Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56259
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔣丙煌
dc.contributor.authorMan-Ning Laien
dc.contributor.author賴曼寧zh_TW
dc.date.accessioned2021-06-16T05:20:52Z-
dc.date.available2019-08-21
dc.date.copyright2014-08-21
dc.date.issued2014
dc.date.submitted2014-08-15
dc.identifier.citation楊培牆、陳世爵。1979。醬油製造專輯。美國黃豆協會。台北。
王麗蓉。2004。製麴與酒母製備條件對清酒釀造之影響。國立中興大學食品暨應用生物科技學系研究所碩士論文。台中。
呂享融。2009。探討化合物 Dynasore在活體 ICR 小鼠與離體 CCD-966SK 細胞之創傷癒合作用及促人類皮膚纖維母細胞膠原蛋白生成機制。台北醫學大學藥學研究所碩士論文。台北。
李寳如。2003。國產稻米釀製清酒之研究, 碩士論文, 國立嘉義大學食品科學研究所。嘉義。
林慶文。2005。克弗爾應用於新美容產品之開發研究。國立臺灣大學動物科學技術研究所碩士論文。台北。
林煜書。2012。毛茄之抗氧化成分研究。嘉南藥理科技大學藥物科技研究所碩士論文。嘉義。
胡依婕。2008。探討以米麴菌發酵中草藥應用於抑制酪胺酸及抗氧化活性之研究。國立臺南大學環境生態研究所碩士論文。台南。
許美芳。2008。黃耆納豆菌發酵物對人類皮膚細胞生合成膠原蛋白及透明質酸之影響。臺灣大學食品科技研究所博士論文。台北。
許雅玲。2007。皮脂對於皮膚障壁功能及結構的影響。國立成功大學臨床藥學研究所碩士論文。台南。
陳啟楨。2012。魚醬油之機能性及蛋白質分解之活性探討。南台科技大學
生物科技系學生專題。
曾慧敏。2008。天然物經米麴菌醱酵後產物之美白機轉探討。嘉南藥理科技大學化妝品科技研究所碩士論文。嘉義。
黃宜純、何瓊華。2007。美容皮膚生理學。知音。
楊佳璋。2012。實用皮膚生理學。華格那企業。
董永胜、張德中、王立言、賈士儒。2005。固態發酵耐高温酒精酵母的選育及生產應用。釀酒。32:5
劉容秀。2008。紅景天萃取在人類纖維母細胞中對紫外線 A 引起膠原蛋白減少之影響。嘉南藥理科技大學化妝品科技研究所碩士論文。嘉義。
鄭欣芸。2009。微量礦物元素硒, 鋅, 維生素 A, 維生素 C 及維生素 E 保護皮膚角質細胞抵抗中波長紫外線傷害機制之探討。高雄醫學大學生物化學研究所碩士論文。高雄。
阮郁婷。2006。靈芝萃取物對人類皮膚纖維母細胞的增生與在化妝品的應用。國立臺灣海洋大學食品科學研究所碩士論文。台北。
Allemann, I. B.; Baumann, L., Botanicals in skin care products. Int. J. Dermatol. 2009, 48, 923-934.
Apone, F.; Tito, A.; Carola, A.; Arciello, S.; Tortora, A.; Filippini, L.; Monoli, I.; Cucchiara, M.; Gibertoni, S.; Chrispeels, M. J., A mixture of peptides and sugars derived from plant cell walls increases plant defense responses to stress and attenuates ageing-associated molecular changes in cultured skin cells. J. Biotechnol. 2010, 145, 367-376.
Bachelor, M. A.; Bowden, G. T. In UVA-mediated activation of signaling pathways involved in skin tumor promotion and progression, Semin. Cancer Biol., 2004; Elsevier: 2004; pp 131-138.
Bechman, A.; Phillips, R. D.; Chen, J., Changes in Selected Physical Property and Enzyme Activity of Rice and Barley Koji during Fermentation and Storage. J. Food Sci. 2012, 77, M318-M322.
Bensouilah, J.; Buck, P., Aromadermatology: aromatherapy in the treatment and care of common skin conditions. Radcliffe Publishing: 2006.
Bentley, R., From miso, sake and shoyu to cosmetics: a century of science for kojic acid. Nat. Prod. Rep. 2006, 23, 1046-1062.
Bhanja, T.; Rout, S.; Banerjee, R.; Bhattacharyya, B., Studies on the performance of a new bioreactor for improving antioxidant potential of rice. LWT-Food Sci. and Technol. 2008, 41, 1459-1465.
Binic, I.; Lazarevic, V.; Ljubenovic, M.; Mojsa, J.; Sokolovic, D., Skin ageing: natural weapons and strategies. Evid. Based Complement. Alternat. Med. 2013, 2013.
Bolognia, J. L., Aging skin. Am. J. Med. 1995, 98, S99-S103.
Brennan, M.; Bhatti, H.; Nerusu, K. C.; Bhagavathula, N.; Kang, S.; Fisher, G. J.; Varani, J.; Voorhees, J. J., Matrix Metalloproteinase‐1 is the Major Collagenolytic Enzyme Responsible for Collagen Damage in UV‐irradiated Human Skin. Photochem. Photobiol. 2003, 78, 43-48.
Chen, H. M.; Muramoto, K.; Yamauchi, F.; Nokihara, K. Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein. J. Agri. Food Chem. 1996, 44, 2619-2623.
Chen K.; Liang N.; Yang J.; Zhao H. UV-B Irradiation Regulates Apoptosis in Yeast. I. C. A. B. 2012, 3, 1869-1879.
Chiu, C.-H.; Wang, R.; Lee, C.-C.; Lo, Y.-C.; Lu, T.-J., Biotransformation of Mogrosides from Siraitia grosvenorii Swingle by Saccharomyces cerevisiae. J. Agric. Food Chem. 2013, 61, 7127-7134.
Cho, S.; Won, C. H.; Lee, D. H.; Lee, M. J.; Lee, S.; So, S. H.; Lee, S. K.; Koo, B. S.; Kim, N. M.; Chung, J. H., Red ginseng root extract mixed with Torilus fructus and Corni fructus improves facial wrinkles and increases type I procollagen synthesis in human skin: a randomized, double-blind, placebo-controlled study. J. Med. Food 2009, 12, 1252-1259.
Chung, S. Y.; Seo, Y. K.; Park, J. M.; Seo, M. J.; Park, J. K.; Kim, J. W.; Park, C. S., Fermented rice bran downregulates MITF expression and leads to inhibition of α-MSH-induced melanogenesis in B16F1 melanoma. Biosci. Biotechnol. Biochem. 2009, 73, 1704-1710.
Church, F. C.; Swaisgood, H. E.; Porter, D. H.; Catignani, G. L. Spectrophotometric Assay Using o-Phthaldialdehyde for Determination of Proteolysis in Milk and Isolated Milk Proteins. J. Dairy Sci. 1983, 66, 1219-1227.
Deters, A. M.; Schroder, K. R.; Hensel, A., Kiwi fruit (Actinidia chinensis L.) polysaccharides exert stimulating effects on cell proliferation via enhanced growth factor receptors, energy production, and collagen synthesis of human keratinocytes, fibroblasts, and skin equivalents. J. Cell. Physiol. 2005, 202, 717-722.
Diegelmann, R. F., Collagen metabolism. WOUNDS. 2001, 13, 177-182.
Dubois, M.; Gilles, K. A.; Hamilton, J. K.; Rebers, P.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350-356.
Dudonne, S.; Poupard, P.; Coutiere, P.; Woillez, M.; Richard, T.; Merillon, J.-M.; Vitrac, X., Phenolic composition and antioxidant properties of poplar bud (Populus nigra) extract: individual antioxidant contribution of phenolics and transcriptional effect on skin aging. J. Agric. Food Chem. 2011, 59, 4527-4536.
Esaki, H.; Onozaki, H.; Kawakishi, S.; Osawa, T., Antioxidant activity and isolation from soybeans fermented with Aspergillus spp. J. Agric. Food Chem. 1997, 45, 2020-2024.
Fisher, G. J.; Datta, S. C.; Talwar, H. S.; Wang, Z. Q.; Varani, J.; Kang, S.; Voorhees, J. J., Molecular basis of sun-induced premature skin ageing and retinoid antagonism. Nature 1996. 379, 335-339.
Fisher, G. J.; Kang, S.; Varani, J.; Bata-Csorgo, Z.; Wan, Y.; Datta, S.; Voorhees, J. J., Mechanisms of photoaging and chronological skin aging. Arch. Dermatol. 2002, 138, 1462-1470.
Emanuele E.; Bertona M.; Sanchis‑Gomar F.; Pareja‑Galeano H.;, Lucia A. Protective effect of trehalose‑loaded liposomes against UVB‑induced photodamage in human keratinocytes. Biomedical Reports, 2014, 2, 755-759.
Fodil-Bourahla, I.; Bizbiz, L.; Schoevaert, D.; Robert, A.; Robert, L., Effect of L-fucose and fucose-rich oligo-and polysaccharides (FROP-s) on skin aging: penetration, skin tissue production and fibrillogenesis. Biomed. Pharmacother. 2003, 57, 209-215.
Gaspar, L.; Camargo Jr, F.; Gianeti, M.; Maia Campos, P., Evaluation of dermatological effects of cosmetic formulations containing Saccharomyces cerevisiae extract and vitamins. Food Chem. Toxicol. 2008, 46, 3493-3500.
Gelse, K.; Poschl, E.; Aigner, T., Collagens—structure, function, and biosynthesis. Adv Drug Deliv. Rev. 2003, 55, 1531-1546.
Gilchrest, B., A review of skin ageing and its medical therapy. Br. J. Dermatol. 1996, 135, 867-875.
Gilchrest, B. A., Skin aging and photoaging: an overview. J. Am. Acad. Dermatol. 1989, 21, 610-613.
Gorouhi, F.; Maibach, H. I., Topical Peptides and Proteins for Aging Skin. In Textbook of Aging Skin, Springer: 2010; pp 1089-1117.
Graf, E., Antioxidant potential of ferulic acid. Free Radic. Biol. Med. 1992, 13, 435-448.
Greene, J.; Wang, M.; Liu, Y. E.; Raymond, L. A.; Rosen, C.; Shi, Y. E., Molecular cloning and characterization of human tissue inhibitor of metalloproteinase 4. J. Biol. Chem. 1996, 271, 30375-30380.
Halliwell, B.; Whiteman, M., Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br. J. Pharmacol. 2004, 142, 231-255.
Helfrich, Y. R.; Sachs, D. L.; Voorhees, J. J., Overview of skin aging and photoaging. Dermatol. Nurs. 2008, 20, 177.
Hernandez-Marin, E.; Martinez, A. Carbohydrates and their free radical scavenging capability: a theoretical study. J. Phys. Chem. B 2012, 116, 9668-9675
Hirotsune, M.; Haratake, A.; Komiya, A.; Sugita, J.; Tachihara, T.; Komai, T.; Hizume, K.; Ozeki, K.; Ikemoto, T., Effect of ingested concentrate and components of sake on epidermal permeability barrier disruption by UVB irradiation. J. Agric. Food Chem. 2005, 53, 948-952.
Jenkins, G., Molecular mechanisms of skin ageing. Mech. Ageing Dev. 2002, 123, 801-810.
Jong-Hwei, P.; Wen-Rou, W.; Tomohiro, H.; Takashi, Y.; Tzu-Ya, C., Up-regulation of tight junction-related proteins and increase of human epidermal keratinocytes barrier function by Saccharomycopsis ferment filtrate. J. Cosmetics Dermatological Sci. Appl. 2011, 1, 15-24.
Kahari, V. M.; Saarialho‐Kere, U., Matrix metalloproteinases in skin. Exp. Dermatol. 1997, 6, 199-213.
Kagan, H. M.; Li, W., Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell. J. Cell. Biochem. 2003, 88, 660-672.
Kim, J.; Ahn, B.-N.; Kong, C.-S.; Kim, S.-K., Chitooligomers inhibit UV-A-induced photoaging of skin by regulating TGF-β/Smad signaling cascade. Carbohydrate Polymers 2012, 88, 490-495.
Kitamura, N.; Ota, Y.; Haratake, A.; Ikemoto, T.; Tanno, O.; Horikoshi, T., Effects of ethyl α-D-glucoside on skin barrier disruption. Skin Pharmacol. Physiol. 1997, 10, 153-159.
Kiyono, T.; Hirooka, K.; Yamamoto, Y.; Kuniishi, S.; Ohtsuka, M.; Kimura, S.; Park, E. Y.; Nakamura, Y.; Sato, K., Identification of Pyroglutamyl Peptides in Japanese Rice Wine (Sake): Presence of Hepatoprotective PyroGlu-Leu. J. Agric. Food Chem. 2013, 61, 11660-11667.
Korać, R. R.; Khambholja, K. M., Potential of herbs in skin protection from ultraviolet radiation. Pharmacogn Rev. 2011, 5, 164.
Kronek, J.; Paulovičova, E.; Paulovičova, L.; Kronekova, Z.; Lustoň, J., Biocompatibility and Immunocompatibility Assessment of Poly (2-Oxazolines). Practical Applications in Biomedical Engineering, Intech, 2012.
Landolfo, S.; Politi, H.; Angelozzi, D.; Mannazzu, I., ROS accumulation and oxidative damage to cell structures in Saccharomyces cerevisiae wine strains during fermentation of high-sugar-containing medium. BBA-Gen. Subjects 2008, 1780, 892-898.
Lavker, R. M.; Zheng, P.; Dong, G., Aged skin: a study by light, transmission electron, and scanning electron microscopy. J. Invest. Dermatol. 1987, 88, 44-51.
Lee, B. C., Bae, J. T., Pyo, H. B., Choe, T. B., Kim, S. W., Hwang, H. J., Yun, J. W. (2003). Biological activities of the polysaccharides produced from submerged culture of the edible Basidiomycete Grifola frondosa. Enzyme Microb. Tech. 2003, 32, 574-581.
Liebel, F.; Kaur, S.; Ruvolo, E.; Kollias, N.; Southall, M. D., Irradiation of skin with visible light induces reactive oxygen species and matrix-degrading enzymes. J. Invest. Dermatol. 2012, 132, 1901-1907.
Lin, C.-H.; Wei, Y.-T.; Chou, C.-C., Enhanced antioxidative activity of soybean koji prepared with various filamentous fungi. Food microbiology 2006, 23, 628-633.
Liu, F.; He, Y.; Wang, L.; Pan, H., Feasibility of the use of visible and near infrared spectroscopy to assess soluble solids content and pH of rice wines. J. Food Eng. 2007, 83, 430-435.
Lovell, C.; Smolenski, K.; Duance, V.; Light, N.; Young, S.; Dyson, M., Type I and III collagen content and fibre distribution in normal human skin during ageing. Br. J. Dermatol. 1987, 117, 419-428.
Lupo, M. P.; Cole, A. L., Cosmeceutical peptides. Dermatol. Ther. 2007, 20, 343-349.
Madlener, M.; Parks, W. C.; Werner, S., Matrix metalloproteinases (MMPs) and their physiological inhibitors (TIMPs) are differentially expressed during excisional skin wound repair. Exp. Cell Res. 1998, 242, 201-210.
Maeda, K.; Fukuda, M., In vitro effectiveness of several whitening cosmetic components in human melanocytes. J. Soc. Cosmet. Chem 1991, 42.
Maggini, S.; Wintergerst, E. S.; Beveridge, S.; Hornig, D. H., Selected vitamins and trace elements support immune function by strengthening epithelial barriers and cellular and humoral immune responses. Br. J. Nutr. 2007, 98, S29-S35.
Mukherjee, P. K.; Maity, N.; Nema, N. K.; Sarkar, B. K., Bioactive compounds from natural resources against skin aging. Phytomedicine 2011, 19, 64-73.
Nakahara, M.; Mishima, T.; Hayakawa, T., Effect of a sake concentrate on the epidermis of aged mice and confirmation of ethyl α-D-glucoside as its active component. Biosci. Biotechnol. Biochem. 2007, 0701120268.
Nelson, A. R.; Fingleton, B.; Rothenberg, M. L.; Matrisian, L. M., Matrix metalloproteinases: biologic activity and clinical implications. J. Clin. Oncol. 2000, 18, 1135-1135.
Oka, S.; Sato, S., Contribution of ethyl alpha-D-glucoside to flavor construction in Sake. J. Agr. Chem. Soc. Jpn. 1976.
Ou, S.; Kwok, K. C., Ferulic acid: pharmaceutical functions, preparation and applications in foods. J. Sci. Food Agric. 2004, 84, 1261-1269.
Peterkofsky, B., The effect of ascorbic acid on collagen polypeptide synthesis and proline hydroxylation during the growth of cultured fibroblasts. Arch. Biochem. Biophys. 1972, 152, 318-328.
Piglets, W.; Liao, R.-W.; Tsao, P.-H.; Chen, S.-D.; Cheng, Y.-H., 枯草桿菌對大豆粕抗原蛋白降解效果及對離乳仔豬生長性能之影響廖柔彎. 國立宜蘭大學食品科學系. 2012.
Quan, T.; He, T.; Kang, S.; Voorhees, J. J.; Fisher, G. J., Ultraviolet Irradiation Alters Transforming Growth Factor β/Smad Pathway in Human Skin In Vivo. J. Invest. Dermatol. 2002, 119, 499-506.
Quan, T.; He, T.; Kang, S.; Voorhees, J. J.; Fisher, G. J., Solar ultraviolet irradiation reduces collagen in photoaged human skin by blocking transforming growth factor-β type II receptor/Smad signaling. Ame. J. Pathol. 2004, 165, 741-751.
Ricard-Blum, S., The collagen family. Cold Spring Harb. Perspect. Biol. 2011, 3, a004978.
Rittie, L.; Fisher, G. J., UV-light-induced signal cascades and skin aging. Ageing Res. Rev. 2002, 1, 705-720.
Rhee, S. J.; Lee, C. Y. J; Kim, M. R.; Lee, C. H., Potential antioxidant peptides in rice wine. J. microbiol. biotech. 2004, 14, 715-721.
Roemer, T.; Paravicini, G.; Payton, M. A.; Bussey, H., Characterization of the yeast (1--> 6)-beta-glucan biosynthetic components, Kre6p and Skn1p, and genetic interactions between the PKC1 pathway and extracellular matrix assembly. The J. cell Biol. 1994, 127, 567-579.
Saito, Y.; Wanezaki, K.; Kawato, A.; Imayasu, S., Antihypertensive effects of peptide in sake and its by-products on spontaneously hypertensive rats. Biosci. Biotech. Biochem. 1994a, 58, 812-816.
Saito, Y.; Wanezaki Nakamura, K.; Kawato, A.; Imayasu, S., Structure and activity of angiotensin I converting enzyme inhibitory peptides from sake and sake lees. Biosci. Biotech. Biochem. 1994b, 58, 1767-1771.
Saito, Y.; Ohura, S.; Kawato, A.; Suginami, K., Prolyl endopeptidase inhibitors in sake and its byproducts. J. Agric. Food Chem. 1997, 45, 720-724.
Seo, M. Y.; Chung, S. Y.; Choi, W. K.; Seo, Y. K.; Jung, S. H.; Park, J. M.; Seo, M. J.; Park, J. K.; Kim, J. W.; Park, C. S., Anti-aging effect of rice wine in cultured human fibroblasts and keratinocytes. J. Biosci. Bioeng. 2009, 107, 266-271.
Seo, Y.-K.; Jung, S.-H.; Song, K.-Y.; Park, J.-K.; Park, C.-S., Anti-photoaging effect of fermented rice bran extract on UV-induced normal skin fibroblasts. Eur. Food Res. Technol. 2010, 231, 163-169.
Shai, A.; Maibach, H. I.; Baran, R., Handbook of cosmetic skin care. Martin Dunitz London: 2009.
Singleton, V. L.; Rossi, J. A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticul. 1965, 16, 144-158.
Smith, W. P., Epidermal and dermal effects of topical lactic acid. J. Am. Acad. Dermatol. 1996, 35, 388-391.
Sun J.; He H.; XIE B. J. Novel Antioxidant Peptides from Fermented Mushroom
Ganoderma lucidum. J. Agric. Food Chem. 2004, 52, 6646−6652.
Tadenuma, M., Sheishu no seibun wo megutte. Gendai Kagaku 1987, 1, 26-31.
Tanaka, M.; Koyama, Y.-i.; Nomura, Y., Effects of collagen peptide ingestion on UV-B-induced skin damage. Biosci. Biotechnol. Biochem. 2009, 73, 930-932.
Tian, S.; Nakamura, K.; Kayahara, H., Analysis of phenolic compounds in white rice, brown rice, and germinated brown rice. J. Agric. Food Chem. 2004, 52, 4808-4813.
Tsai, H.-H.; Chen, Y.-C.; Lee, W.-R.; Hu, C.-H.; Hakozaki, T.; Yoshii, T.; Shen, S.-C., Inhibition of inflammatory nitric oxide production and epidermis damages by Saccharomycopsis Ferment Filtrate. J. Dermatol. Sci. 2006, 42, 249-257.
Uno, T.; Itoh, A.; Miyamoto, T.; Kubo, M.; Kanamaru, K.; Yamagata, H.; Yasufuku, Y.; Imaishi, H., Ferulic acid production in the brewing of rice wine (sake). J. I. Brewing 2009, 115, 116-121.
Vu, T. H.; Werb, Z., Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev. 2000, 14, 2123-2133.
Wang, R.; Chau Sing Law, R.; Webb, C., Protease production and conidiation by Aspergillus oryzae in flour fermentation. Process Biochem. 2005, 40, 217-227.
Wulf, H. C.; Sandby-Moller, J.; Kobayasi, T.; Gniadecki, R., Skin aging and natural photoprotection. Micron 2004, 35, 185-191.
Yen, G.-C.; Chang, Y.-C.; Su, S.-W., Antioxidant activity and active compounds of rice koji fermented with Aspergillus candidus. Food Chem. 2003, 83, 49-54.
Zhang, L.-W.; Al-Suwayeh, S. A.; Hsieh, P.-W.; Fang, J.-Y., A comparison of skin delivery of ferulic acid and its derivatives: evaluation of their efficacy and safety. Int. J. Pharm. 2010, 399, 44-51.
Zhao, Z.; Moghadasian, M. H., Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: a review. Food Chem. 2008, 109, 691-702.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56259-
dc.description.abstract老化於現今社會中越來越受到重視,而皮膚是老化最明顯的器官,其徵兆包括皺紋的產生、皮膚暗淡灰黃、萎縮、鬆弛、乾燥和色素沉澱等等。老化的成因主要可分為兩種,先天基因隨著時間的變化而產生的老化稱作自然老化(內因性老化);長期暴露在紫外線下造成的老化稱做光老化(外因性老化),其中光老化是加快老化的主要原因。過去的研究顯示,清酒(sake)製程中之產物能降低紫外光的傷害,減少基質金屬蛋白酶-1(MMP-1)的表現量以及增加Type-Ⅰprocollagen的合成,能夠恢復皮膚彈性以及減少皺紋的產生。此外,也有文獻指出胜肽和醣類同樣具有抗皮膚老化的功效。本實驗目的乃利用米及大豆粕當作發酵基質,擬建立一個發酵方法,生產出具有抗皮膚老化功效的產品。實驗分成兩個部分,第一部分選擇適當的基質組成、比例和培養時間,利用米麴菌(Aspergillus oryzae BCRC30428)進行米麴(RA)及大豆麴(SA)的製備;第二部分則利用兩種不同的酵母菌(Saccharomyces cerevisiae K901及YCL1087),接種於米麴及大豆麴中,完成發酵物的製備,並將兩部份樣品進行水萃取(W)及酒精萃取(E),探討發酵萃取物對人類皮膚纖維母細胞之抗皮膚老化功效。結果顯示,各組發酵產物之萃取液大部分於濃度50 μg/mL以下,細胞存活率達85%以上。在清除ROS能力的試驗上,發現經由Saccharomyces cerevisiae YCL1087發酵的產物之酒萃組別,具有良好ROS清除效果,達20%以上。而促進第一型原膠原蛋白增生的結果顯示,經由Saccharomyces cerevisiae YCL1087發酵之樣品,在低濃度下,米麴菌未發酵組(RACY)、米麴菌發酵36小時(RA36Y)米酒萃組以及米麴菌未發酵而酵母菌發酵72小時(SACY72)之大豆酒萃組,與控制組相比仍可維持第一型原膠原蛋白之含量。因此在不具有抑制第一型原膠原蛋白合成的發酵物,且又能夠清除細胞內的ROS含量,有利於預防因紫外線造成的皮膚細胞所造成的氧化壓力之情形,仍具有抗皮膚老化產品之潛力。zh_TW
dc.description.abstractSkin is the most visible organ in the aging process. The characteristics of skin aging include wrinkling, sallowness, laxity and dryness. Aging may result from both the passage of time (intrinsic aging) and from ultraviolet light exposure (extrinsic aging). Past research showed that sake (rice wine) has positive effect on skin, including prevention of UV damage, reduction of matrix metalloproteinase-1 (MMP-1) expression and increase of typeⅠprocollagen synthesis. However, rice wine production requires tedious procedures and longtime processing. In this study, we attempt to simulate the fermentation conditions of rice wine production but with much shorter time, and hope that the fermentation product also possess anti-aging effect on skin. Since both peptide and carbohydrate are all considered to possess anti-aging effect for skin, other than rice, soybean meal was also used as substrates for fermentation. The fermentation experiment was divided into two parts. First, the optimal composition and fermentation time of koji prepared by Aspergillus oryzae were determined. Then, two kind of Saccharomyces cerevisiae were added to complete the fermentation process. The human skin fibroblast (CCD-966SK) was used as in vitro model to evaluate the bioactivity of the fermentation product. Results showed that the dose below 50μg/mL would not exert cytotoxic effect on the human skin fibroblast. The samples derived from ethanol extract of fermented product which fermented by Aspergillus oryzae and Saccharomyces cerevisiae YCL1087 could significantly reduce about 20% of the accumulation of UV-induced ROS production in skin fibroblast. But the samples with higher concentration could inhibit typeⅠprocollagen synthesis. If treated with low concentration of the product fermented with Aspergillus oryzae for a shorter time, compared with control group, there was no significant effect on typeⅠprocollagen synthesis. Therefore, this fermented extract could scavenge ROS production significantly and reduce UV-induced oxidative stresses in skin cells. But this product is not a comprehensive skin care product, because of they cannot stimulate typeⅠprocollagen synthesis.en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:20:52Z (GMT). No. of bitstreams: 1
ntu-103-R01641021-1.pdf: 4957514 bytes, checksum: 09e2ac2cfe09d49b0258fc78cc9ebded (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents目錄
中文摘要 ɪ
英文摘要 Ⅱ
口試委員審定書 Ⅳ
目錄 Ⅴ
表次 Ⅷ
圖次 Ⅸ
第一章、 緒論 1
第二章、 文獻回顧 2
一、人體皮膚 2
(一) 皮膚功能與結構 3
1. 表皮層 3
2. 真皮層 5
3. 皮下組織 6
(二) 皮膚老化特徵 6
1. 皮膚老化的外觀變化 6
2. 皮膚老化的生理變化 8
(三) 皮膚中的膠原蛋白 8
1. 膠原蛋白之結構 8
2. 膠原蛋白之生合成 9
(四) 皮膚老化之形成原因 11
1. 自然老化與光老化 11
2. 皮膚老化之自由基學說 13
3. 皮膚老化與紫外線的關係 13
4. 皮膚老化的預防與治療 19
二、發酵菌種與皮膚保健 21
(一) 米麴菌 21
(二) 酵母菌 21
(三) 清酒 22
第三章、 實驗目的與架構 24
一、研究目的 25
二、實驗架構 25
(一) 米麴菌Aspergillis oryzae發酵及萃取 26
(二) 酵母菌Saccharomyces cerevisiae K901及Saccharomyces cerevisiae發酵 及萃取 27
(三) 抗老化活性測定 29
第四章、 材料與方法 29
一、實驗材料 29
(一) 實驗原料 29
(二) 實驗菌種 29
(三) 實驗細胞株 29
(四) 實驗藥品與試劑 29
(五) 實驗器材與儀器 30
二、實驗方法 31
(一) 樣品前處理 31
(二) 微生物發酵 31
(三) 發酵萃取液製備 33
(四) 細胞實驗 33
(五) 成分分析 40
(六) 統計分析 42
第五章、 結果與討論 43
一、麴菌發酵過程變化 43
(一) pH 43
(二) 水分含量 48
二、酵母菌生長曲線 50
三、細胞實驗 51
(一) 皮膚纖維母細胞(CCD-966SK)毒性試驗 51
(二) 清除由UVA誘導皮膚纖維母細胞產生之ROS能力分析 62
(三) 第一型原膠原蛋白(typeⅠprocollagen)含量分析 74
四、成分分析 77
(一) 總糖含量分析 77
(二) 胜肽含量分析 77
(三) 總酚含量分析 78
五、結論 85
第六章、 參考資料 86

表次
表2-1、光老化死自然老化症狀 12
表5-1、不同浸米時間對蒸米水分含量之影響 48
表5-2、不同大豆粕與水比例對蒸煮大豆水分含量之影響 49

圖次
圖2-1、皮膚的結構 2
圖2-2、表皮的結構 5
圖2-3、原膠原蛋白的結構 9
圖2-4、膠原蛋白生合成 11
圖2-5、紫外光誘導MMPs表現之訊息傳導路徑 18
圖4-1、MTT結構及反應原理 34
圖4-2、由DCFDA轉變螢光物質DCF示意圖 36
圖4-3、UV照射器 37
圖4-4、三明治酵素連結免疫吸附法原理 38
圖5-1、米麴菌發酵米及大豆過程中pH值變化量 45
圖5-2、米麴菌發酵米及大豆之萃取液pH值變化量 45
圖5-3、酵母菌發酵米及大豆之萃取液pH值變化量 45
圖5-4、米麴菌發酵米及大豆36小時之萃取液pH值變化量 46
圖5-5、米麴菌發酵米及大豆48小時之萃取液pH值的變化量 46
圖5-6、米麴菌發酵米及大豆72小時之萃取液pH值的變化量 47
圖5-7、米麴菌發酵米及大豆之基質水分含量變化 49
圖5-8、Saccharomyces cerevisiae K901及Saccharomyces cerevisiae YCL1087之生長曲線 50
圖5-9、米麴菌發酵物之萃取液對人類纖維母細胞之毒性測試 53
圖5-10、酵母菌K901發酵物之萃取液對人類纖維母細胞之毒性測試 54
圖5-11、酵母菌YCL1087發酵物之萃取液對人類纖維母細胞之毒性測試 55
圖5-12、米麴菌發酵36小時及酵母菌K901發酵之萃取液對人類纖維母細胞之毒性測試 56
圖5-13、米麴菌發酵36小時及酵母菌YCL1087發酵之萃取液對人類纖維母細胞之毒性測試 57
圖5-14、米麴菌發酵48小時及酵母菌K901發酵之萃取液對人類纖維母細胞之毒性測試 58
圖5-15、米麴菌發酵48小時及酵母菌YCL1087發酵之萃取液對人類纖維母細胞之毒性測試 59
圖5-16、米麴菌發酵72小時及酵母K901菌發酵之萃取液對人類纖維母細胞之毒性測試 60
圖5-17、米麴菌發酵72小時及酵母菌YCL1087發酵之萃取液對人類纖維母細胞之毒性測試 61
圖5-18、以UVA照射人類皮膚纖維母細胞內活性氧物質及細胞存活率之影響 64
圖5-19、米麴菌發酵米之萃取液對人類纖維母細胞照射UVA之ROS生成量 65
圖5-20、酵母菌K901發酵之萃取液對人類纖維母細胞照射UVA之ROS生成量 66
圖5-21、酵母菌YCL1087發酵之萃取液對人類纖維母細胞照射UVA之ROS生成量 67
圖5-22、米麴菌發酵36小時及酵母菌K901發酵之萃取液對人類纖維母細胞照射UVA之ROS生成量 68
圖5-23、米麴菌發酵36小時及酵母菌YCL1087發酵之萃取液對人類纖維母細胞照射UVA之ROS生成量 69
圖5-24、米麴菌發酵48小時及酵母菌K901發酵之萃取液對人類纖維母細胞照射UVA之ROS生成量 70
圖5-25、米麴菌發酵48小時及酵母菌YCL1087發酵之萃取液對人類纖維母細胞照射UVA之ROS生成量 71
圖5-26、米麴菌發酵72小時及酵母菌K901發酵之萃取液對人類纖維母細胞照射UVA之ROS生成量 72
圖5-27、米麴菌發酵72小時及酵母菌YCL1087發酵之萃取液對人類纖維母細胞照射UVA之ROS生成量 73
圖5-28、發酵物酒萃液之對人類皮膚纖維母細胞生成typeⅠ procollagen之能力 76
圖5-29、發酵物經由酵母菌YCL1087發酵酒萃取之總糖及胜肽含量 81
圖5-30、發酵物經由酵母菌K901發酵酒萃取及水萃取之總糖及胜肽含量 82
圖5-31、發酵物經由酵母菌YCL1087發酵酒萃取之總酚含量 83
圖5-32、發酵物經由酵母菌K901發酵酒萃取及水萃取之總酚含量 84
dc.language.isozh-TW
dc.subject皮膚老化zh_TW
dc.subject清酒zh_TW
dc.subject膠原蛋白zh_TW
dc.subject基質金屬蛋白?zh_TW
dc.subject發酵zh_TW
dc.subjectprocollagenen
dc.subjectskin anti-agingen
dc.subjectfermentationen
dc.subjectsakeen
dc.subjectmatrix metalloproteinaseen
dc.title利用米麴菌及酵母菌發酵開發具有抗皮膚老化功效的產品zh_TW
dc.titleAnti-skin aging effect of fermented product using Aspergillus oryzae and Saccharomyces cerevisiaeen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee周正俊,潘子明,陳錦樹
dc.subject.keyword皮膚老化,清酒,膠原蛋白,基質金屬蛋白?,發酵,zh_TW
dc.subject.keywordskin anti-aging,sake,procollagen,matrix metalloproteinase,fermentation,en
dc.relation.page97
dc.rights.note有償授權
dc.date.accepted2014-08-16
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
4.84 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved