Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56649
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭光成
dc.contributor.authorTing Chu Yuen
dc.contributor.author游婷筑zh_TW
dc.date.accessioned2021-06-16T05:39:55Z-
dc.date.available2014-08-21
dc.date.copyright2014-08-21
dc.date.issued2014
dc.date.submitted2014-08-12
dc.identifier.citationAmare, M.G.; Keller, N.P. Molecular mechanisms of Aspergillus flavus secondary metabolism and development. Fungal Genet. Biol. 2014, article in press.
Ariff, A.B.; Salleh, M.S.; Ghani, B.; Hassan, M.A.; Rusul, G.; Karim, M.I.A. Aeration and yeast extract requirements for kojic acid production by Aspergillus flavus link. Enzyme Microb. Tech., 1996, 19, 545-550.
Ariff, A.B.; Rosfarizan, M.; Herng, L.S.; Madihah, S.; Karim, M.I.A. Kinetics and modeling of kojic acid production by Aspergillus flavus Link in batch fermentation and resuspended mycelial system. World J. Microb. Biot. 1997, 13, 195-201.
Arnstein, H.R.V., Bentley, R. The biosynthesis of kojic acid. 1. Production from [1-14C] and [3:4-14C] glucose and [2-14C]-1:3-dihydroxylacetone. Biochem. J., 1953a, 54, 493–508.
Arnstein, H.R.V., Bentley, R. The biosynthesis of kojic acid. 3. The incorporation of labeled small molecules into kojic acid. Biochem. J., 1953b, 54, 517-522.
Bajpai, P.; Agrawala, P.K.; Vishwanathan, L. Enzymes relevant to kojic acid biosynthesis in Aspergillus flavus. J. Gen. Microbiol. 1981, 127,131-136.raje
Basappa, S.C.; Sreenivasamurthy, V.; Parpia, H.A.B. Aflatoxin and kojic acid production by resting cells of Aspergillus flavus LINK. J. Gen. Microbiol. 1970, 61, 81-86
Barry, D.J.; Williams, G.A. Microscopic characterization of filamentous microbes: towards fully automated morphological quantification through image analysis. J. Microsc. 2011, 244, 1-20.
Beelik, A. Kojic acid. Adv. Carbohydr. Chem. 1956, 11, 145-183.
Bentley, R. Preparation and analysis of kojic acid. Carbohyd. 1957, 238-241.
Bentley, R. From miso, sake, and shoyu to cosmetics: a century of science for kojic acid. Nat. Prod. Rep., 2006, 23, 1046–1062.
Bennett, J.W. and M.A. Klich. Aspergillus: biology and industrial applications. 1992, Reed Publishing, Stoneham, Massachusetts, USA.
Biesbeke, R.; Ruijter, G.; Rahardjo, Y.S.P.; Hoogschagen, M.J.; Heerikhuisen, M.; Levin, A.; Driel, K.G.A.; Schutyser, M.A.I.; Dijksterhuis, J.; Zhu, Y.; Weber, F.J.; Vos, W.M.; Hondel, K.A.M.J.J.; Rinzema, A.; Paunt, P.J. Aspergillus oryzae in solid-state and submerged fermentations progree report on a multi-displinary project. FEMS yeast res. 2002, 2, 245-248.
Brakhage, A.A. Regulation of fungal secondary metabolites. Nat. Rev. Microbiol. 2013, 11, 21-32.
Braun S., Vecht-Lifshitz, S. Mycelia morphology and metabolite production. Trends Biotechnol. 1991, 9, 63-68.
Broderick, A.J.; Greenshields, R.N. Semi-continuous and continuous production of Aspergillus niger spores in submerged liquid culture. J. Gen. Microbiol. 1982, 128, 2639-2645.
Broschet, G.; Loidl, P.; Graessle, S. Histone modifications and chromatin dynamics: a focus on filamentous fungi. FEMS Microbiol. Rev. 2008, 32, 409-439.
Brtko, J; Rondahl, L; Fickova, M; Hudecova, D; Eybl, V; Uher, M. Kojic acid and its derivatives: History and present state of art. Cent. Eur. J. Publ Health, 2004, 12, S16-S18.
Burdock, G.A.; Soni, M.G.; Carabin, I.G.C. Evaluation of health aspects of kojic acid in food. Regul. Toxicol. Pharm. 2001, 33, 80-101
Burnnet, C.L.; Bergfield, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; Anderson, F.A. Final report of the safety assessment of kojic acid as used in cosmetics. Int. J. Toxicol. 2010, 29, 244S-273S.
Cabanes, J.; Chazarra, S.; Garcia-Carmona, F. Kojic acid, a cosmetic skin whitening agent, is a slow-binding inhibitor of catecholase activity of tyrosinase. J. Phar. Pharmacol. 1994, 46, 982-985.
Calvo, A.M.; Wilson, R.A.; Bok, J.W.; Keller, N.P. Relationship between secondary metabolism and fungal development. Microbiol. Mol. Biol. Rev. 2002, 66, 447-459.
Carlsen, M.; Spohr, A.B.; Nielsen, J. Villadsen, J. Morphology and physiology of an a- amylase producing strain of Aspergillus oryzae during batch cultivations. Biotechnol. Bioeng. 1996, 49, 266-276.
Chang, W.L. Kojic acid production by Aspergillus tamarii. Master thesis, National Taiwan University, June, 1995.
Chang, T.S. An update review of tyrosinase inhibitors. Int. J. Mol. Sci. 2009, 10, 2440-2475.
Chen, J. S.; Wei, C.; Rolle, R. S.; Otwell, W. S.; Balaban, M. O.; Marshall, M. R. Inhibitory effect of kojic acid on some plant and crustacean polyphenol oxidases. J. Agric., Food Chem. 1991, 39, 1396-1401.
Chen, K.I.; Lo, Y.C.; Su, N.W.; Chou, C.C.; Cheng, K.C. Enrichment of two isoflavone aglycones in black soymilk immobilized beta-glucosidase on solid carriers. J. Agric. Food. Chem. 2012, 60, 12540-12546.
Cheng K.C.; Catchmark, J.M.; Demirci, A. Enhanced production of bacterial cellulose bu using a biofilm reactor and its material property analysis. J. Biol. Eng. 2009, 3, 22-32.
Cheng, K.C.; Demirci, A.; Catchmark, J.M. Enhanced pullulan production in a biofilm reactor by using reponse surface methodology. J. Ind. Microbiol. Biotechnol. 2010a, 37, 587-594.
Cheng, K.C.; Demirci, A.; Catchmark, J.M. Effect of plastic composite support and pH profile on pullulan production in a biofilm reactor. Appl. Microbiol. Biotechnol. 2010b, 86, 853-861.
Cho, J.C.; Pho, H.S.; Baek, H.S.; Ahn, S.M.; Woo, B.Y.; Hong, Y.D.; Cheon, J.W.; Heo, J.M.; Shin, S.S.; Park, Y.H.; Suh, K.D. Depigmenting activity if new kojic acid derivative obtained as a side product in the synthesis of cinnamate of kojic acid. Bioorg. Med. Chem. Lett. 2012, 22, 2004-2007.
Choi, H.; Kim, K.; Han, J.; Choi, H.; Jin, S.H.; Lee, E.K.; Shin, D.W.; Lee, T.R. Lee, A.Y.; Noh, M. Kojic acid-induced IL-6 production in human keratinocytes plays a role in rats anti-melanogenetic activity in skin. J. Dematol. Sci. 2012, 66, 207-215.
Cole, R.J.; Cox, R.H. Handbook of toxic fungal metabolites. Academic Press, New York. 1981.
Demirci A.; Pometto III, A.L., Ho, K.L.G. Ethanol production by Saccharomyces cerevisiae in biofilm reactors. J. Ind. Microbiol. biot. 1997, 19, 299-304.
Edelstein, L.; Hadar, Y. A model for pellet size distributions in submerged nycelial cultures. J. theor. Biol. 1983, 105, 427-452.
El-Aasar, S.A. Cultural conditions studies on kojic acid production by Aspergillus parasiticus. Int. J. Agri. Biol. 2006, 8, 468-473.
Emami, S; Hosseinimehr, S.J.; Taghdisi, S.M.; Akhlaghpoor, S. Kojic acid and its manganese and zinc complexes as potential Radioprotective agents. Bioorg. Med.Chem. Lett. 2007, 17, 45-48.
El-Aasar, S.A. Cultural condition studies on kojic acid production by Aspergillus parasiticus. Int. J. Agric. Biol. 2006, 4, 468-473
Ercan, D.; Demirci, A. Production of human lysozyme in biofilm reactor and optimization of growth parameters of Kluyveromyces lactis K7. Appl. Microbiol. Biotechnol. 2013, 97, 6211-6221.
Feng, G.H.; Leonard, T.J. Culture condition control expression of the gene for aflatoxin and sterigmatocystin biosynthesis in Aspergillus parasiticus and A. nidulans. Appl. Environ. Microbiol. 1998, 64, 2275-2277.
Finlay, R.D.; Read, D.J. The structure and function of the vegetative mycelium of ectomycorrhizal plants. II The uptake and distribution of phosphorus by mycelial strands interconnecting host plants. New Phytol. 1986, 103,157-165.
Fox, E.M.; Howlett, B.J. Secondary metabolism: regulation and the role in fungal biology. Curr. Opin. Microbiol. 2008, 11,481-487.
Freeman, S. Biological science. 2005, Pearson Prentice Hall, Upper Saddle River, NJ.
Friedrich, J.; Cimerman, A.; Steiner, W. Production of pectolytic enzymes by Aspergillus niger: effect of inoculum size and potassium hexacyanoferrate II-trihydrate. Appl. Microbiol. Biotechnol. 1990, 33,377-381.
Futamura, T.; Ishihara, H.; Tamura, T.; Yasutake, T.; Huang, G.; Kojima, M.; Okabe, M. Kojic acid production in an airlift bioreactor using partially hydrolyzed raw corn starch. J. Biosci. Bioeng. 2001, 92, 360-365.
Giri, A.; Osako, K.; Okamoto, A.; Okazaki, E.; Ohshima, T. Effect of koji fermentated phenolic compounds on the oxidative stability of fish miso. J. Food Chem. 2012. 77, C228-235.
Haack, M.B.; Olsson, L.; Hansen, K.; Lantz, A.E. Change in hyphal morphology of Aspergillus oryzae during fed-batch cultivation. Appl. Microbiol. Biotechnol. 2006, 70, 482-487.
Hazzaa, M.M.; Saad, A.E.M.; Hassan, H.M.; Ibrahim, E.I. High production of kojic acid crystals by isolated Aspergillus oryzae var. effuses NRC14. J. Appl. Sci. Res. 2013, 9, 1714-1723.
Hearing, V.J. Mammalian monophenol monooxygenase (tyrosinase): purification, properties, and reactions catalyzed. Method Enzymol. 1987, 142, 154-165.
Ho, K.L.G.; Pometto III, A.L.; Hinz, P. N.; Dickson, J. S.; Demirci, A. Ingredient selection for plastic composite supports for L-(+)- lactic acid biofilm fermentation by Lactobacillus casei subsp. rhamnosus. Appl. Environm. Microbiol., 1997a, 63, 2516-2523.
Ho, K.L.G.; Pometto III, A.L.; Hinz, P.N. Optimization of L-(+)-lactic acid production by ring and disc plastic composite supports through repeated-batch biofilm fermentation. Appl. Environm. Microbiol., 1997b, 63, 2533-2542.
Kayahara, H.; Shibata, N.; TAdasa, K.; Maeda, H. Amino acid and peptide derivatives of kojic acid and their antifungal properties. Agric. Biol. Chem. 1990, 54, 2441-2442.
Keller, N.P.; Turner, G.; Bennet, J.W. Fungal secondary metabolism --- from biochemistry to genomics. Nat. Rev. Microbiol. 2005, 3, 937-947.
Khiyami, M.A.; Pometto III, A.L.; Kennedy, W.J. Ligninolytic enzyme production by Phanerochaete chrysosporium in plastic composite support biofilm stirred tank bioreactors. J. Agric. Food Chem. 2006, 54, 1693-1698.
Kitada, M.; Kanaeda, J.; Miyazaki, K.; Fukimbara, T. Studies on kojic acid fermentation (VI) Production and recovery of kojic acid on an industrial scale. J. Ferment. Technol. 1971, 49, 343-349
Kim, H.; Choi, J.; Cho, J.K.; Kim S.Y.; Lee, Y.S. Solid phase synthesis of kojic acid-tripeptides and their tyrosinase inhibitory activity, storage stability, and toxicity. Bioorg. Med. Chem. Lett. 2004, 14, 2843-2846.
Kim, J.H.; Chang, P.K.; Chan, K.L.; Faria, N.C.G.; Mahoney, N.; Kim, Y.K.; Martins, M.L.; Campbell, B.C. Enhancement of commercial antifungal agents by kojic acid. Int. J. Mol. Sci. 2012, 13, 13867-13880.
Kim, A.J.; Choi, J.N.; Kim, J.; Kim, H.Y.; Park, S.B.; Yeo, S.H.; Choi, J.H.; Liu, K.H.; lee, C.H. Metabolite profiling and bioactivity of rice koji fermented by Aspergillus strains. J. Microbiol. Biotechnol. 2012, 22, 100-106.
Kim, J.H.; Campbell, B.C.; Chan, K.L.; Mahoney, N.; Haff, R.P. Synergism of antifungal activity between mitochondrial repiration inhibitors and kojic acid. Int. J. Mol. Sci. 2013, 18, 1564-1581.
Kunduru, M.R.; Pometto III, A.L. Continuous ethanol production by Zymomonas mobilis and Saccharomyces cerevisiae in biofilm reactors. J. Ind. Microbiol. 1996, 16, 249-256.
Kwak, M.Y.; Rhee, J.S. Cultivation characteristics of immobilized Aspergillus oryzae for kojic acid production. Biotechnol. Bioeng. 1992a, 39, 903-906.
Kwak, M.Y.; Rhee, J.S. Controlled mycelia growth for kojic acid production using Ca-alginate-immobilized fungal cells. Appl. Microbiol. Biotechnol. 1992b, 36, 578-583.
Kwak, S.Y.; Choi, H.R.; Park, K.C.; Lee, Y.S. Kojic acid-amino acid amide metal complexes and their melanogenesis inhibitory activities. J. Pept. Sci. 2011, 17, 791-797.
Lin, M.T.; Mahajan, J.R.; Dianese, J.C.; Takatsu, A. High production of kojic acid crystals by Aspergillus parasiticus UNBF A12 in liquid medium. Appl. Environ. Microb., 1976, 32, 298-299
Lin, C.C. The effect of equipping a non-woven fabrics in the fermenter on the production of kojic acid by Aspergillus flavus, National Cheng Kung University, July, 2000.
Lin, S.P.; Hsieh, S.C. Chen, K.I.; Demirci, A.; Cheng, K.C. Semi-continuous bacterial cellulose production in a rotating disk bioreactor and its materials properties analysis. Cellulose, 2014, 21, 835-844.
Machida, M.; Asai, K.; Sano, M.; Tanaka, T.; Kumagai, T.; Terai, G.; Kusumoto, K.; Arima, T.; Akita, O.; Kashiwagi, Y.; Abe, K; Gomi, K.; Horiuchi, H; Kitamoto, K.; Kobayashi, T.; Takeuchi, M.; Denning, D.W.; Galagan, J.E.; Nierman, W.C.; Yu, J.; Archer, D.B.; Bennett, J.W.; Bhatnagar, D.; Cleveland, T.E.; Fedorova, N.D.; Gotoh, O.; Horikawa, H.; Hosoyama, A.; Ichinomiya, M.; Igarashi, R.; Iwashita, K.; Juvvadi, P.R,; Kato, M.; Kato, Y.; Kin, T. Kokubun, A.; Maeda, H.; Maeyama, N.; Maruyama, J.; Nagasaki, H.; Nakajima, T.; Oda, K.; Okada, K.; Paulsen, I.; Sakamoto, K.; Sawano, T.; Takahashi, M.; Takase, K.; Terabayashi, Y.; Wortman, J.R.; Yamada, O.; Yamagata, Y.; Anazawa, H.; Hata, Y.; Koide, Y.; Komori, T.; Koyama, Y.; Minetoki, T.; Suharnan, S.; Tanaka, A.; Isono, K.; Kuhara, S.; Ogasawara, N.; Kikuchi, H. Genome sequencing and analysis of Aspergillus oryzae. Nature 2005, 438, 1157-1161.
Marui, J.; Yamane, N.; Ohashi-Kunihiro, S.; Ando, T.; Terabayashi, Y.; Sano, M.; Ohashi, S.; Oshima, E.; Tachibana, K.; Higa, Y.; Nishimura, M., Koike, H.; Machida, M. Kojic acid biosynthesis in Aspergillus oryzae is regulated by a Zn(II)2Cys6 transcriptional activator and induced by kojic acid at transcriptional level. J. Biosci. Bioeng. 2011, 112, 40-43.
Maheshwari, R. Fungi: experimental methods in biology. CRC/Taylor and Francis: Florida, 2005.
Metz, B.; Kossen, N.W.F. The growth of molds in the form of pellets --- a literature review. Biotechnol. Bioeng. 1977, 19, 781-799.
Mitani, H.; Koshiishi, I.; Sumita, T.; Imanari, T. Prevention of the photodamage in the hairless mouse dorsal skin by kojic acid as an iron chelator. Eur. J. Pharmacol. 2001, 411, 169-174.
Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426-428.
Miller, R.L.; Tate, B.E. Preparation of gamma-pyrones. U.S. Patent 3130204A, 21, April, 1964.
Moore, D. Fingal morphologenesis.Cambridge University Press: NewYork, 2002.
Muller, C.; Spohr, A.B.; Nielson, J. Role od substrate concentration in mitosis and hyphal extension of Aspergillus. Biotechnol. Bioeng. 2000, 67, 390- 397.
Muller, C.; McIntyre, M.; Hansen, K.; Nielsen, J. Metabolic engineering of the morphology of Apergillus oryzae by altering chitin synthesis. Appl. Envirom. Microbiaol. 2002, 68, 1827-1836.
Nielson, J.; Johanson, C.L.; Jacobsen, M.; Krabben, P.; Villadsen, J. Pellets formation and fragmentation in submerged cultures of Penicillium chrysogenum and its relation to penicillin production. Biotechnol. Prog. 1995, 11, 93-98.
Noh, J.M.; Kwak, S.Y.; Seo, H.S.; Seo, J.H.; Kim, B.G.; Lee, Y.S. Kojic acid –amino acid conjugates as tyrosinase inhibitors. Bioorg. Med. Chem. Lett. 2009, 19, 5586-5589.
Nohynek, G.J.; Kirkland, D.; Marzin, D.; Toutain, H.; Leclerc-Ribaud, C.; Jinnai, H. An assessment of the genotoxicity and human risk of topical use of kojic acid [5-hydroxy-2-(hydroxymethyl)-4H-pyran-4-one]. Food Chem. Toxicol. 2004, 42, 93-105.
Oda, K.; Kobayashi, A.; Ohashi, S.; Sano, M. Aspergillus oryzae laeA regulates kojic acid synthesis genes. Biosci. Biotechnol. Biochem. 2011, 75, 1832-1834.
Ogawa, A.; Morita, Y.; Tanaka, T. Sakiyama, T.; Nakanishi, K. Production of kojic acid from Aspergillus oryzae var. oryzae by memebrane-surface-liquid culture. Biotechnol. Tech. 1995, 9, 153-156.
Papagianni, M.; Moo-Young, M. Protease secretion in glucoamylalse producer Aspergillus niger culture: fungal morphology and inoculum effects. Proc. Biochem. 2002, 27, 1271-1278.
Papagianni, M. Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol. Adv. 2004, 22, 189-259.
Pongtharangkul, T.; Demirci, A. Evaluation of culture medium for nisin production in a repeated-batch biofilm reactor. Biotechnol. Prog. 2006, 22, 217-224.
Pongtharangkul, T.; Demirci, A. Effects of fed-batch fermentation and pH profiles on nisin production in suspended-cell and biofilm reactors. Appl. Microbiol. Bitechnol. 2006, 73, 73-79.
Raje. M.; Hin, N.; Duvall, B.; Ferraris, D.V.; Berry, J.F.; Thomas, A.G.; Alt, J.; Rojas, C.; Slusher, B.S.; Tsukamoto, T. Synthesis of kojic acid derivatives as secondary binding sites probes of D- amino acid oxidase. Bioorg. Med. Chem. Lett. 2013, 23, 3910-3913.
dos Reis, T.F.; Menino, J.F.; Bom, V.L.P.; Brown, N.A.; Colabardini, A.C.; Savoldi, M.; Goldman, M.H.S.; Rodrigues, F.; Goldman, G.H. Identification of glucose transporters in Aspergillus nidulans. PLOS one, 2013, 8, 1-15.
Rodrigues, A.P.D.; Carvalho, A.S.C.; Santos, A.S.; Alves, C.N.; do Nascimento, J.L.M.; Silva, E.O. Kojic acid, a secondary metabolite from Aspergillus sp., acts as an inducer of macrophage activation. Cell Biol. Int. 2011, 35, 335-343.
Rodrigues, A.P.D.; Farias, L.H.S.; Carvalho, A.S.C.; Santos, A.S.; do Nascimento, J.L.M.; Silva, E.O. A novel function for kojic acid, a secondary metabolite from Aspergillus fungi, as antileishmanial agent. PLOS one, 2014, 9, 1-8.
Rosfarizan, M.; Madihah, S.; Ariff, A.B. Isolation of a kojic acid- producing fungus capable of using starch as a carbon source. Lett. Appl. Microbiol. 1998, 26, 27-30.
Rosfarizan, M.; Ariff, A.B.; Hassan, M.A.; Karim, M.I.A. Kojic acid production by Aspergillus flavus using gelatinized and hydrolyzed sago starch as carbon sources. Folia Microbiol. 1998, 43, 459-464.
Rosfarizan, M.; Ariff, A.B.; Hassan, M.A.; Karim, M.I.A. Influence of pH on kojic acid fermentation by Aspergillus flavus. Pak. J. Biol. Sci. 2000, 6, 977-982
Rosfarizan, M.; Ariff, A.B. Kinetics of kojic acid fermentation by Aspergillus flavus using different types and concentrations of carbon and nitrogen sources. J. Ind. Microbiol. Biot. 2000, 25, 20-24
Rosfarizan, M.; Ariff, A.B.; Hassan, M.A.; Karim, M.I.A.; Shimizu, H.; Shioya, S. Importance of carbon source feeding and pH control strategies for maximum kojic acid production from sago starch by Aspergillus flavus. J. Biosci. Bioeng. 2002, 94, 99-105
Rosfarizan, M.; Ariff, A.B. Kinetics of kojic acid fermentation by Aspergillus flavus link S44-1 using sucrose as a carbon source under different pH conditions. Biotechnol. Bioproc. E. 2006, 11, 72-79
Rosfarizan, M.; Mohamed, M.S.; Suhaili, N.; Madihah, M.S., Ariff, A.B. Kojic acid: Applications and development of fermentation process for production. Biotech. Mol. Biol. Rev. 2010, 5, 24-37.
Rosfarizan, M.; Ariff, A.B. Biotransformation of various carbon sources to kojic acid by cell-bound enzyme system of A. flavus Link 44-1. Biochem. Eng. 2007, 35, 203-209.
Sahasrabudhe, N.A.; Sankpal, N.V. Production of organic acids and the metabolites of fungi for food industry. Appl. Mycol. Biotechnol. 2001, 1, 387-423.
Shwab, E.K.; Keller, N.P. Regulation of secondary metabolite production in filamentous ascomyceres. Mycol. Res. 2008, 112, 225-230.
Skromne, I.; Sanchez, O.; Aguirre, J. Starvation stress modulates the expression of the Aspergillus nidulans brlA regulatory gene. Microbiol. 1995, 141, 21-28.
Steiger, M.G.; Blumhoff, M.L.; Mattanovich, D.; Sauer, M. Biochemistry of microbial itaconic acid production. Front. Microbiol. 2013, 4, 1-5.
Szczodrak, J. Biosynthesis of citric acid in relation to the activity of selected enzymes of the Krebs ctcle in Aspergillus niger mycelium. Appl. Microbiol. Biotechnol. 1981, 13, 107-112.
Takamizawa, K.; Nakashima, S.; Yahashi, Y.; Kubata, K.B.; Suzuki, T.; Kawai, K.; Horitsu, H. Optimization of kojic acid production rate using the Box-Wilson method. J. Ferment. Bioeng. 1996, 82, 414-416.
Teng, Y.; Xu, Y.; Wang, D. Changes in morphology of Rhizopus chinensis in submerged fermentation and their effect on production of mycelia bound lipase. Bioproc. Biosys. Eng. 2009, 32, 397-405.
Terabayashi, Y.; Sano, M.; Yamane, N.; Marui, J.; Tamano, K.; Sagara, J.; Dohmoto, M.; Oda, K.; Ohshima, E.; Tachibana, K.; Higa, Y.; Ohashi, S.; Koike, H.; Machida, M. Identification and characterization of genes responsible for biosynthesis of kojic acid , an industrially important compound from Aspergillus oryzae. Fungal Genet. Biol. 2010, 47, 953-961.
Urbance, S.E.; Pometto III, A.L.; DiSpirito, A.A.; Denli, Y. Evaluation of succinic acid continuous and repeat-batch biofilm fermentation by Actinobacillus succinogenes using plastic composite support bioreactors. Appl. Microbiol. Biotechnol. 2004, 65, 664-670.
USEPA, Aspergillus oryzae final risk assessment, 1997, http://www.epa.gov/biotech_rule/pubs/fra/fra007.htm (accessed on 2013/12/18)
Velazquez, A. C.; Pometto III. A.L.; Ho, K.L.G.; Demirci A. Evaluation of plastic composite supports in repeated fed-batch biofilm lactic acid fermentation by Lactobacillus casei. Appl. Microbiol. Biotechnol., 2001, 55, 434-441.
Voigt, O.; Poggeler, S. Self-eating to grow and kill: autophagy in filamentous ascomycetes. Appl. Microbiol. Biotechnol. 2013, 97, 9277-9290.
Wahler, D.; Reymond, J. Novel methods for biocatalyst screening. Biocatal. Bitransfor. 2001, 5, 152-158.
Wakisaka, Y. Segawa, T.; Imamura, K. Sakiyama, T.; Nakanishi. Development of a cylindrical apparatus for membrane-surface liquid culture and production of kojic acid using aspergillus oryzae NRRL 484. J. Ferment. Bioeng. 1998, 85, 488-494.
Wan, H.M. The effect of equipping a non-woven fabrics in the fermenter on the production of kojic acid by Aspergillus flavus. PhD thesis, National Tsing Hua University, September, 2002.
Wan, H.M.; Chen, C.C.; Chang, T.S.; Giridhar, R.N.; Wu, W.T. Combining induced mutation and proptoplasting for strain improvement of Aspergillus oryzae for kojic acid production. Biotechnol. Lett. 2004, 26, 1163-1166.
Wan, H.M.; Chen, C.C.; Giridhar, R.; Chang, T.S. Repeated-batch production of kojic acid in a cell-retention fermenter using Aspergillus oryzae M3B9. J. Ind. Microbiol. Biotechnol. 2005, 32, 227-233.
Wei, C.I.; Huang, T.S.; Fernado, S.Y.; Chung, K.T. Mutagenicity studies of kojic acid. Toxicol. Lett. 1991, 59, 213-220.
Wei, H.; Vienken, K.; Weber, R.; Bunting, S.; Requena, N.; Fischer, R. A putative high affinity hexose transporter, hxtA, of Aspergillus nidulans in induced in vegetative hyphae upon starvation and in ascogenous hyphae during cleistothecium formation. Fungal Genet. Biol. 2004, 41, 148-156.
Yahiro, K.; Takahama, T.; Park, Y.S., Okabe, M. Breeding of Aspergillus terrus mutant TN-484 for itaconic acid production with high yield. J. Ferment. Bioeng. 1995, 79, 506-508.
Yan, S.; Tang, H.; Wang, S.; Xu, L.; Liu, H.; Guo, Y. Improvement of kojic acid production in Aspergillus oryzae B008 mutant strain and its uses in fermentation of concentrated corn stalk hydrolysate. Bioproc. Biosyst. Eng. 2014, 37, 1095-1103.
Zhang, J.D.; Han, L.; Yan, S.; Liu, C.M. The non-metabolizable glucose analog D-glucal inhibits sfaltoxin biosynthesis and promoted kojic acid production in Aspergillus flavus. BMC Microbiol. 2014, 14, 95-103.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56649-
dc.description.abstract麴酸具有良好的美白效果和金屬螯合、抗氧化的能力,由於其特殊的gamma-pyrone結構,可以做為maltol、ethymaltol等食品添加物或藥物的前驅物,在化妝品、食品及化學品合成上一直扮演重要的角色。工業上麴酸是藉由米麴菌 (Aspergillus oryzae) 以深層培養 (submerged culture)批次醱酵生產,但批次醱酵操作繁複不易,又易伴隨培養液黏度過高所造成質傳能力降低的缺點,使麴酸成本居高不下。Plastic composite support (PCS) 是一種聚丙烯及農業廢棄物經擠壓而成的菌體固定化載體,過去研究指出以PCS作為固定化載體可以有效降低作業成本,甚至可以增加產量及產率。本實驗對於A. oryzae在 PCS固定化醱酵系統生產麴酸進行評估與改善,並討論菌體於生物反應器中的形態變化與產量關係。在進行系統評估前,先確認生產最佳pH後,對五種不同組成的PCS (SFY、SFB、SFR、SFYB、SFYBR) 和兩組控制組聚丙烯棒及菜瓜布條進行挑選,其中以添加綜合氮源的SFYBR有最高麴酸產量。然而,以SFYBR固定米麴菌雖然較傳統方法便利,但麴酸產量低落,僅為傳統方法 (35 g/L) 之五分之一。後續配合不同程度的氮源缺乏培養基或麴酸添加培養基培養,可以有效改善固定化系統造成的低麴酸產量問題,最終產量可達26.34 g/L,並且可以重複使用生產菌體達到多批次發酵的成果,產率比傳統方法高,可達2.395 g/L/d。另外菌體型態在使用不同培養基時也有所不同,使用氮源缺乏培養基時,真菌形態形成羽絨狀菌體,使與受質接觸表面積增加,與產量增加相呼應。PCS固定化醱酵系統有效降低作業繁複程度、減少生產成本,在工業生產上具有極大的潛力。zh_TW
dc.description.abstractKojic acid is an industrially important compound due to its powerful skin whitening effect, metal chelating ability, and antioxidant capacity. In addition, the gamma-pyrone, which is polyfunctional for synthesizing chemicals, in kojic acid makes it become a crucial precursor of various drugs and food additives such as Aspirin and maltol. Traditionally, kojic acid is produced by the submerged culture of Aspergillus oryzae in the manner of batch fermentation. Considering the high cost of batch replacements, reinoculations in long term fermentation as well as the poor mass transfer in free suspension culture, immobilization fermentation becomes one of the most potent replacements. Plastic composite supports (PCS), which is an extruding product composed of polypropylene and agricultural wastes, could be used as the immobilization scaffolds for kojic acid production. Previous studies show that applying PCS immobilization system increased the production and decreased the cost of some value-added products including bioethanol and pullulan. In the present research, the efficiency of immobilized culture for production of kojic acid, and the effect of changed morphology of A. oryzae on production were evaluated. Before evaluation, the optimal pH and PCS was selected. The optimal pH was verified as pH 3. Based on the kojic acid production, SFYBR, the PCS with the most complex ingredients, was chosen among 5 PCS with different compositions (SFY, SFB, SFR, SFYB, and SFYBR) and two control ( PP sticks and luffa) as the scaffold in following experiments. However, the production in immobilization system was one fifth of traditional free suspension culture (35.02 g/L). By using different degrees of nitrogen deprived medium and kojic acid added medium, the production in immobilization system increased to 26.34 g/L. Moreover, with the immobilization system, repeated-batch fermentation without loss of mycelia could be conducted for several cycles with productivity of 2.395 g/L/d, which is higher than free suspension culture in batch fermentation. It is an economical way in industry. To sum up, PCS immobilized fermentation system, which decrease the inconvenience and cost of batch submerged fermentation, is a potential tool in industrial production of kojic acid.en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:39:55Z (GMT). No. of bitstreams: 1
ntu-103-R01641027-1.pdf: 3053086 bytes, checksum: d825d68b924dc26bbb92353f2b1df197 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents中文摘要…………………………………………………………………………………I
Abstract...………………………………………………………………………………..II
Content…..……………………………………………………………………………..IV
List of Figures………………………………………………………………………....VII
List of Tables…………………………………………………………………………....X
List of Abbreviations…………………………………………………………………...XI
1. Introduction 1
2. Literature reviews 4
2.1 Kojic acid 4
2.1.1 The structure of kojic acid 4
2.1.2 Applications of kojic acid 7
2.1.3 Toxicology and safety of kojic acid 8
2.2 Aspergillus oryzae 8
2.3 Biosynthesis of kojic acid 9
2.4 Fungal morphology 12
2.5 Factors affecting secondary metabolites production 15
2.6 Fermentation strategies to enhance production 17
2.6.1 Cultural condition optimization 17
2.6.2 Cell immobilization bioreactors 21
2.6.3 Other strategies 22
2.7 Plastic composite supports 22
3. Materials and methods 25
3.1 Chemicals 25
3.2 Microorganisms and cultural maintenance 25
3.3 Preparation of plastic composite supports 26
3.4 Culture condition in flasks 27
3.5 Immobilization and optimal PCS selection 27
3.6 Analysis of kojic acid 28
3.7 Measurement of mycelial formation 29
3.8 Measurement of residual sugar 29
3.9 Morphology observation 31
3.10 Kojic acid extraction 31
3.11 Product verification 31
3.11.1 FT-IR (Fourier transform infrared spectroscopy) 31
3.11.2 Assay of tyrosinase inhibition 32
3.11.3 Assay of antioxidant capacity ( DPPH radical scavenging activity) 32
3.12 Data analysis 33
4. Results and Discussion 34
4.1 Optimal pH selection 34
4.2 Optimal PCS selection 38
4.3 Effect of nitrogen deficient and carbon deficient medium replacement on kojic acid production 46
4.4 The longevity of PCS system with nitrogen deficient medium 54
4.5 Effect of kojic acid added medium on kojic acid production 60
4.6 Morphology observation 64
4.7 Products verifications 71
4.7.1 FTIR 71
4.7.2 Bioactivity verification 71
5. Conclusion and prospective 74
List of references 77
Appendix 92
dc.language.isoen
dc.subject米麴菌zh_TW
dc.subject麴酸zh_TW
dc.subject氮源缺乏培養基zh_TW
dc.subject菌體形態zh_TW
dc.subjectPlastic composite support (PCS)zh_TW
dc.subjectAspergillus oryzaeen
dc.subjectkojic aciden
dc.subjectNitrogen deprived mediumen
dc.subjectMorphologyen
dc.subjectPlastic composite support (PCS)en
dc.title以米麴菌於Plastic Composite Support生物反應器生產麴酸之研究zh_TW
dc.titleStudy on Plastic Composite Support immobilized culture applied in kojic acid fermentation by Aspergillus oryzaeen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee周正俊,游若?,蘇南維,謝淑貞
dc.subject.keyword麴酸,米麴菌,Plastic composite support (PCS),菌體形態,氮源缺乏培養基,zh_TW
dc.subject.keywordkojic acid,Aspergillus oryzae,Plastic composite support (PCS),Morphology,Nitrogen deprived medium,en
dc.relation.page93
dc.rights.note有償授權
dc.date.accepted2014-08-12
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
2.98 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved