分析。物種分布預測模式能夠藉由連結物種出現地點資料與研究區域的環境因子資料推估出物種的潛在棲地分布,目前已被廣泛運用於各種生物與地理的相關研究。
臺灣的保育類哺乳動物多為食物鏈高級消費者,生存常面臨人類活動、棲地開發的威脅,然而,至今有關臺灣保育類哺乳動物的空間分布研究仍不完整,也缺乏應用分布資訊的進一步分析。 本研究整合1988年至2013年間11種臺灣保育類哺乳動物的全臺出現記錄,將物種出現資料與環境因子輸入maximum entropy、genetic algorithm for rule-set production和ecological niche factor analysis三種分布預測模式分析,結合三種模式的預測結果,計算各物種在全臺的棲地適合度分布圖。運用兩種不同閾值做為棲地適合度的切分點,分別呈現各物種大膽及保守估計的潛在分布範圍,以克服資料分布不均的缺陷。最後,利用地理資訊系統整合物種潛在分布與臺灣現行保護區的含括範圍,分析個別物種的潛在棲地受到保護區涵蓋的程度;並進一步將11種物種的潛在分布套疊,得出臺灣保育類哺乳動物的分布熱點,與現行的保護區系統做比較,以評估臺灣現行保護區系統對保育類哺乳動物的保護功效。 研究結果顯示,分布受保護區涵蓋的比例在物種間差異頗大,其中臺灣水鹿、黃喉貂及臺灣野山羊的比例高於50%;但石虎及白鼻心的比例卻低於20%。考量所有保育類哺乳動物分布受保護區涵蓋的平均比例時,大膽估計的比例為38.9%;保守估計的比例則為43.7%。另外,熱點分析的結果顯示,大膽估計的保育類哺乳動物的熱點只有41.7%受保護區涵蓋;保守估計的保育類哺乳動物的熱點則有53.7%在保護區內。從海拔分布來看,保育類哺乳動物分布熱點的海拔略低於現行保護區。 本研究建議加強針對中低海拔物種的保育,例如將此類物種的重要棲地劃設為保護區,或限制部分地點(如淺山地區)的開發。 | zh_TW |
| dc.description.abstract | Spatial distributions of flora and fauna are critical information for research and conservation. When studying distribution of rare, enigmatic, sparsely recorded or broadly distributed species, researchers can model their potential habitats with species distribution modeling techniques. Species distribution modeling can depict the potential habitat distribution of species by analyzing their occurrence records and environmental variables of study area. To date, these techniques have been applied to various biological and geographic research.
Most protected mammals in Taiwan are of high-level consumers in the food chain, threatened by human activity and habitat destruction. However, research on distribution of protected mammals in Taiwan has so far been incomplete. There is also a lack of further application of the distribution information. In this study, I collected observations of 11 protected mammal species between 1988 and 2013, and modeled the potential distribution of each species with three distribution modeling techniques namely maximum entropy, genetic algorithm for rule-set production and ecological niche factor analysis. The resulted habitat suitability map of each species was obtained by ensembling the outputs of three species distribution models. In order to conquer the data defects caused by uneven sampling, two thresholds were selected, translating the habitat suitability maps into boldly predicted and conservatively predicted presence–absence maps respectively. For further analysis, I calculated protected area coverage of each species and compared the distribution of protected mammal hotspots with protected areas, evaluating the effectiveness of protected areas in Taiwan. The results showed that the protected area coverage varies between species, with Cervus unicolor swinhoei, Martes flavigula chrysospila and Naemorhedus swinhoei higher than 50%; and Prionailurus bengalensis chinensis and Paguma larvata taivana lower than 20%. Considering the average protected area coverage of all 11 protected mammals, is 38.9% when boldly predicted; and 43.7% when conservatively predicted. Moreover, 41.7% of boldly predicted protected mammal hotspots are covered by protected areas; 53.7% of conservatively predicted protected mammal hotspots are covered by protected areas. The elevation of protected mammal hotspots is slightly lower than protected areas. I recommend enhancing the protection of low to medium altitude species, such as designating habitat of low to medium altitude species as protected areas or restricting lowland forest exploitation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:32:57Z (GMT). No. of bitstreams: 1 ntu-103-R01b44020-1.pdf: 6196256 bytes, checksum: 6dd4794fbc56a595fe1dd5b38924720b (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 摘要 i
Abstract iii 前言 1 材料與方法 5 資料收集 5 一、研究範圍 5 二、物種出現紀錄 5 三、環境因子資料 6 四、保護區資料 8 分布預測模式 8 一、模式建構 8 二、模式結合預測 11 三、模式驗證 12 四、決定閾值 13 出現資料數量的影響 15 保護區涵蓋 15 熱點分析 16 結果 17 物種出現紀錄 17 分布預測模式 17 模式驗證 20 出現資料數量的影響 20 保護區涵蓋 21 熱點分析 21 討論 23 保護區涵蓋與熱點分析 23 資料問題與兩種之閾值分布預測 25 一、資料取樣不均 25 二、出現資料數量對兩種閾值分布預測結果的影響 25 三、兩種閾值分布預測結果的差異 26 四、兩種閾值分布預測結果的意義與應用 26 建議 27 參考文獻 28 圖 36 表 59 附錄、臺灣保育類哺乳動物出現資料來源 64 | |
| dc.language.iso | zh-TW | |
| dc.subject | 熱點分析 | zh_TW |
| dc.subject | 保護區涵蓋 | zh_TW |
| dc.subject | 分布預測模式 | zh_TW |
| dc.subject | 哺乳類 | zh_TW |
| dc.subject | 保育類 | zh_TW |
| dc.subject | hotspot analysis | en |
| dc.subject | protected mammals | en |
| dc.subject | protected area coverage | en |
| dc.subject | distribution modeling | en |
| dc.title | 臺灣陸域保育類哺乳動物的空間分布預測、保護區涵蓋及熱點分析 | zh_TW |
| dc.title | Spatial Distribution Prediction, Protected Area Coverage and Hotspot Analysis of Terrestrial Protected Mammals in Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 丁宗蘇(Tzung-Su DING),張琪如(Chi-Ru Chang),柯佳吟(Chia-Ying Ko) | |
| dc.subject.keyword | 保育類,哺乳類,分布預測模式,保護區涵蓋,熱點分析, | zh_TW |
| dc.subject.keyword | protected mammals,distribution modeling,protected area coverage,hotspot analysis, | en |
| dc.relation.page | 70 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-05 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生態學與演化生物學研究所 | zh_TW |
| 顯示於系所單位: | 生態學與演化生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 6.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
