請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56430完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳瑞北 | |
| dc.contributor.author | Ming-Kai Kang | en |
| dc.contributor.author | 康明凱 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:28:15Z | - |
| dc.date.available | 2014-08-17 | |
| dc.date.copyright | 2014-08-17 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-14 | |
| dc.identifier.citation | [1] F. Schwierz, “Graphene transistors,” Nat. Nanotechnol., vol. 5, no. 7, pp. 487–496, Jul. 2010.
[2] C. A. Mack, “Fifty Years of Moore’s Law,” IEEE Trans. Semicond. Manuf., vol. 24, no. 2, pp. 202–207, May 2011. [3] 吳旻鍾, “任意訊號與接地擺置直通矽晶連通柱陣列之簡化模型建立及電氣特性分析,” 國立臺灣大學碩士論文, 2012. [4] W. R. Davis, J. Wilson, S. Mick, J. Xu, H. Hua, C. Mineo, A. M. Sule, M. Steer, and P. D. Franzon, “Demystifying 3D ICs: the pros and cons of going vertical,” IEEE Des. Test Comput., vol. 22, no. 6, pp. 498–510, Nov. 2005. [5] M. Motoyoshi, “Through-Silicon Via (TSV),” Proc. IEEE, vol. 97, no. 1, pp. 43–48, Jan. 2009. [6] J. Cho, E. Song, K. Yoon, J. S. Pak, J. Kim, W. Lee, T. Song, K. Kim, J. Lee, H. Lee, K. Park, S. Yang, M. Suh, K. Byun, and J. Kim, “Modeling and Analysis of Through-Silicon Via (TSV) Noise Coupling and Suppression Using a Guard Ring,” IEEE Trans. Compon. Packag. Manuf. Technol., vol. 1, no. 2, pp. 220–233, Feb. 2011. [7] J. Cho, J. Shim, E. Song, J. S. Pak, J. Lee, H. Lee, K. Park, and J. Kim, “Active circuit to through silicon via (TSV) noise coupling,” in IEEE 18th Conference on Electrical Performance of Electronic Packaging and Systems, 2009. EPEPS ’09, 2009, pp. 97–100. [8] J. Cho, K. Yoon, J. S. Pak, J. Kim, J. Lee, H. Lee, K. Park, and J. Kim, “Guard ring effect for through silicon via (TSV) noise coupling reduction,” in 2010 IEEE CPMT Symposium Japan, 2010, pp. 1–4. [9] J. Cho, J. Kim, T. Song, J. S. Pak, J. Kim, H. Lee, J. Lee, and K. Park, “Through silicon via (TSV) shielding structures,” in 2010 IEEE 19th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), 2010, pp. 269–272. [10] J. Kim, J. Cho, and J. Kim, “TSV modeling and noise coupling in 3D IC,” in Electronic System-Integration Technology Conference (ESTC), 2010 3rd, 2010, pp. 1–6. [11] C. Xu, R. Suaya, and K. Banerjee, “Compact modeling and analysis of coupling noise induced by through-Si-vias in 3-D ICs,” in Electron Devices Meeting (IEDM), 2010 IEEE International, 2010, pp. 8.1.1–8.1.4. [12] C. Xu, R. Suaya, and K. Banerjee, “Compact Modeling and Analysis of Through-Si-Via-Induced Electrical Noise Coupling in Three-Dimensional ICs,” IEEE Trans. Electron Devices, vol. 58, no. 11, pp. 4024–4034, Nov. 2011. [13] P. Le Maitre, M. Brocard, A. Farcy, and J.-C. Marin, “Device and electromagnetic co-simulation of TSV: Substrate noise study and compact modeling of a TSV in a matrix,” in 2012 13th International Symposium on Quality Electronic Design (ISQED), 2012, pp. 404–411. [14] M. Brocard, P. Le Maitre, C. Bermond, P. Bar, R. Anciant, A. Farcy, T. Lacrevaz, P. Leduc, P. Coudrain, N. Hotellier, H. Ben Jamaa, S. Cheramy, N. Sillon, J. Marin, and B. Flechet, “Characterization and modelling of Si-substrate noise induced by RF signal propagating in TSV of 3D-IC stack,” in Electronic Components and Technology Conference (ECTC), 2012 IEEE 62nd, 2012, pp. 665–672. [15] M. Brocard, C. Bermond, T. Lacrevaz, A. Farcy, P. Le Maitre, P. Scheer, P. Leduc, S. Cheramy, and B. Flechet, “RF characterization of substrate coupling between TSV and MOS transistors in 3D integrated circuits,” in 3D Systems Integration Conference (3DIC), 2013 IEEE International, 2013, pp. 1–8. [16] N. H. Khan, S. M. Alam, and S. Hassoun, “Through-Silicon Via (TSV)-induced noise characterization and noise mitigation using coaxial TSVs,” in IEEE International Conference on 3D System Integration, 2009. 3DIC 2009, 2009, pp. 1–7. [17] N. H. Khan, S. M. Alam, and S. Hassoun, “Mitigating TSV-induced substrate noise in 3-D ICs using GND plugs,” in 2011 12th International Symposium on Quality Electronic Design (ISQED), 2011, pp. 1–6. [18] N. H. Khan, S. M. Alam, and S. Hassoun, “GND Plugs: A Superior Technology to Mitigate TSV-Induced Substrate Noise,” IEEE Trans. Compon. Packag. Manuf. Technol., vol. 3, no. 5, pp. 849–857, May 2013. [19] X. Gu, J. Silberman, Y. Liu, and X. Duan, “Mitigating TSV-induced substrate noise coupling in 3-D IC using buried interface contacts,” in 2012 IEEE 21st Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), 2012, pp. 75–78. [20] X. Gu and K. Jenkins, “Mitigation of TSV-substrate noise coupling in 3-D CMOS SOI technology,” in 2013 IEEE 22nd Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), 2013, pp. 73–76. [21] X. Gu, J. A. Silberman, A. M. Young, K. A. Jenkins, B. Dang, Y. Liu, X. Duan, R. Gordin, S. Shlafman, and D. Goren, “Characterization of TSV-Induced Loss and Substrate Noise Coupling in Advanced Three-Dimensional CMOS SOI Technology,” IEEE Trans. Compon. Packag. Manuf. Technol., vol. 3, no. 11, pp. 1917–1925, Nov. 2013. [22] A. Kurokawa, T. Kanamoto, A. Kasebe, Y. Inoue, and H. Masuda, “Efficient capacitance extraction method for interconnects with dummy fills,” in Custom Integrated Circuits Conference, 2004. Proceedings of the IEEE 2004, 2004, pp. 485–488. [23] S. Gaskill, V. Shilimkar, and A. Weisshaar, “Noise Suppression in VLSI Circuits Using Dummy Metal Fill,” in 12th IEEE Workshop on Signal Propagation on Interconnects, 2008. SPI 2008, 2008, pp. 1–4. [24] A. Nieuwoudt, J. Kawa, and Y. Massoud, “Crosstalk-Induced Delay, Noise, and Interconnect Planarization Implications of Fill Metal in Nanoscale Process Technology,” IEEE Trans. Very Large Scale Integr. VLSI Syst., vol. 18, no. 3, pp. 378–391, Mar. 2010. [25] M. Rousseau, M. Jaud, P. Leduc, A. Farcy, and A. Marty, “Impact of substrate coupling induced by 3D-IC architecture on advanced CMOS technology,” in Microelectronics and Packaging Conference, 2009. EMPC 2009. European, 2009, pp. 1–5. [26] L. J.-H. Lin, H.-P. Chang, T.-L. Wu, and Y.-P. Chiou, “3D simulation of substrate noise coupling from Through Silicon Via (TSV) and noise isolation methods,” in 2012 IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS), 2012, pp. 181–184. [27] L. J. Lin and Y. Chiou, “3-D Transient Analysis of TSV-Induced Substrate Noise: Improved Noise Reduction in 3-D-ICs With Incorporation of Guarding Structures,” IEEE Electron Device Lett., vol. 35, no. 6, pp. 660–662, Jun. 2014. [28] C. Xu and K. Banerjee, “Physical Modeling of the Capacitance and Capacitive Coupling Noise of Through-Oxide Vias in FDSOI-Based Ultra-High Density 3-D ICs,” IEEE Trans. Electron Devices, vol. 60, no. 1, pp. 123–131, Jan. 2013. [29] D. M. Pozar, Microwave Engineering, 3 edition. Hoboken, NJ: Wiley, 2004. [30] “Ansys Q3D Extractor v.12.” [Online]. Available: http://www.ansys.com/. [31] D. Neamen, Semiconductor Physics And Devices, 3 edition. Boston: McGraw-Hill Science/Engineering/Math, 2002. [32] M. Lee, J. Cho, and J. Kim, “Noise coupling analysis between TSV and active circuit,” in 2012 IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS), 2012, pp. 45–48. [33] P. S. Huang, M. Y. Tsai, C. Y. Huang, H. Jao, B. Huang, B. Wu, Y. Y. Lin, W. Liao, J. Huang, L. Huang, S. Shih, and J. P. Lin, “Determination of TSV-induced KOZ in 3D-stacked DRAMs: Simulations and experiments,” in Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2012 7th International, 2012, pp. 52–55. [34] H. Jao, Y. Y. Lin, W. Liao, B. Wu, B. Huang, L. Huang, J. Huang, S. Shih, J. P. Lin, P. S. Huang, M. Y. Tsai, and C. Y. Huang, “The impact of through silicon via proximity on CMOS device,” in Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2012 7th International, 2012, pp. 43–45. [35] P. S. Huang, M. Y. Tsai, and P. C. Lin, “Effects of overlaying dielectric layer and its local geometry on TSV-induced KOZ in 3D IC,” in Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2013 8th International, 2013, pp. 55–58. [36] W. Guo, V. Moroz, G. Van der Plas, M. Choi, A. Redolfi, L. Smith, G. Eneman, S. Van Huylenbroeck, P. D. Su, A. Ivankovic, B. De Wachter, I. Debusschere, K. Croes, I. De Wolf, A. Mercha, G. Beyer, B. Swinnen, and E. Beyne, “Copper through silicon via induced keep out zone for 10nm node bulk FinFET CMOS technology,” in Electron Devices Meeting (IEDM), 2013 IEEE International, 2013, pp. 12.8.1–12.8.4. [37] M. A. Ahmed and M. Chrzanowska-Jeske, “TSVs in early layout design exploration for 3D ICs,” in 2014 IEEE 5th Latin American Symposium on Circuits and Systems (LASCAS), 2014, pp. 1–4. [38] F. Wang, Z. Zhu, Y. Yang, X. Yin, X. Liu, and R. Ding, “An Effective Approach of Reducing the Keep-Out-Zone Induced by Coaxial Through-Silicon-Via,” IEEE Trans. Electron Devices, vol. 61, no. 8, pp. 2928–2934, Aug. 2014. [39] Y. Yang, M. Yu, Rusli, Q. Fang, J. Song, L. Ding, and G.-Q. Lo, “Through-Si-via (TSV) Keep-Out-Zone (KOZ) in SOI Photonics Interposer: A Study of the Impact of TSV-Induced Stress on Si Ring Resonators,” IEEE Photonics J., vol. 5, no. 6, pp. 2700611–2700611, Dec. 2013. [40] “TSMC 0.18-um.” [Online]. Available: www.tsmc.com. [41] K. Kim, J. M. Yook, J. Kim, H. Kim, J. Lee, K. Park, and J. Kim, “Interposer Power Distribution Network (PDN) Modeling Using a Segmentation Method for 3-D ICs With TSVs,” IEEE Trans. Compon. Packag. Manuf. Technol., vol. 3, no. 11, pp. 1891–1906, Nov. 2013. [42] “Predictive Technology Model(PTM).” [Online]. Available: http://ptm.asu.edu/. [43] T. Bandyopadhyay, K. J. Han, D. Chung, R. Chatterjee, M. Swaminathan, and R. Tummala, “Rigorous Electrical Modeling of Through Silicon Vias (TSVs) With MOS Capacitance Effects,” IEEE Trans. Compon. Packag. Manuf. Technol., vol. 1, no. 6, pp. 893–903, Jun. 2011. [44] 張長葆, “利用圓柱函數基底萃取直通矽晶穿孔柱陣列之電氣參數,” 國立臺灣大學碩士論文, 2013 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56430 | - |
| dc.description.abstract | 三維積體電路使用直通矽晶連通柱作為電氣連結,而訊號通過直通矽晶連通柱時,對其他直通矽晶連通柱和周遭的電路造成雜訊擾動,因此,減低雜訊擾動是一項重要的議題。
本論文提出使用金屬層用以降低直通矽晶連通柱對元件的耦合雜訊,對於不同的直通矽晶連通柱至元件的距離、不同的金屬層覆蓋比例以及不同的鄰近金屬層間距,觀察其耦合雜訊的變化。 耦合雜訊對於元件的基板電壓之擾動,造成元件的基板效應,從而對臨界電壓造成影響。本論文將耦合雜訊造成的元件基板電壓改變,求得因基板效應所造成之飽和區電流變動百分比。 最後提出設計曲線,可以確定飽和區電流變動百分比以及金屬層覆蓋比例,選擇適當的直通矽晶連通柱至元件的距離及鄰近金屬層間距。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:28:15Z (GMT). No. of bitstreams: 1 ntu-103-R01942001-1.pdf: 3575922 bytes, checksum: bcf60b46f9991f71ae86cbae5cc5c326 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 iii 摘要 v Abstract vii 目錄 ix 圖目錄 xi 表目錄 xv 第1章 緒論 1 1.1 研究動機與簡介 1 1.2 文獻回顧與探討 5 1.3 研究貢獻 8 1.4 章節概述 9 第2章 基礎理論 11 2.1 多埠微波網路 [29] 11 2.2 直通矽晶連通柱對元件的耦合關係 15 2.3 金屬氧化物半導體場效電晶體之臨界電壓 22 2.4 金屬氧化物半導體場效電晶體之基板效應 25 第3章 金屬層與直通矽晶連通柱對元件的耦合係數之關係 27 3.1 無金屬層時直通矽晶連通柱對元件的耦合係數 27 3.2 金屬層線寬與直通矽晶連通柱對元件耦合係數之關係 33 3.3 金屬層間距與直通矽晶連通柱對元件耦合係數之關係 43 第4章 金屬層與直通矽晶連通柱對元件的基板效應之關係 53 4.1 訊號通過直通矽晶連通柱對元件基板效應之影響 53 4.2 金氧半場效電晶體的製程相關參數 55 4.3 訊號直通矽晶連通柱的金氧半電容效應 57 4.4 金屬層效應對臨界電壓的影響 65 4.5 金屬層效應對飽和區電流之影響 67 第5章 結論與未來展望 79 5.1 結論 79 5.2 未來展望 80 參考文獻 81 | |
| dc.language.iso | zh-TW | |
| dc.subject | 基板效應 | zh_TW |
| dc.subject | 三維積體電路 | zh_TW |
| dc.subject | 直通矽晶連通柱 | zh_TW |
| dc.subject | Through-silicon-via (TSV) | en |
| dc.subject | Body effect | en |
| dc.subject | Three-dimensional integrated circuit (3D-IC) | en |
| dc.title | 利用金屬層降低直通矽晶連通柱至元件耦合雜訊之設計 | zh_TW |
| dc.title | Design of Reducing TSV-to-Device Coupling Noise Using Metal Layers | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉致為,郭建男,洪子聖,林建民 | |
| dc.subject.keyword | 基板效應,三維積體電路,直通矽晶連通柱, | zh_TW |
| dc.subject.keyword | Body effect,Three-dimensional integrated circuit (3D-IC),Through-silicon-via (TSV), | en |
| dc.relation.page | 84 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-14 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 3.49 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
