Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56440
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor溫政彥(Cheng-Yen Wen)
dc.contributor.authorShih-Chun Chaoen
dc.contributor.author趙士鈞zh_TW
dc.date.accessioned2021-06-16T05:28:43Z-
dc.date.available2014-08-17
dc.date.copyright2014-08-17
dc.date.issued2014
dc.date.submitted2014-08-14
dc.identifier.citation[1] X. Pan, M.-Q. Yang, X. Fu, N. Zhang, and Y.-J. Xu, 'Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications,' Nanoscale, vol. 5, pp. 3601-3614, 2013.
[2] W. J. Yin, S. Y. Chen, J. H. Yang, X. G. Gong, Y. F. Yan, and S. H. Wei, 'Effective band gap narrowing of anatase TiO2 by strain along a soft crystal direction,' Applied Physics Letters, vol. 96, p. 221901, 2010.
[3] D. A. H. Hanaor and C. C. Sorrell, 'Review of the anatase to rutile phase transformation,' Journal of Materials Science, vol. 46, pp. 855-874, 2011.
[4] X. Nie, S. Zhuo, G. Maeng, and K. Sohlberg, 'Doping of TiO2 Polymorphs for Altered Optical and Photocatalytic Properties,' International Journal of Photoenergy, vol. 2009, 2009.
[5] J. A. T. Suntola, US Patent No. 405430, 1975.
[6] J. Aarik, A. Aidla, T. Uustare, M. Ritala, and M. Leskela, 'Titanium isopropoxide as a precursor for atomic layer deposition: characterization of titanium dioxide growth process,' Applied Surface Science, vol. 161, pp. 385-395, 2000.
[7] Z. Zhang, G. Triani, and L. J. Fan, 'Amorphous to anatase transformation in atomic layer deposited titania thin films induced by hydrothermal treatment at 120 °C,' Journal of Materials Research, vol. 23, pp. 2472-2479, 2008.
[8] R. Matero, Atomic Layer Deposition of Oxide Films: Growth, Characterisation and Reaction Mechanism Studies: Raija Matero, 2004.
[9] A. Rahtu and M. Ritala, 'Reaction mechanism studies on titanium isopropoxide–water atomic layer deposition process,' Chemical Vapor Deposition, vol. 8, pp. 21-28, 2002.
[10] 施敏, '浮閘記憶體 從發明到數位電子時代,' 國家奈米元件實驗室奈米通訊, vol. 19, pp. 2-13, 2012.
[11] P. H. Nielsen and N. M. Bashara, 'The reversible voltage-induced initial resistance in the negative resistance sandwich structure,' Electron Devices, IEEE Transactions on, vol. 11, pp. 243-244, 1964.
[12] J. Gibbons and W. Beadle, 'Switching properties of thin NiO films,' Solid-State Electronics, vol. 7, pp. 785-790, 1964.
[13] A. Beck, J. G. Bednorz, C. Gerber, C. Rossel, and D. Widmer, 'Reproducible switching effect in thin oxide films for memory applications,' Applied Physics Letters, vol. 77, pp. 139-141, 2000.
[14] W. Zhuang, W. Pan, B. Ulrich, J. Lee, L. Stecker, A. Burmaster, et al., 'Novel colossal magnetoresistive thin film nonvolatile resistance random access memory (RRAM),' in Electron Devices Meeting, 2002. IEDM'02. International, 2002, pp. 193-196.
[15] H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, et al., 'Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM,' in Electron Devices Meeting, 2008. IEDM 2008. IEEE International, 2008, pp. 1-4.
[16] B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. H. Oh, et al., 'Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition,' Journal of Applied Physics, vol. 98, p. 033715, 2005.
[17] W. Guan, M. Liu, S. Long, Q. Liu, and W. Wang, 'On the resistive switching mechanisms of Cu/ZrO2:Cu/Pt,' Applied Physics Letters, vol. 93, p. 223506, 2008.
[18] R. Waser, R. Dittmann, G. Staikov, and K. Szot, 'Redox-Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges,' Advanced Materials, vol. 21, pp. 2632-2663, 2009.
[19] K. Szot, M. Rogala, W. Speier, Z. Klusek, A. Besmehn, and R. Waser, 'TiO2—a prototypical memristive material,' Nanotechnology, vol. 22, p. 254001, 2011.
[20] S. Q. Liu, N. J. Wu, and A. Ignatiev, 'Electric-pulse-induced reversible resistance change effect in magnetoresistive films,' Applied Physics Letters, vol. 76, pp. 2749-2751, 2000.
[21] T. Sakamoto, H. Sunamura, H. Kawaura, T. Hasegawa, T. Nakayama, and M. Aono, 'Nanometer-scale switches using copper sulfide,' Applied Physics Letters, vol. 82, pp. 3032-3034, 2003.
[22] M. N. Kozicki, M. Park, and M. Mitkova, 'Nanoscale memory elements based on solid-state electrolytes,' Nanotechnology, IEEE Transactions on, vol. 4, pp. 331-338, 2005.
[23] A. Sawa, 'Resistive switching in transition metal oxides,' Materials Today, vol. 11, pp. 28-36, 2008.
[24] R. Waser, 'Resistive non-volatile memory devices,' Microelectronic Engineering, vol. 86, pp. 1925-1928, 2009.
[25] C. Schindler, M. Meier, R. Waser, and M. N. Kozicki, 'Resistive switching in Ag-Ge-Se with extremely low write currents,' in Non-Volatile Memory Technology Symposium, 2007. NVMTS '07, 2007, pp. 82-85.
[26] R. Yasuhara, K. Fujiwara, K. Horiba, H. Kumigashira, M. Kotsugi, M. Oshima, et al., 'Inhomogeneous chemical states in resistance-switching devices with a planar-type Pt/CuO/Pt structure,' Applied Physics Letters, vol. 95, p. 012110, 2009.
[27] L. A. Bursill, B. G. Hyde, O. Terasaki, and D. Watanabe, 'On a new family of titanium oxides and the nature of slightly-reduced rutile,' Philosophical Magazine, vol. 20, pp. 347-359, 1969.
[28] C. N. R. Rao, S. Ramdas, R. E. Loehman, and J. M. Honig, 'Semiconductor-metal transition in Ti3O5,' Journal of Solid State Chemistry, vol. 3, pp. 83-88, 1971.
[29] L. Liborio, G. Mallia, and N. Harrison, 'Electronic structure of the Ti4O7 Magneli phase,' Physical Review B, vol. 79, p. 245133, 2009.
[30] L. Liborio and N. Harrison, 'Thermodynamics of oxygen defective Magneli phases in rutile: A first-principles study,' Physical Review B, vol. 77, p. 104104, 2008.
[31] R. F. Bartholomew and D. R. Frankl, 'Electrical Properties of Some Titanium Oxides,' Physical Review, vol. 187, pp. 828-833, 1969.
[32] H. Gruber and E. Krautz, 'Magnetoresistance and conductivity in the binary system titanium–oxygen. II. Semiconductive Titanium Oxides,' physica status solidi (a), vol. 75, pp. 511-518, 1983.
[33] J. Wu, J. Cao, W. Q. Han, A. Janotti, and H. C. Kim, Functional metal oxide nanostructures: Springer, 2012.
[34] D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, et al., 'Atomic structure of conducting nanofilaments in TiO2 resistive switching memory,' Nature Nanotechnology, vol. 5, pp. 148-153, 2010.
[35] S. Lakkis, C. Schlenker, B. Chakraverty, R. Buder, and M. Marezio, 'Metal-insulator transitions in Ti4O7 single crystals: crystal characterization, specific heat, and electron paramagnetic resonance,' Physical Review B, vol. 14, p. 1429, 1976.
[36] R. Hoffman, 'The mechanical properties of thin condensed films,' Physics of thin films, vol. 3, pp. 211-273, 1966.
[37] G. G. Stoney, 'The tension of metallic films deposited by electrolysis,' Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 82, pp. 172-175, 1909.
[38] J. Ligot, U. Welzel, P. Lamparter, A. C. Vermeulen, and E. J. Mittemeijer, 'Stress analysis of polycrystalline thin films and surface regions by X-ray diffraction,' Journal of Applied Crystallography, vol. 38, pp. 1-29, 2005.
[39] G. Moulard, G. Contoux, G. Gardet, G. Motyl, and M. Courbon, 'An improved optical cantilever technique using image processing for measuring in situ stress in thin films,' Surface and Coatings Technology, vol. 97, pp. 206-211, 1997.
[40] K. G. Soderberg and A. K. Graham, 'Stress in electro-deposits-Its significance,' Proc. Am. Electroplater’s Soc, vol. 34, p. 97, 1947.
[41] H. J. D. R. H. Barklie, 'The effect of surface conditions and electrodeposited metal on the resistance of materials to repeated stress,' Proc. Inst. Mech. Eng., p. 2731, 1930.
[42] A. R. B. C.E. Heussner, and L. M. Morse, 'Stress Data on Copper Deposits from Alkaline Baths,' Plating vol. 35, p. 719, 1948.
[43] A. Brenner and S. Senderoff, 'Calculation of stress in electrodeposits from the curvature of a plated strip,' J. Res. Natl. Bur. Stand, vol. 42, pp. 105-123, 1949.
[44] N. N. Davidenkov, 'Measurement of residual stress in electrolytic deposits,' Sov. Phys, 1961.
[45] A. Ponchet, M. Cabie, and A. Rocher, 'TEM measurement of the misfit stress by a curvature method in semiconducting epitaxial system,' The European Physical Journal Applied Physics, vol. 26, pp. 87-94, 2004.
[46] A. Rocher, A. Ponchet, S. Blanc, and C. Fontaine, 'TEM evaluation of epitaxial strain in III–V semi-conductors: evidence of coherent and incoherent stress relaxation,' Applied surface science, vol. 188, pp. 55-60, 2002.
[47] H. Ibach, 'The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures,' Surface Science Reports, vol. 29, pp. 195-263, 1997.
[48] P. M. Kelly, A. Jostsons, R. G. Blake, and J. G. Napier, 'The determination of foil thickness by scanning transmission electron microscopy,' physica status solidi (a), vol. 31, pp. 771-780, 1975.
[49] D. R. G. Mitchell, D. J. Attard, and G. Triani, 'Transmission electron microscopy studies of atomic layer deposition TiO2 films grown on silicon,' Thin Solid Films, vol. 441, pp. 85-95, 2003.
[50] Y. Huang, G. Pandraud, and P. M. Sarro, 'Characterization of low temperature deposited atomic layer deposition TiO2 for MEMS applications,' Journal of Vacuum Science & Technology A, vol. 31, p. 01A148, 2013.
[51] S. M. George, 'Atomic layer deposition: an overview,' Chemical Reviews, vol. 110, pp. 111-131, 2009.
[52] J. Aarik, A. Aidla, T. Uustare, and V. Sammelselg, 'Morphology and structure of TiO2 thin films grown by atomic layer deposition,' Journal of Crystal Growth, vol. 148, pp. 268-275, 1995.
[53] G. X. Liu, F. K. Shan, W. J. Lee, and B. C. Shin, 'Growth temperature dependence of TiO2 thin films prepared by using plasma-enhanced atomic layer deposition method,' Journal of the Korean Physical Society, vol. 50, pp. 1827-1832, 2007.
[54] K. Deok-Hwang, K. Kyung Min, J. Jae Hyuck, J. Jong Myeong, L. Min Hwan, K. Gun Hwan, et al., 'Atomic structure of conducting nanofilaments in TiO2 resistive switching memory,' Nature Nanotechnology, vol. 5, pp. 148-153, 2010.
[55] W. Fang, H.-C. Tsai, and C.-Y. Lo, 'Determining thermal expansion coefficients of thin films using micromachined cantilevers,' Sensors and Actuators A: Physical, vol. 77, pp. 21-27, 1999.
[56] T. Hanada, N. Soga, and M. Ohkawa, 'Thermal expansion and coordination state of cations in amorphous films in the system Al2O3-TiO2,' Journal of non-crystalline solids, vol. 88, pp. 236-241, 1986.
[57] M. Okaji, 'Absolute thermal expansion measurements of single-crystal silicon in the range 300–1300 K with an interferometric dilatometer,' International Journal of Thermophysics, vol. 9, pp. 1101-1109, 1988.
[58] S. J. Park, J. P. Lee, J. S. Jang, H. Rhu, H. Yu, B. Y. You, et al., 'In situ control of oxygen vacancies in TiO2 by atomic layer deposition for resistive switching devices,' Nanotechnology, vol. 24, p. 295202, 2013.
[59] J. J. Yang, N. P. Kobayashi, J. P. Strachan, M. X. Zhang, D. A. Ohlberg, M. D. Pickett, et al., 'Dopant control by atomic layer deposition in oxide films for memristive switches,' Chemistry of Materials, vol. 23, pp. 123-125, 2010.
[60] Y. C. Huang, W. L. Tsai, C. H. Chou, C. Y. Wan, C. Hsiao, and H. C. Cheng, 'High-performance programmable metallization cell memory with the pyramid-structured electrode,' vol. 34, pp. 1244-1246, 2013.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56440-
dc.description.abstract本篇論文是探討原子層沉積法成長之二氧化鈦薄膜的特性並應用於電阻式記憶體元件當中。為了將成長之薄膜應用在電阻式記憶體元件中,實驗中使用了包含穿透式電子顯微鏡、X光光電子能譜等技術來進行薄膜性質的分析。結果中顯示藉由原子層沉積法成長參數的調控可以達到薄膜組成成分、晶體結構以及缺陷數目的改變。此外,研究發現薄膜在結晶態時會發生破裂的情形,因此研究中利用穿透式電子顯微鏡技術,進行殘留應力之計算。根據實驗結果可推斷此應力的成因為降溫時所產生之熱應力,且當薄膜成長厚度達到臨界厚度後,會於降溫過程中藉由結晶的方式以消除內部所累積之熱應變能。根據薄膜形貌與應力分析結果,在元件的應用上,我們採用非晶相薄膜以減少薄膜中的缺陷,並減少薄膜厚度,以避免應變能的累積而造成薄膜破裂發生,維持元件的性能。最後,根據以上的實驗結果我們成功地將原子層沉積法成長之二氧化鈦薄膜應用於電阻式記憶體當中,並將Pt/TiO2/Pt和FTO/TiO2/ITO兩種結構之元件進行電性量測。結果顯示由於電阻轉換反應的差異使得利用惰性金屬薄膜作為電極的元件穩定度較差;而使用導電金屬氧化物(FTO、ITO)薄膜作為電極之元件穩定度及操作特性有明顯地改善。zh_TW
dc.description.abstractIn this study, we investigate the properties of TiO2 thin films grown by atomic layer deposition method (ALD) and apply them to the resistive random access memory devices (ReRAM). For the application in the ReRAM devices, various characterization methods, such as transmission electron microscopy (TEM), X-ray photoelectron microscopy (XPS), are used to analyze the properties of TiO¬2 thin films. Based on the experimental results, it shows that TiO2 films with different properties, such as the crystal structure, the chemical composition and the concentration of oxygen vacancies, can be grown by tuning the growth parameters.
Besides, because some fractures in the polycrystalline TiO2 films are observed in the cross-sectional TEM images, it proves the existence of the residual stress. In this study, TEM techniques are used to measure the residual stress in thin films. According to the experimental results, we infer the residual stress is thermal stress. During the growth, amorphous TiO2 films are deposited on the substrates, and crystallize to release the thermal strain energy at the critical thickness in the cooling process. In the ReRAM devices, amorphous TiO2 thin films are used to reduce the concentration of the defects; at the same time, the thickness of thin films is reduced to avoid the high accumulated strain energy and the fracture problems.
Based on these experimental results, we successfully apply ALD-grown TiO2 films to the ReRAM devices and investigate the I-V characteristics of the two different device structures, Pt/TiO2/Pt and FTO/TiO2/ITO. It shows that the stability of the devices with the Pt/TiO2/Pt structure is not good enough because its resistive switching mechanism. On the other hand, the stability and the operating characteristics are improved significantly using the conducting metal oxides, such as the FTO and ITO thin films, as electrodes.
Key words: Titanium oxide, Atomic layer deposition, Transmission electron microscopy, Strain analysis, Resistive random access memory.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:28:43Z (GMT). No. of bitstreams: 1
ntu-103-R01527012-1.pdf: 7074388 bytes, checksum: ee74da0d5aee3b84ff0174999a8796ec (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書 #
致謝 i
摘要 iii
Abstract iv
Contents vi
List of Figures viii
List of Tables xvi
Chapter 1 緒論 1
Chapter 2 文獻回顧 3
2.1 二氧化鈦材料簡介 3
2.2 原子層沉積技術 5
2.3 新型記憶體-電阻式記憶體 8
2.3.1 電阻式記憶體簡介 9
2.3.2 電阻轉換行為 10
2.3.3 電阻轉換機制 12
2.3.4 金屬離子電化學反應 13
2.3.5 價電子轉換反應 14
2.3.6 熱化學反應 16
2.4 二氧化鈦薄膜的電阻轉換機制簡介 17
2.5 薄膜殘留應力種類及成因 22
2.6 薄膜應力量測技術 24
2.6.1 傳統薄膜應力量測方法 24
2.6.2 新型薄膜應力量測法-穿透式電子顯微鏡曲率量測法 26
Chapter 3 實驗步驟與研究方法 33
3.1 二氧化鈦薄膜之成長與分析 33
3.2 薄膜殘留應力量測 36
3.3 電阻式記憶體之電性量測與特性分析 36
3.4 分析方法介紹 37
3.4.1 TEM分析與試片製備方法 37
3.4.2 X光繞射儀 40
3.4.3 X光光電子能譜 41
3.4.4 聚束電子繞射法之試片厚度量測 43
Chapter 4 結果與討論 46
4.1 二氧化鈦薄膜之成長與分析 46
4.2 薄膜殘留應力量測 57
4.3 電阻式記憶體之電性量測與特性分析 67
Chapter 5 結論 81
Reference 82
dc.language.isozh-TW
dc.title原子層沉積技術成長二氧化鈦薄膜之應力分析及應用zh_TW
dc.titleStress Analysis and Applications of Titanium Oxide Thin Films Grown by Atomic Layer Depositionen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林招松,陳俊維
dc.subject.keyword二氧化鈦,原子層沉積法,穿透式電子顯微鏡,應力分析,電阻式記憶體,zh_TW
dc.subject.keywordTitanium oxide,Atomic layer deposition,Transmission electron microscopy,Strain analysis,Resistive random access memory,en
dc.relation.page88
dc.rights.note有償授權
dc.date.accepted2014-08-14
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
6.91 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved