請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56667完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳敏璋(Miin-Jang Chen) | |
| dc.contributor.author | Chia-Wei Lee | en |
| dc.contributor.author | 李家瑋 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:40:59Z | - |
| dc.date.available | 2017-08-16 | |
| dc.date.copyright | 2014-08-16 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-12 | |
| dc.identifier.citation | 第一章
1. Saunders AE, Sigman MB, Korgel BA. Growth kinetics and metastability of monodisperse tetraoctylammonium bromide capped gold nanocrystals. The Journal of Physical Chemistry B. 2004;108(1):193-199. 2. Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: the influence of size,shape, and dielectric environment. The Journal of Physical Chemistry B. 2003;107(3):668-677. 3. Eustis S, El-Sayed MA. Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chemical Society Reviews. 2006;35(3):209-217. 4. Bohren CFH, Donald R., ed. Absorption and Scattering of Light by small Particles: John Wiley and Sons Inc; 1998. 5. http://hyperphysics.phy-astr.gsu.edu/hbase/atmos /blusky.html#c2. 6. Guerrero AH, Fasoli HJ, Costa JL. Why gold and copper are colored but silver is not. Journal of chemical education.1999;76(2):200. 7. John Turkevich PCS. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society. 1951;11:55-75. 8. Nehl CL, Hafner JH. Shape-dependent plasmon resonances of gold nanoparticles. J Mater Chem. 2008; 18(21): 2415-2419. 9. Jana NR, Gearheart L, Murphy CJ. Seeding growth for size control of 5-40 nm diameter gold nanoparticles. Langmuir.2001;17(22):6782-6786. 10.Treguer-Delapierre M, Majimel J, Mornet S, Duguet E, Ravaine S. Synthesis of non-spherical gold nanoparticles. Gold Bulletin. 2008;41(2):195-207. 11.Kreibig U, Vollmer M. Optical properties of metal clusters. 1995. 12.Rawson EG. CALCULATION OF MIE SCATTERING BY SPHERICAL PARTICLES IN LOW-LOSS GLASSES FOR OPTICAL WAVEGUIDES. Applied Optics. 1971;10(12):2778-&. 13.Praburam G, Goree J. A scattering ratio method for sizing particulates in a plasma. Plasma Sources Science & Technology. Feb 1996;5(1):84-92. 14.Barnes WL, Dereux A, Ebbesen TW. Surface plasmon subwavelength optics. Nature. Aug 2003;424(6950):824-830. 15.Du H. Mie-scattering calculation. Applied Optics. Mar 2004;43(9):1951-1956. 16.Palik ED. Handbook of optical constants of solids. Vol 3: Academic press; 1998. 17.呂紹旭. 平面光學消逝波在奈米顆粒之偵測與應用. 國立海洋大 學光電科學研究所碩士學位論文. 2004. 18.Jain PK, Lee KS, El-Sayed IH, El-Sayed MA. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J Phys Chem B. Apr 2006;110(14):7238-7248. 19.Reinhard BM, Siu M, Agarwal H, Alivisatos AP, Liphardt J. Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles. Nano Letters. 2005;5(11):2246-2252. 20.Jain PK, Huang W, El-Sayed MA. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Letters. 2007;7(7):2080-2088. 21.Esteban R, Taylor RW, Baumberg JJ, Aizpurua J. How chain plasmons govern the optical response in strongly interacting self-assembled metallic clusters of nanoparticles. Langmuir.28(24):8881-8890. 22.Herrmann LO, Valev VK, Aizpurua J, Baumberg JJ. Self-sifting of chain plasmons: the complex optics of Au nanoparticle clusters. Optics express.21(26):32377-32385. 23.郭清癸, 黃俊傑, 牟中原. 金屬奈米粒子的製造. 物理雙月刊. 2002; 23(6):614-625. 24.Rak MJ, Friscic T, Moores AH. FD 170: Mechanochemical synthesis of Au, Pd, Ru and Re nanoparticles with lignin as a bio-based reducing agent and stabilizing matrix. Faraday Discussions. 25.H. W. Kroto JRH, S. C. O'Brien, R. F. Curl & R. E. Smalley C60: Buckminsterfullerene. Nature. 1985;318(14):162-163. 26.Mafune F, Kohno J-y, Takeda Y, Kondow T, Sawabe H. Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant. The Journal of Physical Chemistry B. 2001;105(22):5114-5120. 27.Hajiesmaeilbaigi F, Motamedi A. Synthesis of Au/Ag alloy nanoparticles by Nd: YAG laser irradiation. Laser Physics Letters. 2007;4(2):133. 28.Prokes L, Pena-Mendez EM, Conde JE, Panyala NR, Alberti M, Havel J. Laser ablation synthesis of new gold arsenides using nano-gold and arsenic as precursors. Laser desorption ionisation time-of-flight mass spectrometry and spectrophotometry Rapid Communications in Mass Spectrometry. 28(6): 577- 586. 29.Doron-Mor I, Barkay Z, Filip-Granit N, Vaskevich A, Rubinstein I. Ultrathin gold island films on silanized glass. Morphology and optical properties. Chemistry of materials. 2004;16(18):3476-3483. 30.Yue W, Wang Z, Yang Y, et al. Electron-beam lithography of gold nanostructures for surface-enhanced Raman scattering. Journal of Micromechanics and Microengineering.22(12):125007. 31.Ji X, Song X, Li J, Bai Y, Yang W, Peng X. Size control of gold nanocrystals in citrate reduction: the third role of citrate. Journal of the American Chemical Society. 2007;129(45):13939-13948. 32.Esumi K, Wakabayashi M, Torigoe K. Preparation of colloidal silver-palladium alloys by UV-irradiation in mixtures of acetone and 2-propanol. Colloids and Surfaces a-Physicochemical and Engineering Aspects. Apr 1996;109:55-62. 33.Henglein A, Meisel D. Radiolytic control of the size of colloidal gold nanoparticles. Langmuir. Dec 1998;14(26):7392-7396. 34.Yu YY, Chang SS, Lee CL, Wang CRC. Gold nanorods: Electrochemical synthesis and optical properties. J Phys Chem B. Aug 1997; 101 (34): 6661-6664. 35.Yu Y-Y, Chang S-S, Lee C-L, Wang CRC. Gold nanorods: electrochemical synthesis and optical properties. The Journal of Physical Chemistry B. 1997;101(34):6661-6664. 36.Liu H, Cao X, Yang J, Gong X-Q, Shi X. Dendrimer- mediated hydrothermal synthesis of ultrathin gold nanowires. Scientific reports.3. 37.Ye X, Zheng C, Chen J, Gao Y, Murray CB. Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods. Nano Letters.13(2):765-771. 38.Busson MP, Rolly B, Stout B, et al. Optical and topological characterization of gold nanoparticle dimers linked by a single DNA double strand. Nano Letters.11(11):5060-5065. 39.Taylor RW, Lee T-C, Scherman OA, et al. Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit [n] uril 'glue'. ACS nano.5(5):3878-3887. 第二章 1. Cohen AA, Geva-Zatorsky N, Eden E, et al. Dynamic proteomics of individual cancer cells in response to a drug. science. 2008;322(5907):1511-1516. 2. Yu M, Zhao Q, Shi L, et al. Cationic iridium (III) complexes for phosphorescence staining in the cytoplasm of living cells. Chem Commun. 2008(18):2115-2117. 3. Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir. 2005; 21(23): 10644-10654. 4. Lin C-AJ, Lee C-H, Hsieh J-T, et al. Review: Synthesis of Fluorescent Metallic Nanoclusters toward Biomedical Application: Recent Progress and Present Challenges. Journal of Medical and Biological Engineering. 2009;29(6). 5. Wax A, Sokolov K. Molecular imaging and darkfield microspectroscopy of live cells using gold plasmonic nanoparticles. Laser & Photonics Reviews.2009;3(1-2) :146-158. 6. Lee C-W, Chen M-J, Cheng J-Y, Wei P-K. Morphological studies of living cells using gold nanoparticles and dark-field optical section microscopy. Journal of biomedical optics. 2009;14(3):034016-034016-034016. 7. Van Dijk MA, Tchebotareva AL, Orrit M, et al. Absorption and scattering microscopy of single metal nanoparticles. Physical Chemistry Chemical Physics. 2006;8(30): 3486-3495. 8. Schrand AM, Dai L, Schlager JJ, Hussain SM, Osawa E. Differential biocompatibility of carbon nanotubes and nanodiamonds. Diamond and Related Materials. 2007;16(12):2118-2123. 9. Loiko VA, Ruban GI, Gritsai OA, Berdnik VV, Goncharova NV. Mononuclear cells morphology for cells discrimination by the angular structure of scattered light. ICHMT DIGITAL LIBRARY ONLINE. 2007;14. 10.Mehrishi JN, Bauer J. Electrophoresis of cells and the biological relevance of surface charge. Electrophoresis. 2002;23(13):1984-1994. 11.Lee C-W, Lin E-H, Cheng J-Y, Wei P-K. Study of gold nanoparticles and live cells interactions by using planar evanescent wave excitation. Journal of biomedical optics. 2009;14(2):021005-021005-021006. 12.Collins JS, Goldsmith TH. Spectral properties of fluorescence induced by glutaraldehyde fixation. Journal of Histochemistry & Cytochemistry. 1981;29 (3):411-414. 13.Tong L, Zhao Y, Huff TB, Hansen MN, Wei A, Cheng J. Gold nanorods mediate tumor cell death by compromising membrane integrity. Advanced Materials. 2007;19(20):3136-3141. 14.Wakatsuki T, Schwab B, Thompson NC, Elson EL. Effects of cytochalasin D and latrunculin B on mechanical properties of cells. Journal of Cell Science. 2001;114(5):1025-1036. 15.Yang XP, Gallo M, Ngan I, Nocerini M, Chen MM. Short Technical Report Use of CMFDA and CMTMR Fluorescent Dyes in FACS®-Based Antibody Screening. Biotechniques. 2002;32(3):678-682. 16.Hurst SJ, Lytton-Jean AKR, Mirkin CA. Maximizing DNA loading on a range of gold nanoparticle sizes. Analytical chemistry. 2006;78(24):8313-8318. 17.Chithrani BD, Ghazani AA, Chan WCW. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano letters. 2006;6(4):662-668. 18.Abercrombie M, Heaysman JEM, Pegrum SM. The locomotion of fibroblasts in culture: III. Movements of particles on the dorsal surface of the leading lamella. Experimental cell research. 1970;62(2):389-398. 19.Giannone G, Dubin-Thaler BJ, Dobereiner H-G, Kieffer N, Bresnick AR, Sheetz MP. Periodic lamellipodial contractions correlate with rearward actin waves. Cell. 2004;116(3):431-443. 20.Bretscher MS. Getting membrane flow and the cytoskeleton to cooperate in moving cells. Cell. 1996;87(4):601-606. 21.Jiang W, Kim BYS, Rutka JT, Chan WCW. Nanoparticle- mediated cellular response is size-dependent. Nature Nanotechnology. 2008;3(3):145-150. 22.Lin C-AJ, Yang T-Y, Lee C-H, et al. Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. Acs Nano. 2009;3(2):395-401. 23.Eustis S, El-Sayed MA. Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chemical Society Reviews. 2006;35(3):209-217. 第三章 1. Eustis S, El-Sayed MA. Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chemical Society Reviews. 2006;35(3):209-217. 2. Lin C-AJ, Lee C-H, Hsieh J-T, et al. Review: Synthesis of Fluorescent Metallic Nanoclusters toward Biomedical Application: Recent Progress and Present Challenges. Journal of Medical and Biological Engineering. 2009; 29(6). 3. Peng X, Manna L, Yang W, et al. Shape control of CdSe nanocrystals. Nature. 2000;404(6773):59-61. 4. Wu Z, Jin R. On the ligand's role in the fluorescence of gold nanoclusters. Nano letters.10(7):2568-2573. 5. Zheng J, Zhang C, Dickson RM. Highly fluorescent, water- soluble, size-tunable gold quantum dots. Physical review letters. 2004;93(7):077402. 6. Xie J, Zheng Y, Ying JY. Protein-directed synthesis of highly fluorescent gold nanoclusters. Journal of the American Chemical Society. 2009;131(3): 888-889. 7. Huang C-C, Liao H-Y, Shiang Y-C, Lin Z-H, Yang Z, Chang H-T. Synthesis of wavelength-tunable luminescent gold and gold/silver nanodots. J Mater Chem. 2009;19(6): 755-759. 8. Lin C-AJ, Lee C-H, Hsieh J-T, et al. Synthesis and surface modification of highly fluorescent gold nanoclusters and their exploitation for cellular labeling. Paper presented at: Proc. of SPIE Vol. 7575 757506-5. 9. Benjaminsen RV, Mattebjerg MA, Henriksen JR, Moghimi SM, Andresen TL. The possible 'proton sponge' effect of polyethylenimine (PEI) does not include change in lysosomal pH. Molecular Therapy.21(1):149-157. 10.Mehrishi JN, Bauer J. Electrophoresis of cells and the biological relevance of surface charge. Electrophoresis. 2002;23(13):1984-1994. 11.Nel AE, Madler L, Velegol D, et al. Understanding biophysicochemical interactions at the nano-bio interface. Nature materials. 2009;8(7):543-557. 12.Twentyman PR, Luscombe M. A study of some variables in a tetrazolium dye (MTT) based assay for cell growth and chemosensitivity. British journal of cancer. 1987;56(3):279. 13.Duan H, Nie S. Etching colloidal gold nanocrystals with hyperbranched and multivalent polymers: a new route to fluorescent and water-soluble atomic clusters. Journal of the American Chemical Society. 2007;129(9):2412-2413. 14.Li N, Yang H, Lu L, Duan C, Zhao C, Zhao H. Comparison of the labeling efficiency of BrdU, DiI and FISH labeling techniques in bone marrow stromal cells. Brain research. 2008;1215:11-19. 15.Klesing J, Chernousova S, Epple M. Freeze-dried cationic calcium phosphate nanorods as versatile carriers of nucleic acids (DNA, siRNA). Journal of Materials Chemistry.22(1):199-204. 16.Brunot C, Ponsonnet L, Lagneau C, Farge P, Picart C, Grosgogeat B. Cytotoxicity of polyethyleneimine (PEI), precursor base layer of polyelectrolyte multilayer films. Biomaterials. 2007;28(4):632-640. 17.Esfand R, Tomalia DA. Poly (amidoamine)(PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug discovery today. 2001;6(8):427-436. 18.Chithrani BD, Chan WCW. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano letters. 2007;7(6):1542-1550. 19.Albanese A, Chan WCW. Effect of gold nanoparticle aggregation on cell uptake and toxicity. ACS nano.5(7):5478-5489. 第四章 1. Liu Z, Hou W, Pavaskar P, Aykol M, Cronin SB. Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano letters. 2011;11 (3): 1111-1116. 2. Fujishima A. Electrochemical photolysis of water at a semiconductor electrode. nature. 1972;238:37-38. 3. Wang XH, Li JG, Kamiyama H, Moriyoshi Y, Ishigaki T. Wavelength-sensitive photocatalytic degradation of methyl orange in aqueous suspension over iron (III)-doped TiO2 nanopowders under UV and visible light irradiation. The Journal of Physical Chemistry B. 2006;110(13):6804-6809. 4. Xie Y, Zhao X. The effects of synthesis temperature on the structure and visible-light-induced catalytic activity of F-N--codoped and S-N-codoped titania. Journal of Molecular Catalysis A: Chemical. 2008; 285(1) :142-149. 5. Kim MJ, Kim K-D, Tai WS, et al. Enhancement of photocatalytic activity of TiO2 by high-energy electron-beam treatment under atmospheric pressure. Catalysis letters. 2010;135(1-2):57-61. 6. Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews. 2009; 38 (1):253-278. 7. Nozik AJ, Memming R. Physical chemistry of semiconductor- liquid interfaces. The Journal of Physical Chemistry. 1996;100(31):13061-13078. 8. Cesar I, Sivula K, Kay A, Zboril R, Grätzel M. Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting. The Journal of Physical Chemistry C. 2008;113(2):772-782. 9. Hou Y, Abrams BL, Vesborg PCK, et al. Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. Nature materials. 2011;10(6):434-438. 10.Goldberger J, He R, Zhang Y, et al. Single-crystal gallium nitride nanotubes. nature. 2003;422(6932) :599-602. 11.Ingram DB, Linic S. Water splitting on composite plasmonic- metal/semiconductor photoelectrodes: evidence for selective plasmon- induced formation of charge carriers near the semiconductor surface. Journal of the American Chemical Society. 2011;133(14):5202-5205. 12.Linic S, Christopher P, Ingram DB. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature materials. 2011;10(12):911-921. 13.Chen HM, Chen CK, Chen C-J, et al. Plasmon inducing effects for enhanced photoelectrochemical water splitting: X-ray absorption approach to electronic structures. ACS nano. 2012;6(8):7362-7372. 14.Lee J, Javed T, Skeini T, Govorov AO, Bryant GW, Kotov NA. Bioconjugated Ag Nanoparticles and CdTe Nanowires: Metamaterials with Field-Enhanced Light Absorption. Angewandte Chemie International Edition. 2006;45(29): 4819-4823. 15.Quintana M, Edvinsson T, Hagfeldt A, Boschloo G. Comparison of dye-sensitized ZnO and TiO2 solar cells: studies of charge transport and carrier lifetime. The Journal of Physical Chemistry C. 2007;111(2):1035-1041. 16.Su J, Feng X, Sloppy JD, Guo L, Grimes CA. Vertically aligned WO3 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis and photoelectrochemical properties. Nano letters. 2010;11(1):203-208. 17.Kalanur SS, Hwang YJ, Chae SY, Joo OS. Facile growth of aligned WO3 nanorods on FTO substrate for enhanced photoanodic water oxidation activity. Journal of Materials Chemistry A. 2013;1(10):3479-3488. 18.Yuhas BD, Zitoun DO, Pauzauskie PJ, He R, Yang P. Transition metal Doped Zinc Oxide Nanowires. Angewandte Chemie. 2006;118(3):434-437. 19.Hanson K, Brennaman MK, Luo H, et al. Photostability of Phosphonate- Derivatized, RuII Polypyridyl Complexes on Metal Oxide Surfaces. ACS Applied Materials & Interfaces. 2012;4(3):1462-1469. 20.Hanson K, Losego MD, Kalanyan B, Parsons GN, Meyer TJ. Stabilizing small molecules on metal oxide surfaces using atomic layer deposition. Nano letters. 2013;13(10):4802-4809. 21.George SM. Atomic layer deposition: an overview. Chemical Reviews. 2010; 110(1):111-131. 第五章 1. Chithrani BD, Ghazani AA, Chan WCW. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano letters. 2006;6(4):662-668. 2. Zhu M, Aikens CM, Hollander FJ, Schatz GC, Jin R. Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. Journal of the American Chemical Society. 2008;130(18):5883-5885. 3. Shishino Y, Yonezawa T, Kawai K, Nishihara H. Molten matrix sputtering synthesis of water-soluble luminescent Au nanoparticles with a large Stokes shift. Chem Commun. 46 (38):7211-7213. 4. Carmeli I, Lieberman I, Kraversky L, et al. Broad band enhancement of light absorption in photosystem I by metal nanoparticle antennas. Nano letters.10(6):2069 -2074. 5. Li H, Opgenorth PH, Wernick DG, et al. Integrated electromicrobial conversion of CO2 to higher alcohols. Science.335(6076):1596-1596. 6. http://www.rsc.org/ScienceAndTechnology/Policy/Documents /solar-fuels.asp | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56667 | - |
| dc.description.abstract | (黃)金,原子序79,在元素周期表中的最後一列。由於其性質穩定,顏色艷麗,自古以來就一直與人類的日常生活息息相關,廣泛被使用作為容器、裝飾品、建築、貨幣……等。
金屬內部具有可任意移動的自由電子(d軌域電子),當金屬由塊材縮小達奈米(10-9 m)尺度時,其電子運動因受到空間的侷限而產生獨特的物理及光學性質。金在可見光波長範圍內的介電係數為負值,因此奈米金顆粒在可見光內具有特徵的局部表面電漿共振(LSPR)吸收及散射。在本論文中,將利用奈米金的強散射性質作為顯影效果,搭配暗場光學切片顯微術(Dark-Field Optical Section Microscope, DFOSM),成功的利用80 nm奈米金顆粒描繪出活細胞之表面形貌。更藉由此顯微術成功的即時觀察到非小型肺腺癌細胞(CL1-0)在加入細胞鬆弛素(Cytochalasin D)後形變之過程。 隨著製程及濕式化學合成技術的進展,目前已能將奈米結構的間距及奈米顆粒的大小縮小到數個奈米的等級。然而,當奈米顆粒縮小到僅由幾個原子所組成時(粒徑< 2奈米,亦可稱奈米團簇),能階不再連續而產生’’類分子’’的性質。其中最引人注意的是金與銀奈米團簇在可見光波長範圍會產生穩定螢光的特性。在論文中,利用樹枝狀結構的高分子(PAMAM)成功的製備出具有八個金原子組成的金奈米團簇,並研究其作為載體來攜帶核酸進入活細胞的效率以及探討其對活細胞存活率的影響。 在科技發達的今日,除了疾病問題以外,能源短缺為首要必須解決的問題。利用半導體材料吸收太陽光而直接將水催化分解成氫氣及氧氣為目前熱門的研究題目。在論文中,選用氧化鎢奈米柱作為感光陽極,在陽極上鋪上一層奈米金顆粒將有效提升可見光範圍內催化水解反應的效率。並結合原子層沉積製程技術,在基板上沉積上一層氧化鋁以增加元件的穩定度。 | zh_TW |
| dc.description.abstract | Gold (atomic number: 79), lies in the last row of the periodic table. It is closely related to human daily life since ancient times due to its brilliant color and stable characters. Gold is also extensively used to make pots, decorations, buildings, currencies….etc.
When the dimensions of metals are reduced to the nanometer scale, the freely moved d orbital electrons will be confined in space. The nanometer sized metals produce unique physical and optical properties other than the bulk materials. Gold nanoparticles have a significant localized surface plasmon resonance absorption and scattering in the visible light wavelength due to the negative dielectric constant in this range. In this thesis, we built a simple apparatus named as Dark-Field Optical Section Microscope (DFOSM). The live cell morphology was successfully reconstructed by recording the strong scattering signals from 80 nm sized gold nanoparticles. Using this microscopy, we can record real-time morphology changes of the human lung cancer cells (CL1-0) influenced by the actin polymerization inhabitor, Cytochalasin D. The sizes and gaps of nanostructures now can be well controlled to few nanometers by the improved chemical fabrication techniques. However, when the sizes of nanoparticles keep reduced, only composed of few atoms, they behave‘’molecule-like’’properties and also called as nanoclusters. The most interesting property of Au nanoclusters (size < 2 nm) is its tunable fluorescence in the visible light range. In this thesis, we fabricated the fluorescent Au nanoclusters capped by dendrimers (Au8@PAMAM), and used it as a gene carrier and investigated the transfection efficiencies in various type of cells. Nowadays, besides the evolutionary diseases, the short in energy supply is another top issue arises from the fast developed civilization. Water splitting is a popular research on energy storage. It is a process of directly converting water into hydrogen and oxygen. The absorbed solar energy is stored as chemical energy by the catalytic property from semiconductor materials. In this thesis, we fabricated tungsten oxide nanorods as photo anode. By depositing gold nanoparticles onto the anodes, the conversion efficiency is enhanced in the visible light range. Finally, the stability of the photo anodes was improved by depositing an aluminum oxide thin film through the atomic layer deposition technique. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:40:59Z (GMT). No. of bitstreams: 1 ntu-103-D96527022-1.pdf: 47106689 bytes, checksum: ac8cdbf3df2a0d54ef5876f5aa579c76 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 iii 摘要 v Abstract vii 目錄 ix 圖目錄 xi 表目錄 xv 第一章 簡介 1 1.1 動機 1 1.2 金奈米顆粒的光學性質 2 1.3 表面電漿子共振(Surface Plasmon Resonance) 7 1.4 金奈米顆粒製備方式 15 1.4.1 物理方法(Physical Method) 15 1.4.2 化學方法(Chemical Method) 16 1.5 論文綱要 17 參考文獻 18 第二章 利用金奈米顆粒在暗場顯微鏡下之顯影來研究藥物與活 細胞間的交互作用 22 2.1 簡介 22 2.2 暗場光學切片顯微術系統簡介 23 2.2.1 Dark-Field Optical section microscopy (DFOSM) 23 2.2.2 DFOSM之測量準確度與解析度 27 2.2.3 DFOSM 影像及細胞形貌重建 28 2.2.4 利用DFOSM紀錄細胞在藥物作用下之形貌變化 31 2.2.5 以DFOSM觀測攜帶核酸之金奈米顆粒 36 2.3 結論 37 參考文獻 38 第三章 具螢光性質之金奈米團簇(cluster)水溶液之製備及其 攜帶核酸於基因治療上的應用 41 3.1 簡介 41 3.2 金屬奈米團簇產生螢光的機制 42 3.3 金奈米團簇之製備方式 43 3.3.1 有機大分子限制沉積(template confined) 43 3.3.2 單分子層保護(monolayer protected) 44 3.4 金奈米團簇之螢光穩定度 44 3.5 作為藥物載體(Drug Carrier)的要件 46 3.6 海綿效應(Proton sponge effect) 47 3.7 細胞存活率量測(MTT assay) 48 3.8 結果與討論 48 3.8.1 具藍色螢光金奈米團簇(Au@PEI)之合成 48 3.8.2 Au@PEI與細胞之交互作用 49 3.8.3 發藍光之金奈米團簇(Au8@PAMAM)之合成 52 3.8.4 Au8@PAMAM 對細胞毒性之研究 54 3.8.5 Au8@PAMAM作為載體來攜帶核酸之表現 56 3.9 結論 58 參考文獻 59 第四章 金奈米顆粒於光化學催化上的運用----增加氧化鎢薄膜 在可見光範圍內太陽光之吸收以進行水分解反應 61 4.1 簡介 61 4.2 半導體材料的光催化反應(光能轉換成化學能) 62 4.3 金屬奈米結構增益於太陽光(可見光範圍)之轉換效率 的機制 65 4.3.1 電荷直接注入 65 4.3.2 能量轉移 66 4.3.3 金屬奈米結構之增強電場 67 4.3.4 散射效應 68 4.4 實驗樣品備製 69 4.4.1 感光陽極(半導體材料)之選擇 69 4.4.2 氧化鎢(WO3)奈米柱薄膜之製備 70 4.4.3 大面積均勻金屬奈米結構之製備 72 4.4.4 大面積均勻分佈金奈米顆粒之氧化鎢奈米柱薄膜 75 4.5 光電流量測 77 4.5.1 不同密度金奈米顆粒對光催化反應之影響 78 4.5.2 感光陽極基板穩定度之測試 81 4.6 感光陽極基板穩定度之改進 82 4.6.1 原子層沉積(atomic layer deposition,ALD) 83 4.6.2 穩定度的量測 85 4.6.3 太陽光模擬系統(solar simulator)下之光電流反應 88 4.7 結論 90 參考文獻 91 第五章 總結與未來展望 93 參考文獻 97 | |
| dc.language.iso | zh-TW | |
| dc.subject | 金奈米團簇 | zh_TW |
| dc.subject | 暗場光學切片顯微術 | zh_TW |
| dc.subject | 光催化水分解 | zh_TW |
| dc.subject | 侷部表面電漿共振 | zh_TW |
| dc.subject | 金奈米顆粒 | zh_TW |
| dc.subject | 原子層沉積 | zh_TW |
| dc.subject | 氧化鎢 | zh_TW |
| dc.subject | atomic layer deposition (ALD) | en |
| dc.subject | photocatalytic water splitting | en |
| dc.subject | tungsten oxide (WO3) | en |
| dc.subject | gold nanocluster | en |
| dc.subject | dark-field optical section microscope (DFOSM) | en |
| dc.subject | localized surface plasmon resonance (LSPR) | en |
| dc.subject | gold nanoparticles | en |
| dc.title | 不同尺寸奈米金粒子的製備、光學特性與應用 | zh_TW |
| dc.title | Fabrication, Optical Characterization and Applications of Different Sized Gold Nanoparticles | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 魏培坤(Pei-Kuen Wei),曾繁根(Fan-Gang Tseng),李超煌(Chau-Hwang Lee),鄭郅言(Ji-Yen Cheng) | |
| dc.subject.keyword | 金奈米顆粒,侷部表面電漿共振,暗場光學切片顯微術,金奈米團簇,氧化鎢,光催化水分解,原子層沉積, | zh_TW |
| dc.subject.keyword | gold nanoparticles,localized surface plasmon resonance (LSPR),dark-field optical section microscope (DFOSM),gold nanocluster,tungsten oxide (WO3),photocatalytic water splitting,atomic layer deposition (ALD), | en |
| dc.relation.page | 98 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-12 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 46 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
