請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56909
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蔡曜陽(Yao-Yang Tsai) | |
dc.contributor.author | Shih-Cheng Chang | en |
dc.contributor.author | 張仕承 | zh_TW |
dc.date.accessioned | 2021-06-16T06:31:05Z | - |
dc.date.available | 2019-08-16 | |
dc.date.copyright | 2014-08-16 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-07 | |
dc.identifier.citation | [1]曲喜新、楊邦朝、姜節儉、張懷武, 電子薄膜材料: 北京科學出版社, 1996.
[2]李玉華, '透明導電膜及其應用,' 科儀新知, vol. 第十二卷第一期, pp. 94-102, 1990. [3]J. L. Vossen, 'Transparent Conducting Films,' Physics of Thin Film, vol. 9, pp. p1-64, 1977. [4]鄭景翔, 'GZO/Pt/GZO透明導電多層膜之性質研究及光學模擬,' 碩士, 材料科學及工程學系碩博士班, 國立成功大學, 台南市, 2006. [5]T. Minami, 'Transparent conducting oxide semiconductors for transparent electrodes,' Semiconductor Science and Technology, vol. 20, pp. S35-S44, Apr 2005. [6]A. Suzuki, T. Matsushita, T. Aoki, A. Mori, and M. Okuda, 'Highly conducting transparent indium tin oxide films prepared by pulsed laser deposition,' Thin Solid Films, vol. 411, pp. 23-27, May 2002. [7]B. G. Lewis and D. C. Paine, 'Applications and processing of transparent conducting oxides,' Mrs Bulletin, vol. 25, pp. 22-27, Aug 2000. [8]R. Wendt, K. Ellmer, and K. Wiesemann, 'Thermal power at a substrate during ZnO:Al thin film deposition in a planar magnetron sputtering system,' Journal of Applied Physics, vol. 82, pp. 2115-2122, Sep 1997. [9]H. J. Ko, Y. F. Chen, S. K. Hong, H. Wenisch, T. Yao, and D. C. Look, 'Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy,' Applied Physics Letters, vol. 77, pp. 3761-3763, Dec 2000. [10]V. Assuncao, E. Fortunato, A. Marques, A. Goncalves, I. Ferreira, H. Aguas, and R. Martins, 'New challenges on gallium-doped zinc oxide films prepared by r.f. magnetron sputtering,' Thin Solid Films, vol. 442, pp. 102-106, Oct 2003. [11]J. H. Lim, C. K. Kang, K. K. Kim, I. K. Park, D. K. Hwang, and S. J. Park, 'UV electroluminescence emission from ZnO light-emitting diodes grown by high-temperature radiofrequency sputtering,' Advanced Materials, vol. 18, pp. 2720-+, Oct 2006. [12]J. Aranovich, A. Ortiz, and R. H. Bube, 'OPTICAL AND ELECTRICAL-PROPERTIES OF ZNO FILMS PREPARED BY SPRAY PYROLYSIS FOR SOLAR-CELL APPLICATIONS,' Journal of Vacuum Science & Technology, vol. 16, pp. 994-1003, 1979. [13]Y. Nakanishi, A. Miyake, H. Kominami, T. Aoki, Y. Hatanaka, and G. Shimaoka, 'Preparation of ZnO thin films for high-resolution field emission display by electron beam evaporation,' Applied Surface Science, vol. 142, pp. 233-236, Apr 1999. [14]P. Mitra, A. P. Chatterjee, and H. S. Maiti, 'ZnO thin film sensor,' Materials Letters, vol. 35, pp. 33-38, Apr 1998. [15]R. L. Hoffman, B. J. Norris, and J. F. Wager, 'ZnO-based transparent thin-film transistors,' Applied Physics Letters, vol. 82, pp. 733-735, Feb 2003. [16]Y. Yoshino, K. Inoue, M. Takeuchi, and K. Ohwada, 'Effects of interface micro structure in crystallization of ZnO thin films prepared by radio frequency sputtering,' Vacuum, vol. 51, pp. 601-607, Dec 1998. [17]B. Szyszka and S. Jager, 'Optical and electrical properties of doped zinc oxide films prepared by ac reactive magnetron sputtering,' Journal of Non-Crystalline Solids, vol. 218, pp. 74-80, Sep 1997. [18]T. Minami, K. Oohashi, S. Takata, T. Mouri, and N. Ogawa, 'PREPARATIONS OF ZNO-AL TRANSPARENT CONDUCTING FILMS BY DC MAGNETRON SPUTTERING,' Thin Solid Films, vol. 193, pp. 721-729, Dec 15 1990. [19]T. Ohgaki, N. Ohashi, H. Kakemoto, S. Wada, Y. Adachi, H. Haneda, and T. Tsurumi, 'Growth condition dependence of morphology and electric properties of ZnO films on sapphire substrates prepared by molecular beam epitaxy,' Journal of Applied Physics, vol. 93, pp. 1961-1965, Feb 15 2003. [20]P. Fons, K. Iwata, S. Niki, A. Yamada, and K. Matsubara, 'Growth of high-quality epitaxial ZnO films on alpha-Al2O3,' Journal of Crystal Growth, vol. 201, pp. 627-632, May 1999. [21]Y. F. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, Z. Q. Zhu, and T. Yao, 'Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization,' Journal of Applied Physics, vol. 84, pp. 3912-3918, Oct 1 1998. [22]F. K. Shan, B. C. Shin, S. W. Jang, and Y. S. Yu, 'Substrate effects of ZnO thin films prepared by PLD technique,' Journal of the European Ceramic Society, vol. 24, pp. 1015-1018, 2004 2004. [23]B. J. Jin, S. Im, and S. Y. Lee, 'Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition,' Thin Solid Films, vol. 366, pp. 107-110, May 1 2000. [24]X. W. Sun and H. S. Kwok, 'Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition,' Journal of Applied Physics, vol. 86, pp. 408-411, Jul 1 1999. [25]K. Kaiya, K. Omichi, N. Takahashi, T. Nakamura, S. Okamoto, and H. Yamamoto, 'Epitaxial growth of ZnO thin films exhibiting room-temperature ultraviolet emission by atmospheric pressure chemical vapor deposition,' Thin Solid Films, vol. 409, pp. 116-119, Apr 22 2002. [26]N. Takahashi, K. Kaiya, T. Nakamura, Y. Momose, and H. Yamamoto, 'Growth of ZnO on sapphire (0001) by the vapor phase epitaxy using a chloride source,' Japanese Journal of Applied Physics Part 2-Letters, vol. 38, pp. L454-L456, Apr 15 1999. [27]C. R. Gorla, N. W. Emanetoglu, S. Liang, W. E. Mayo, Y. Lu, M. Wraback, and H. Shen, 'Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (01(1)over-bar2) sapphire by metalorganic chemical vapor deposition,' Journal of Applied Physics, vol. 85, pp. 2595-2602, Mar 1 1999. [28]A. Bougrine, A. El Hichou, M. Addou, J. Ebothe, A. Kachouane, and M. Troyon, 'Structural, optical and cathodoluminescence characteristics of undoped and tin-doped ZnO thin films prepared by spray pyrolysis,' Materials Chemistry and Physics, vol. 80, pp. 438-445, May 26 2003. [29]F. Paraguay, W. Estrada, D. R. Acosta, E. Andrade, and M. Miki-Yoshida, 'Growth, structure and optical characterization of high quality ZnO thin films obtained by spray pyrolysis,' Thin Solid Films, vol. 350, pp. 192-202, Aug 15 1999. [30]S. A. Studenikin, N. Golego, and M. Cocivera, 'Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis,' Journal of Applied Physics, vol. 84, pp. 2287-2294, Aug 15 1998. [31]W. T. Lim and C. H. Lee, 'Highly oriented ZnO thin films deposited on Ru/Si substrates,' Thin Solid Films, vol. 353, pp. 12-15, Sep 29 1999. [32]M. S. Jang, M. K. Ryu, M. H. Yoon, S. H. Lee, H. K. Kim, A. Onodera, and S. Kojima, 'A study on the Raman spectra of Al-doped and Ga-doped ZnO ceramics,' Current Applied Physics, vol. 9, pp. 651-657, May 2009. [33]C.-c. Hsu, C.-y. Wu, C.-w. Chen, and W.-c. Cheng, 'Mode Transition of an Atmospheric Pressure Arc Plasma Jet Sustained by Pulsed DC Power,' Japanese Journal of Applied Physics, vol. 48, Jul 2009. [34]C. C. Hsu and C. Y. Wu, 'Electrical characterization of the glow-to-arc transition of an atmospheric pressure pulsed arc jet,' Journal of Physics D-Applied Physics, vol. 42, p. 8, Nov 2009. [35]沈冠任, '應用滑移電弧於熱噴塗系統之研究,' 國立台灣大學機械所碩士論文, 2012. [36]B. Chapman, Glow discharge processes : sputtering and plasma etching John Wiley&Sons, 1980. [37]郭福升, '大面積常壓電漿技術之研究,' 國立成功大學化學系研究所碩士論文, 2003. [38]J. R. Roth, Industrial Plasma Engineering. Bristol and Philadelphia: IOP Publishing Ltd, 1995. [39]A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks, 'The atmospheric-pressure plasma jet: A review and comparison to other plasma sources,' Ieee Transactions on Plasma Science, vol. 26, pp. 1685-1694, Dec 1998. [40]Y. P. Raizer, Gas Discharge Physics. Berlin Heidelberg: Springer-Verlag, 1991. [41]J. M. Torres and R. S. Dhariwal, 'Electric Field Breakdown At Micro-Meter Separations In Air and Vacuum,' Microsystem Technologies, vol. 6, pp. p6-p10, 1999. [42]許耀文, '利用常壓噴射式電漿沉積氧化鋅薄膜及其特性之研究,' 國立台灣大學化工研究所碩士論文, 2010. [43]K. Tachibana, 'Current status of microplasma research,' Ieej Transactions on Electrical and Electronic Engineering, vol. 1, pp. 145-155, Aug 2006. [44]A. Gurav, T. Kodas, T. Pluym, and Y. Xiong, 'AEROSOL PROCESSING OF MATERIALS,' Aerosol Science and Technology, vol. 19, pp. 411-452, Nov 1993. [45]J. C. Viguie and J. Spitz, 'CHEMICAL VAPOR-DEPOSITION AT LOW-TEMPERATURES,' Journal of the Electrochemical Society, vol. 122, pp. 585-588, 1975. [46]K. Maruyama, I. Tsumagari, M. Kanezawa, Y. Gunji, M. Morita, M. Kogoma, and S. Okazaki, 'Preparation of ZnO films from Zn2+ aqueous mist using atmospheric pressure glow plasma,' Journal of Materials Science Letters, vol. 20, pp. 481-484, 2001. [47]A. Churpita, Z. Hubicka, M. Cada, D. Chvostova, L. Soukup, L. Jastrabik, and P. Ptacek, 'Deposition of InxOy and SnOx thin films on polymer substrate by means of atmospheric barrier-torch discharge,' Surface & Coatings Technology, vol. 174, pp. 1059-1063, Sep-Oct 2003. [48]Y. Suzaki, S. Ejima, T. Shikama, S. Azuma, O. Tanaka, T. Kajitani, and H. Koinuma, 'Deposition of ZnO film using an open-air cold plasma generator,' Thin Solid Films, vol. 506, pp. 155-158, May 2006. [49]賴永隆, '以自製低溫常壓電漿系統製備奈米二氧化鈦光觸媒薄膜及氧化鋅薄膜光學特性之研究,' 碩士, 材料科學與工程學系碩士班, 義守大學, 高雄市, 2007. [50]洪俊丞, '低溫常壓電漿噴流系統沉積二氧化鈦及氧化鋅掺雜二氧化鋯與二氧化錫薄膜應用於染料敏化太陽能電池之研究,' 碩士, 材料科學與工程學系碩士班, 義守大學, 高雄市, 2009. [51]C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, 'Atmospheric pressure plasmas: A review,' Spectrochimica Acta Part B-Atomic Spectroscopy, vol. 61, pp. 2-30, Jan 2006. [52]H. Zhu, Y. C. Lau, and E. Pfender, 'RADIO-FREQUENCY THERMAL PLASMA CHEMICAL VAPOR-DEPOSITION OF SUPERCONDUCTING Y1BA2CU3O7-X FILMS,' Journal of Applied Physics, vol. 69, pp. 3404-3406, Mar 1991. [53]F. Paraguay, J. Morales, W. Estrada, E. Andrade, and M. Miki-Yoshida, 'Influence of Al, In, Cu, Fe and Sn dopants in the microstructure of zinc oxide thin films obtained by spray pyrolysis,' Thin Solid Films, vol. 366, pp. 16-27, May 2000. [54]P. Nunes, E. Fortunato, and R. Martins, 'Influence of the annealing conditions on the properties of ZnO thin films,' International Journal of Inorganic Materials, vol. 3, pp. 1125-1128, Dec 2001. [55]T. Minami, 'New n-type transparent conducting oxides,' Mrs Bulletin, vol. 25, pp. 38-44, Aug 2000. [56]http://www.energy.gov/, 'dc pulse width modulation,' ed. [57]Y. H. Choi, J. H. Kim, and Y. S. Hwang, 'One-dimensional discharge simulation of nitrogen DBD atmospheric pressure plasma,' Thin Solid Films, vol. 506, pp. 389-395, May 2006. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56909 | - |
dc.description.abstract | 本研究是運用直流脈衝電源產生的常壓脈衝電弧噴射式電漿(atmospheric pressure pulsed arc plasma jet,以下簡稱 APPJ),來運作GZO薄膜(氧化鋅摻雜鎵)沉積製程。此系統是在大氣環境下進行鍍膜,省去昂貴的真空系統費用,透過小面積漸進式的掃描方式可在大面積基板上鍍膜。其中藉著控制電源供應器電壓、直流電源脈衝、氣流量、噴嘴溫度、噴嘴長度、噴塗間距等,來探討其對薄膜品質和大氣電漿狀態的影響關係,進而增進製程品質。
從調整電源脈衝中發現,脈衝頻率對電漿狀態與薄膜品質有較大的影響,本研究中當脈衝頻率於25kHz附近時可獲得較低的薄膜片電阻,而在調整脈衝休止時間(T-off)時,對電漿與薄膜片電阻影響較脈衝開啟時間(T-on)大。在電壓調整中觀察到,隨著電源供應器電壓的上升,會導致二次側崩潰電壓下降與瞬間電流的提高且會使電漿變得更劇烈,但其對於薄膜的影響並不高。在電漿頭溫度的改變上,隨著電漿噴嘴溫度越高,薄膜片電阻有降低的趨勢,而在調整氣流方面則會有一個片電阻最低極限值,與其主載氣體的流量搭配有關。在噴塗間距的關係上,間距越低薄膜片電阻越低;而下部噴嘴長度,因為大氣quench的影響,下部噴嘴較長者可讓激發態氮氣分子維持距離較長,而可鍍出擁有較低片電阻的薄膜。 | zh_TW |
dc.description.abstract | In this study, we use APPJ generated by a DC pulse source to deposite GZO thin film in the atmosphere presurre environment without vacuum chamber. It will be discussed the effects of several key process parameters, including the power supply voltage, DC pulse, gas flow rate, nozzle temperature, the length of the nozzle, spray gap, to understand their relationship with the film quality and atmospheric plasma state.
By adjusting DC Pulse, the pulse frequency is found that have a greater impact on the plasma state and the film quality. When the pulse frequency is near 25kHz , lower sheet resistance can be gotten. Besides, we found when we adjust T-off time, the plasma and thin film quality will be influenced more than T-on time. By changing the power supply voltage, the secondary-side voltage decreases with increase of the instantaneous current and the plasma will become more intense. On the plasma nozzle temperature, the plasma nozzle with higher temperature have lower film sheet resistance. The flow rate’s effect have the lowest sheet resistance due to collocation of main gas rate and carry gas rate. By adjusting gap, the lower sheet resistance will show with lower gap; On nozzle length, long nozzle can get film with lower sheet resistance due to the effect of atmospheric quench. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T06:31:05Z (GMT). No. of bitstreams: 1 ntu-103-R01522730-1.pdf: 2887103 bytes, checksum: 547621706f829b06f79a0f7c740691ab (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 誌謝 I
摘要 II Abstract III 總目錄 IV 圖目錄 VI 表目錄 IX 第一章:緒論 1 1.1 前言與研究背景 1 1.2 研究動機與目標 5 1.3 論文總覽 7 第二章 文獻回顧與理論基礎 8 2.1 電漿 8 2.1.1 電漿形成基本原理 8 2.1.2 電漿放電形式 10 2.1.3 大氣常壓電漿 12 2.1.4 常壓電漿種類 14 2.2 常見的大氣壓氣相沉積金屬氧化物膜製程 19 2.2.1 噴霧熱解法 19 2.2.2 低溫電漿輔助化學氣相沉積法 23 2.2.3 高溫電漿噴塗技術 26 2.3 氧化鋅薄膜的結構與性質 29 2.3.1 氧化鋅薄膜的結構 29 2.3.2 氧化鋅薄膜的電學性質 30 2.3.3 氧化鋅薄膜的光學性質 31 第三章 實驗方法與設備 32 3.1 實驗規劃 32 3.2 實驗流程圖 33 3.3 實驗設備與製程設定 34 3.3.1 電源供應器、控制器與變壓器 36 3.3.2 實驗材料與相關參數設定 41 3.4 量測儀器 42 3.4.1 薄膜電性分析 42 3.4.2 溫度量測儀器 45 3.4.3 光學量測儀器 47 3.4.4 電流波形量測儀器 48 第四章 結果與討論 52 4.1 電源控制器參數的影響 52 4.1.1 電源脈衝對電漿與鍍膜的影響 52 4.1.2 電壓對電漿與薄膜的影響 58 4.2 溫度與氣流的影響 65 4.2.1 溫度在整體製程上的變化 65 4.2.2 溫度對薄膜的影響 71 4.2.3 氣流對薄膜的影響 74 4.3 電漿噴嘴長度與噴塗距離的影響 77 4.4 薄膜均勻度 88 第五章 結論與未來展望 92 5.1 結論 92 5.2 未來展望 94 參考文獻 95 | |
dc.language.iso | zh-TW | |
dc.title | 以APPJ製作GZO薄膜之大氣電漿特性與薄膜品質探討 | zh_TW |
dc.title | The Study of Atmospheric Plasma Characteristics and Film Quality on GZO Thin Film Fabricated by APPJ Process | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 莊嘉揚(Jia-Yang Juang),盧銘詮(Ming-Chyuan Lu) | |
dc.subject.keyword | 頻率,電源電壓,下部噴嘴長度,噴嘴溫度,噴射式大氣電漿, | zh_TW |
dc.subject.keyword | Frequency,Power voltage,nozzle length,nozzle temperature,atmospheric pressure plasma jet (APPJ), | en |
dc.relation.page | 99 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-08-07 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 2.82 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。