請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56685完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉安義 | |
| dc.contributor.author | Tsung-Yu Liu | en |
| dc.contributor.author | 劉宗毓 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:42:05Z | - |
| dc.date.available | 2019-08-17 | |
| dc.date.copyright | 2014-08-17 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-11 | |
| dc.identifier.citation | 沈育致。介質研磨及超細纖維素對澱粉薄膜機械性質之影響。2008。國立臺灣大
學食品科技所碩士論文,台北市。 李宣緯、鄭如忠。有記憶的高分子。科學發展:2012, 476, 12-15 吳佩璇。介質研磨對纖維素表面性質與巨量礦物元素結合力之影響。2010。國立 台灣大學食品科技研究所碩士論文,台北市。 高絹智。多孔性纖維素之製備及其特性。2013。國立臺灣大學食品科技所碩士論 文,台北市。 陳時欣。蔗糖酯對奈米/次微米纖維素懸浮液穩定性之研究。2006。國立臺灣大 學食品科技所碩士論文,台北市。 黃仁毅。纖維素於介質研磨下之破碎模式。2007。國立臺灣大食品科技所碩士論 文,台北市。 黃宜瑾。介質研磨對纖維素之酵素水解動力學的影響。2007。國立臺灣大食品科 技所碩士論文,台北市。 葉安義。奈米科技的簡介。科學發展:2004, 384, 44-49 楊承錞。介質研磨澱粉與幾丁聚醣複合薄膜物化性質之探討。2012。國立臺灣大 食品科技所碩士論文,台北市。 蔡蕙菁。交聯化反應對幾丁聚醣-三聚磷酸鈉薄膜物性之影響。2013。國立臺灣 大學食品科技所碩士論文,台北市。 ASTM. 2012. Standard test method for tensile properties of thin plastic sheeting. D 882-12. ASTM. 2010. Standard test methods for water vapor transmission of materials. E96-10. Araki, J.; Wada, M.; Kuga, S.; Okano, T. Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf., A. 1998, 142, 75-82. Azeredo, H.; Mattoso, L. H. C.; Wood, D.; Williams, T. G.; Avena‐Bustillos, R. J.; McHugh, T. H. Nanocomposite edible films from mango puree reinforced with cellulose nanofibers. Food Sci. 2009, 74, N31-N35. Azeredo, H.; Mattoso, L. H. C.; Avena‐Bustillos, R. J.; Munford, M. L.; Wood, D.; McHugh, T. H. Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content. Food Sci. 2010, 75, N1-N7. Bajdik, J.; Marciello, M.; Caramella, C.; Domján, A.; Süvegh, K.; Marek, T.; Pintye-Hódi, K. Evaluation of surface and microstructure of differently plasticized chitosan films. J. Pharm. Biomed. Anal. 2009, 49, 655-659. Bakker, M.; Eckroth, D. Wiley Encyclopedia of Packaging Technology, John Wiley: New York. Birol, H.; Rambo, C. R.; Guiotoku, M.; Hotza, D. Preparation of ceramic nanoparticles via cellulose-assisted glycine nitrate process: a review. RSC Adv. 2013, 3, 2873-2884. Bhumkar, D.; Pokharkar, V. Studies on effect of pH on cross-linking of chitosan with sodium tripolyphosphate: a technical note. AAPS Pharm. Sci. Tech. 2006, 7, E138-E143. Bodmeier, R.; Chen, H.; Paeratakul, O. A novel approach to the oral delivery of micro-or nanoparticles. Pharm. Res. 1989, 6, 413-417. Bok, S. H.; Demain, A. L. An improved colorimetric assay for polyols. Anal. Biochem. 1977, 81, 18-20. Chambi, H. N. M.; Grosso, C. R. F. Mechanical and water vapor permeability properties of biodegradables films based on methylcellulose, glucomannan, pectin and gelatin. Ciência e Tecnologia de Alimentos 2011, 31, 739-746. Chandra, R.; Rustgi, R. Biodegradable polymers. Prog. Polym. Sci. 1998, 23, 1273-1335. Compton, B. J.; Purdy, W. C. The mechanism of the reaction of the Nash and the Sawicki aldehyde reagent. Canad. J. Chem. 1980, 58, 2207-2211. Cui, Z.; Mumper, R. J. Chitosan-based nanoparticles for topical genetic immunization. J. Control. Release 2001, 75, 409-419. Cyras, V. P.; Soledad, C. M.; Analía, V. Biocomposites based on renewable resource: Acetylated and non acetylated cellulose cardboard coated with polyhydroxybutyrate. Polymer 2009, 50, 6274-6280. Das, D.; Sureshkumar, M.; Radhakrishnan, K.; Nuwar, J.; Pillai, C. Adsorptive removal of Cr (III) from aqueous solution using tripolyphosphate cross-linked chitosan beads. J. Rad. Nuclear Chem. 2011, 289, 275-285. Dash, M.; Chiellini, F.; Ottenbrite, R.; Chiellini, E. Chitosan—a versatile semi-synthetic polymer in biomedical applications. Prog. Polym. Sci. 2011, 36, 981-1014. Da Róz, A. L.; Leite, F. L.; Pereiro, L. V.; Nascente, P. A. P.; Zucolotto, V.; Oliveira Jr, O. N.; Carvalho, A. J. F. Adsorption of chitosan on spin-coated cellulose films. Carbohydr. Polym. 2010, 80, 65-70. Degant, O. and Schwechten, D. Wheat flour with increased water binding capacity and process and equipment for its manufacture. German Patent 2002, DE10107885A1. De oliveria, J. E.; Moreira, F. K. V.; Maroncini, J. M.; Mattoso, L. H. C., Chitosan/pectin blends: influence of the ionic interactions on properties in the solution and solid states. In 7th International Symposium on Natural Polymers and Composites, Brazil, 2010, 662-666. Desai, K.; Park, H. Encapsulation of vitamin C in tripolyphosphate cross-linked chitosan microspheres by spray drying. J Microencaps 2005, 22, 179-192. Donhowe, I. G.; Fennema, O. The effects of plasticizers on crystallinity, permeability, and mechanical properties of methylcellulose films. J Food Process Preserv 1993, 17, 247-257. El-Sakhawy, M.; Hassan, M. L. Physical and mechanical properties of microcrystalline cellulose prepared from agricultural residues. Carbohydr. Polym. 2007, 67, 1-10. Fernandes, S. C. M.; Freire, C. S. R.; Silvestre, A. J. D.; Pascoal Neto, C.; Gandini, A.; Berglund, L. A.; Salmén, L. Transparent chitosan films reinforced with a high content of nanofibrillated cellulose. Carbohydr. Polym. 2010, 81, 394-401. Gao, M.; Forssberg, E. Prediction of product size distributions for a stirred ball mill. Powder Technol 1995, 84, 101-106. Gennadios, A.; Weller, C. L.; Testin, R. F. Modification of physical and barrier properties of edible wheat gluten-based films. 1993, 70, 426-429. Gennadios, A.; Weller, C.; Hanna, M.; Froning, G. Mechanical and barrier properties of egg albumen films. J.Food Sci. 1996, 61, 585-589. Ghanbarzadeh, B.; Almasi, H. Physical properties of edible emulsified films based on carboxymethyl cellulose and oleic acid. Int. J. Biol. Macromol. 2011, 48, 44-49. Gontard, N.; Guilbert, S.; Cuq, J.-L. Edible wheat gluten films: influence of the main process variables on film properties using response surface methodology. J.Food Sci. 1992, 57, 190-195. Han, D.; Yan, L.; Chen, W.; Li, W. Preparation of chitosan/graphene oxide composite film with enhanced mechanical strength in the wet state. Carbohydr. Polym. 2011, 83, 653-658. Hasanovic, A.; Zehl, M.; Reznicek, G.; Valenta, C. Chitosan‐tripolyphosphate nanoparticles as a possible skin drug delivery system for aciclovir with enhanced stability. J Pharm Pharmacol 2009, 61, 1609-1616. Hasegawa, M.; Isogai, A.; Onabe, F.; Usuda, M.; Atalla, R. H. Characterization of cellulose–chitosan blend films. J. Appl. Polymer Sci. 1992, 45, 1873-1879. Hennink, W. E.; van Nostrum, C. F. Novel crosslinking methods to design hydrogels. Adv Drug Del Rev 2012, 64, s223-s236. Hirano, S. Chitin and chitosan. Ullmann's Encyclopedia of Industrial Chemistry 1986, Berlin, Germany. Hu, B.; Pan, C.; Sun, Y.; Hou, Z.; Ye, H.; Hu, B.; Zeng, X. Optimization of fabrication parameters to produce chitosan−tripolyphosphate nanoparticles for delivery of tea catechins. J. Agric. Food Chem. 2008, 56, 7451-7458. Iguchi, M.; Yamanaka, S.; Budhiono, A. Bacterial cellulose—a masterpiece of nature's arts. J. Mat. Sci. 2000, 35, 261-270. Jamshidian, M.; Tehrany, E. A.; Imran, M.; Jacquot, M.; Desobry, S. Poly‐lactic acid: production, applications, nanocomposites, and release studies. Compreh. Rev. Food Sci. Food Safety 2010, 9, 552-571. Jiménez, A.; Fabra, M. J.; Talens, P.; Chiralt, A. Effect of re-crystallization on tensile, optical and water vapour barrier properties of corn starch films containing fatty acids. Food Hydrocolloids 2012, 26, 302-310. Kannangara, D.; Shen, W. Roughness effects of cellulose and paper substrates on water drop impact and recoil. Colloids Surf. A: Physicochem. Eng. Aspects 2008, 330, 151-160. Khan, A.; Khan, R. A.; Salmieri, S.; Le Tien, C.; Riedl, B.; Bouchard, J.; Chauve, G.; Tan, V.; Kamal, M. R.; Lacroix, M. Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydr. Polym. 2012, 90, 1601-1608. Khan, T. A.; Peh, K. K.; Ch’ng, H. S. Mechanical, bioadhesive strength and biological evaluations of chitosan films for wound dressing. J. Pharm. Pharm. Sci 2000, 3, 303-311 Kim, K.; Ko, C.; Park, H. Mechanical properties, water vapor permeabilities and solubilities of highly carboxymethylated starch‐based edible films. J. Food Sci. 2002, 67, 218-222. Kimura, S.; Itoh, T. Cellulose synthesizing terminal complexes in the ascidians. Cellulose 2004, 11, 377-383. Kittur, F. S.; Kumar, K. R.; Tharanathan, R. N. Functional packaging properties of chitosan films. Zeitschrift für Lebensmitteluntersuchung und -Forschung A 1998, 206, 44-47. Klemm, D.; Heublein, B.; Fink, H. P.; Bohn, A. Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl 2005, 44, 3358-93. Kyrikou, I.; Briassoulis, D. Biodegradation of agricultural plastic films: a critical review. J Polym Environ 2007, 15, 125-150. Leceta, I.; Guerrero, P.; de la Caba, K. Functional properties of chitosan-based films. Carbohydr. Polym. 2013a, 93, 339-346. Leceta, I.; Guerrero, P.; Ibarburu, I.; Dueñas, M. T.; de la Caba, K. Characterization and antimicrobial analysis of chitosan-based films. J.Food Eng. 2013b, 116, 889-899. Li, Q.; Zhou, J.; Zhang, L. Structure and properties of the nanocomposite films of chitosan reinforced with cellulose whiskers. J Polym Sci, Part B: Polym Phys 2009, 47, 1069-1077. Lin, W.-C.; Yu, D.-G.; Yang, M.-C. pH-sensitive polyelectrolyte complex gel microspheres composed of chitosan/sodium tripolyphosphate/dextran sulfate: swelling kinetics and drug delivery properties. Colloids Surf B Biointerfaces 2005, 44, 143-151. Lynch, H.; Yang, Y. Degradation products of clavulanic acid promote clavulanic acid production in cultures of Streptomyces clavuligerus. Enzyme Microb Technol 2004, 34, 48-54. Mark, J. E. Polymer Data Handbook. 1999. Wiley: New York, U.S. Mathur, N. K.; Narang, C. K. Chitin and chitosan, versatile polysaccharides from marine animals. J.Chem. Educ. 1990, 67, 938-942 Mathew, A. P.; Oksman, K.; Sain, M. Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J.Applied Polym. Sci. 2005, 97, 2014-2025. Mchugh, T. H.; Aujard, J. F.; Krochta, J. Plasticized whey protein edible films: water vapor permeability properties. J. Food Sci. 1994, 59, 416-419. Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 2011, 40, 3941-3994. Moore, S. Amino acid analysis: aqueous dimethyl sulfoxide as solvent for the ninhydrin reaction. J Biol Chem 1968, 243, 6281-6283. Nakai, Y.; Fukuoka, E.; Nakajima, S.; Hasegawa, J. Crystallinity and physical characteristics of microcrystalline cellulose. Chem. Pharm. Bull. 1977, 25, 96-101. Nunthanid, J.; Puttipipatkhachorn, S.; Yamamoto, K.; Peck, G. E. Physical properties and molecular behavior of chitosan films. Drug Dev Ind Pharm 2001, 27, 143-157. O'Sullivan, A. Cellulose: the structure slowly unravels. Cellulose 1997, 4, 173-207. Park, H. J.; Weller, C. L.; Vergano, P. J.; Testin, R. F. Permeability and mechanical properties of cellulose-based edible films. J. Food Sci. 1993, 58, 1361-1364. Pandey, K. K. A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. J. Applied Polym. Sci. 1999, 71, 1969-1975. Parris, N.; Coffin, D. R. Composition factors affecting the water vapor permeability and tensile properties of hydrophilic zein films. J. Agric Food Chem 1997, 45, 1596-1599. Pati, F.; Adhikari, B.; Dhara, S. Development of chitosan–tripolyphosphate fibers through pH dependent ionotropic gelation. Carbohydr. Res. 2011, 346, 2582-2588. Paunonen, S. Strength and barrier enhancements of cellophane and cellulose derivative films: a review. BioResources 2013, 8, 3098-3121 Pereda, M.; Amica, G.; Marcovich, N. E. Development and characterization of edible chitosan/olive oil emulsion films. Carbohydr. Polym. 2012, 87, 1318-1325. Pereda, M.; Dufresne, A.; Aranguren, M. I.; Marcovich, N. E. Polyelectrolyte films based on chitosan/olive oil and reinforced with cellulose nanocrystals. Carbohydr. Polym. 2014, 101, 1018-1026. Phisalaphong, M.; Jatupaiboon, N. Biosynthesis and characterization of bacteria cellulose–chitosan film. Carbohydr. Polym. 2008, 74, 482-488. Postek, M. T.; Vladár, A.; Dagata, J.; Farkas, N.; Ming, B.; Wagner, R.; Raman, A.; Moon, R. J.; Sabo, R.; Wegner, T. H.; Beecher, J. Development of the metrology and imaging of cellulose nanocrystals. Measur. Sci. Technol. 2011, 22, 024005. Prochazkova, S.; Vårum, K. M.; Ostgaard, K. Quantitative determination of chitosans by ninhydrin. Carbohydr. Polym. 1999, 38, 115-122. Reddy, N.; Yang, Y. Citric acid cross-linking of starch films. Food Chem. 2010, 118, 702-711. Remunan-Lopez, C.; Bodmeier, R. Mechanical, water uptake and permeability properties of crosslinked chitosan glutamate and alginate films. J. Controll. Rel. 1997, 44, 215-225. Rhim, J.-W.; Hong, S.-I.; Park, H.-M.; Ng, P. K. Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J. Agric Food Chem. 2006, 54, 5814-5822. Rhim, J.-W.; Park, H.-M.; Ha, C.-S. Bio-nanocomposites for food packaging applications. Prog. Polym. Sci. 2013, 38, 1629-1652. Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 2006, 31, 603-632. Rodríguez, M.; Osés, J.; Ziani, K.; Maté, J. I. Combined effect of plasticizers and surfactants on the physical properties of starch based edible films. Food. Res. Int. 2006, 39, 840-846. Ross-Murphy, S. B. Rheological characterization of polymer gels and networks. Polym. Gels. Networks. 1994, 2, 229-237. Schwanninger, M.; Rodrigues, J. C.; Pereira, H.; Hinterstoisser, B. Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib. Spectrosc. 2004, 36, 23-40. Sehaqui, H.; Zhou, Q.; Berglund, L. A. Nanostructured biocomposites of high toughness—a wood cellulose nanofiber network in ductile hydroxyethylcellulose matrix. Soft Mat. 2011, 7, 7342-7350. Şenel, S.; McClure, S. J. Potential applications of chitosan in veterinary medicine. Adv. Drug. Del. Rev. 2004, 56, 1467-1480. Shackelford, J. F.; Alexander, W. CRC Materials Science and Engineering Handbook, 2010. CRC press: florida, U.S. Shibata, T. Method for producing green tea in microfine powder. United States Patent 2002, US6416803B1. Shin, Y.; Exarhos, G. J. Template synthesis of porous titania using cellulose nanocrystals. Materials Letters 2007, 61, 2594-2597. Shokri, J.; Adibkia, K. Application of Cellulose and Cellulose Derivatives in Pharmaceutical Industries. 2013. Shokri, J. and Adibkia, K., Ed. InTech: Rijeka, Croatia Silva, S. M.; Braga, C. R.; Fook, M. V.; Raposo, C. M.; Carvalho, L. H.; Canedo, E. L., Application of infrared spectroscopy to analysis of chitosan/clay nanocomposites. In Infrared Spectroscopy - Materials Science, Engineering and Technology, 2012, 43-62 Theophile, T., Ed. InTech: Rijeka, Croatia Sionkowska, A.; Kaczmarek, H.; Wisniewski, M.; Skopinska, J.; Lazare, S.; Tokarev, V. The influence of UV irradiation on the surface of chitosan films. Surf. Sci. 2006, 600, 3775-3779. Siracusa, V.; Rocculi, P.; Romani, S.; Rosa, M. D. Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 2008, 19, 634-643. Siró, I.; Plackett, D. Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 2010, 17, 459-494. Slavin, J. L. Dietary fiber and body weight. Nutrition 2005, 21, 411-418. Snyman, D.; Hamman, J. H.; Kotze, A. F. Evaluation of the mucoadhesive properties of N-trimethyl chitosan chloride. Drug Dev Ind Pharm 2003, 29, 61-69. Sothornvit, R.; Krochta, J. Plasticizers in edible films and coatings. Innov. Food Packaging 2005, 403-433. Srinivasa, P. C.; Ramesh, M. N.; Tharanathan, R. N. Effect of plasticizers and fatty acids on mechanical and permeability characteristics of chitosan films. Food Hydrocolloids 2007, 21, 1113-1122. Steenkamp, G.; Keizer, K.; Neomagus, H.; Krieg, H. Copper (II) removal from polluted water with alumina/chitosan composite membranes. J. Membr. Sci. 2002, 197, 147-156. Tongdeesoontorn, W.; Mauer, L. J.; Wongruong, S.; Sriburi, P.; Rachtanapun, P. Effect of carboxymethyl cellulose concentration on physical properties of biodegradable cassava starch-based films. Chem. Centr. J. 2011, 5, 6. 1-8. Velickova, E.; Winkelhausen, E.; Kuzmanova, S.; Alves, V. D.; Moldão-Martins, M. Impact of chitosan-beeswax edible coatings on the quality of fresh strawberries (Fragaria ananassa cv Camarosa) under commercial storage conditions. LWT - Food Sci. Technol. 2013, 52, 80-92. Vargas, M.; Albors, A.; Chiralt, A.; González-Martínez, C. Characterization of chitosan–oleic acid composite films. Food Hydrocolloids 2009, 23, 536-547. Villalobos, R.; Chanona, J.; Hernández, P.; Gutiérrez, G.; Chiralt, A. Gloss and transparency of hydroxypropyl methylcellulose films containing surfactants as affected by their microstructure. Food Hydrocolloids 2005, 19, 53-61. Vimal, S.; Abdul Majeed, S.; Taju, G.; Nambi, K. S. N.; Sundar Raj, N.; Madan, N.; Farook, M. A.; Rajkumar, T.; Gopinath, D.; Sahul Hameed, A. S. Chitosan tripolyphosphate (CS/TPP) nanoparticles: Preparation, characterization and application for gene delivery in shrimp. Acta Trop 2013, 128, 486-493. Wan, Y.; Creber, K. A. M.; Peppley, B.; Bui, V. T. Synthesis, characterization and ionic conductive properties of phosphorylated chitosan membranes. Macromol. Chem. Physics 2003, 204, 850-858. Wilkinson, D. Study of the reaction mechanism of 1,8-diazafluoren-9-one with the amino acid, l-alanine. Forensic Sci. Int. 2000, 109, 87-103. Wu, Y.; Zheng, Y.; Yang, W.; Wang, C.; Hu, J.; Fu, S. Synthesis and characterization of a novel amphiphilic chitosan–polylactide graft copolymer. Carbohydr. Polym. 2005, 59, 165-171. Xu, Y. X.; Kim, K. M.; Hanna, M. A.; Nag, D. Chitosan–starch composite film: preparation and characterization. Ind. Crops Prod. 2005, 21, 185-192. Zhang, Q.; Liu, L.; Ren, L.; Wang, F. Preparation and characterization of collagen‐ chitosan composites. J. Appl. Polym. Sci. 1997, 64, 2127-2130. Zhang, Q. G.; Hu, W. W.; Zhu, A. M.; Liu, Q. L. UV-crosslinked chitosan/polyvinylpyrrolidone blended membranes for pervaporation. RSC Adv. 2013, 3, 1855-1861. Ziani, K.; Oses, J.; Coma, V.; Maté, J. I. Effect of the presence of glycerol and Tween 20 on the chemical and physical properties of films based on chitosan with different degree of deacetylation. LWT - Food Sci. Technol. 2008, 41, 2159-2165. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56685 | - |
| dc.description.abstract | 生物可分解聚合物 (biodegradable polymers) 為包裝材料上極具潛力的替代性材料,不同於石化材料,不易造成環境汙染,生物性多醣如幾丁聚醣 (chitosan, CH) 為天然多醣材料,可溶於酸性溶劑,攜帶正電荷並具抗菌作用,成膜性好、透明度高且無毒性,但成膜之機械特性仍有許多改善空間。纖維素 (cellulose) 透過物理性方法如介質研磨法 (media-milling) 降解後得到之介質研磨纖維素 (media-milled cellulose, MC),其材料表面積增加,暴露較多之OH官能基,且表面攜帶負電荷,理論上能與結構相似、電荷相反的幾丁聚醣具良好的分子間交互作用。本實驗目的利用介質研磨降解纖維素,與幾丁聚醣,經不同比例混合形成複合薄膜,另添加固定濃度甘油 (glycerol) 塑化劑,增加複合薄膜延展性,並以三聚磷酸鈉 (sodium tripolyphosphate, STPP) 進行薄膜交聯處理,增強薄膜的機械特性,探討其物化特性與交互作用;結果顯示,與未混合MC的組別相比,當複合薄膜比例為CH/MC = 70/30時,拉伸張力增加33%;添加甘油組強度增加275%,且延展性提升11倍,掃描式電子顯微鏡 (SEM) 影像顯示,兩材料在此比例下薄膜仍呈均質的結構;交聯組拉伸張力在比例為CH/MC = 10/90時,達到所有實驗組最大值104.30 MPa;隨MC比例愈高,除甘油組外,各處理組之水氣通過率、水分含量皆呈現下降趨勢,顯示MC能夠使複合薄膜親水性下降,但MC比例上升,增加複合薄膜的不透明度;各處理組的溶解度均小於10%,顯示複合薄膜較不易溶出固形物。X光繞射儀 (XRD) 結果顯示,CH與MC材料複合成膜後,提升複合薄膜的結晶度,但無新的結晶或結晶位移產生;透過傅立葉轉換紅外線光譜儀 (FTIR) 以及介面電位分析儀 (zeta potential) 測定,顯示CH與MC兩材料之交互作用包括分子間的氫鍵與靜電力作用。 | zh_TW |
| dc.description.abstract | Biodegradable polymers is a potential alternative materials for packaging. These materials are environmental friendly. Some of polysaccharides, such as chitosan (CH), which is soluble and protonated in dilute acid and is positive charged. CH exhibits non-toxic, transparent, antimicrobial, and film-forming properties. However, due to its poor mechanical and barrier properties, there existed plenty of rooms for improvement. Due to size reduction media-milled cellulose (MC) exhibits more surface area, and exposed more OH functional groups, with negative charge. Theoretically, MC could composite with CH due to similar molecule structure and electrostatics force interaction. The objectives of this study were to improve the mechanical property of chitosan via the employment of media-milled cellulose and sodium tripolyphosphate (cross-linked reagent, CL), and to evaluate the interactions among components during film preparation. Results showed that, compared with the control group (without MC), at the ratio CH/MC = 70/30, the tensile strength (TS) was increased 33%. Adding 30% glycerol increased the TS by 275% and elongation by 11 folds. The composite film exhibited greatest TS of 104.30 MPa with cross-linking at the ratio CH/MC/C = 90/10. Scanning electron microscopy (SEM) showed a homogenous structure at the ratios. The hydrophilic properties (water content and water vapor permeability, WVP) of CH film significantly (p < 0.05) decreased by MC except the glycerol group. Measured by X-ray diffraction (XRD), addition of MC enhanced the crystallinity of composite film, without new crystal forming. The interactions among components included intermolecular hydrogen bonding and electrostatics force evidenced by FTIR and Zeta potential measurements. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:42:05Z (GMT). No. of bitstreams: 1 ntu-103-R01641025-1.pdf: 9186038 bytes, checksum: 151ae3f88f31cd3effa12907c3eaf5e0 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 摘 要 ......................................................................................................................... I
Abstract ........................................................................................................................ II 目 錄 ...................................................................................................................... IV 圖目錄 ....................................................................................................................... VII 表目錄 .......................................................................................................................... X 壹、前言 ....................................................................................................................... 1 1.1. 研究目的........................................................................................................ 1 貳、文獻回顧 ............................................................................................................... 2 2.1. 生物可分解材料............................................................................................ 2 2.1.1. 生物可分解聚合物簡介......................................................................... 2 2.1.2. 生物可分解材料分類............................................................................. 2 2.2. 奈米科技........................................................................................................ 5 2.2.1. 奈米科技緣起......................................................................................... 5 2.2.2. 奈米材料製備......................................................................................... 6 2.2.3. 介質研磨................................................................................................. 7 2.3. 纖維素............................................................................................................ 7 2.3.1. 纖維素名詞............................................................................................. 7 2.3.2. 纖維素來源............................................................................................. 7 2.3.3. 纖維素結構............................................................................................. 8 2.3.4. 纖維素應用特性..................................................................................... 8 2.3.5. 纖維素表面電位..................................................................................... 8 2.3.6. 纖維素材料薄膜................................................................................... 12 2.4. 幾丁聚醣...................................................................................................... 13 2.4.1. 幾丁聚醣名詞....................................................................................... 13 2.4.2. 幾丁聚醣來源....................................................................................... 13 2.4.3. 幾丁聚醣結構....................................................................................... 14 2.4.4. 幾丁聚醣應用特性............................................................................... 16 2.4.5. 幾丁聚醣材料薄膜............................................................................... 16 2.5. 塑化劑.......................................................................................................... 18 2.5.1. 塑化劑功能特性................................................................................... 18 2.6. 交聯反應...................................................................................................... 19 2.6.1. 交聯反應與三聚磷酸鈉....................................................................... 19 參、材料與方法 ......................................................................................................... 22 3.1. 原料.............................................................................................................. 22 3.2. 藥品.............................................................................................................. 22 3.3. 儀器設備...................................................................................................... 23 3.4. 方法.............................................................................................................. 24 3.4.1. 介質研磨纖維素懸浮液....................................................................... 24 3.4.2. 粒徑分析............................................................................................... 25 3.4.3. 薄膜製備............................................................................................... 25 3.4.4. 薄膜交聯化處理................................................................................... 27 3.4.5. 厚度與交聯後直徑測量....................................................................... 27 3.4.6. 機械特性............................................................................................... 28 3.4.7. 交聯度測定........................................................................................... 28 3.4.8. 甘油含量測定....................................................................................... 30 3.4.9. 水分含量............................................................................................... 31 3.4.10. 水氣通透率......................................................................................... 31 3.4.11. 接觸角................................................................................................. 33 3.4.12. 總固形物溶出量................................................................................. 33 3.4.13. 顯微觀察............................................................................................. 34 3.4.14. 不透明度............................................................................................. 34 3.4.15. 傅立葉轉換紅外線光譜..................................................................... 34 3.4.16. 結晶性................................................................................................. 35 4.1. 外觀.............................................................................................................. 37 4.2. 粒徑分布...................................................................................................... 37 4.3. 水分含量...................................................................................................... 44 4.4. 複合薄膜厚度分析...................................................................................... 46 4.5. 介面電位...................................................................................................... 49 4.6. 複合薄膜機械特性...................................................................................... 51 4.6.1. 拉伸張力............................................................................................... 51 4.6.2. 延展性................................................................................................... 54 4.7. 水氣通透率.................................................................................................. 60 4.8. 接觸角.......................................................................................................... 62 4.9. 總可溶物...................................................................................................... 66 4.10. 顯微觀察.................................................................................................... 67 4.11. 不透明度.................................................................................................... 78 4.12. X光繞射圖譜 ............................................................................................. 80 4.13. 傅立葉轉換紅外線光譜............................................................................ 84 伍、結論 ..................................................................................................................... 89 陸、建議研究方向 ..................................................................................................... 91 柒、參考文獻 ............................................................................................................. 92 | |
| dc.language.iso | zh-TW | |
| dc.subject | 幾丁聚醣 | zh_TW |
| dc.subject | 生物高分子聚合物 | zh_TW |
| dc.subject | 介質研磨 | zh_TW |
| dc.subject | 三聚磷酸鈉 | zh_TW |
| dc.subject | 纖維素 | zh_TW |
| dc.subject | cellulose | en |
| dc.subject | chitosan | en |
| dc.subject | biopolymers | en |
| dc.subject | sodium tripolyphosphate | en |
| dc.subject | media-milling | en |
| dc.title | 介質研磨纖維素與幾丁聚醣複合薄膜經三聚磷酸鈉交聯化反應後之物化性質探討 | zh_TW |
| dc.title | Physicochemical properties of media-milled cellulose-chitosan composite films cross-linked with sodium tripolyphosphate | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔣丙煌,馮臨惠,陳政雄,陳時欣 | |
| dc.subject.keyword | 生物高分子聚合物,幾丁聚醣,纖維素,三聚磷酸鈉,介質研磨, | zh_TW |
| dc.subject.keyword | biopolymers,chitosan,cellulose,sodium tripolyphosphate,media-milling, | en |
| dc.relation.page | 119 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-12 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 8.97 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
