請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56055
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 高振宏 | |
dc.contributor.author | Meng-Hsin Chen | en |
dc.contributor.author | 陳孟歆 | zh_TW |
dc.date.accessioned | 2021-06-16T05:14:10Z | - |
dc.date.available | 2016-08-25 | |
dc.date.copyright | 2014-08-25 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-18 | |
dc.identifier.citation | [ 1 ] K. N. Tu, “Reliability challenges in 3D IC packaging technology”, Microelectronics Reliability, vol. 51, no. 3, pp. 517-523, (2011).
[ 2 ] H. Y. Chuang, Doctoral Thesis, National Taiwan University, (2011). [ 3 ] Yole Development, (2009). [ 4 ] P. Kettner, B. Kim, S. Pargfrieder and S. Zhu, “New Technologies for Advanced High Density 3D Packaging by Using TSV Process”, Electronic Packaging Technology & High Density Packaging, pp. 1-3, (2008). [ 5 ] S. W. Yoon, “3D Integration with TSV Technology”, SEMICON, Singapore, (2008). [ 6 ] T. S. Jung, “Samsung Memory Technology and Solutions Roadmap”, Samsung, (2008). [ 7 ] 張淑如,“鉛對人體的危害”,勞工安全衛生簡訊,第12期,第17頁,(1995)。 [ 8 ] L. Jarup, “Hazards of heavy metal contamination”, British Medical Bulletin, vol. 68, pp. 167-182, (2003). [ 9 ] K. W. Moon, W. J. Boettinger and U. R. Kattner, “Experimental and thermodynamic assessment of Sn-Ag-Cu solder alloys”, Journal of Electronic Materials, vol. 29, no. 10, pp. 1122-1136, (2000). [ 10 ] K. Nogita, C. M. Courlay and T. Nishimura, “Cracking and Phase Stability in Reaction Layers between Sn-Cu-Ni Solders and Cu Substrates”, JOM, vol. 61, no. 6, pp. 45-51, (2003). [ 11 ] X. Ma, F. Wang, Y. Qian and F. Yoshida, “Development of Cu–Sn intermetallic compound at Pb-free solder/Cu joint interface”, Materials Letters, vol. 57, no. 22-23, 3361-3365, (2003). [ 12 ] M. O. Alam, Y. C. Chan and K. N. Tu, “Effect of 0.5 wt % Cu addition in Sn–3.5%Ag solder on the dissolution rate of Cu metallization”, Journal of Applied Physics, vol. 94, no. 12, pp. 7904-7909, (2003). [ 13 ] D. Q. Yu, L. Wang, C. M. L. Wu and C. M. T. Law, “The formation of nano-Ag3Sn particles on the intermetallic compounds during wetting reaction”, Journal of Alloys and Compounds, vol. 389, no. 1-2, pp. 153-158, (2005). [ 14 ] D. Q. Yu, C. M. L. Wu, C. M. T. Law, L. Wang and J. K. L. Lai, “Intermetallic compounds growth between Sn–3.5Ag lead-free solder and Cu substrate by dipping method”, Journal of Alloys and Compounds, vol. 392, no. 1-2, pp. 192-199, (2005). [ 15 ] A. Sharif, Y. C. Chan, M. N. Islam and M. J. Rizvi, “Dissolution of electroless Ni metallization by lead-free solder alloys”, Journal of Alloys and Compounds, vol. 388, no. 1, pp. 75-82, (2005). [ 16 ] A. Sharif, Y. C. Chan, M. N. Islam, M. J. Rizvi, “Effect of 9 wt.% in addition to Sn3.5Ag0.5Cu solder on the interfacial reaction with the Au/NiP metallization on Cu pads”, Journal of Alloys and Compounds, vol. 396, no. 1-2, pp. 217-223, (2005). [ 17 ] M. L. Huang, T. Leoher, A. Ostmann and H. Reichi, “Effects of annealing and temperature on acoustic dissipation in a micromechanical silicon oscillator”, Applied Physics Letters, vol. 86, no. 18, 181903, (2005). [ 18 ] J. Gong, C. Liu, P. P. Conway and V. V. Silberschmidt, “Evolution of CuSn intermetallics between molten SnAgCu solder and Cu substrate”, Acta Materialia, vol. 56, no. 16, pp. 4291-4297, (2008). [ 19 ] J. Shen, Y. C. Chan and S. Y. Liu, “Growth mechanism of bulk Ag3Sn intermetallic compounds in Sn–Ag solder during solidification”, Intermetallics, vol. 16, no. 9, pp. 1142-1148, (2008). [ 20 ] A. K. Gain, T. Fouzder, Y. C. Chan and W. K. Yung, “Microstructure, kinetic analysis and hardness of Sn–Ag–Cu–1 wt% nano-ZrO2 composite solder on OSP-Cu pads”, Journal of Alloys and Compounds, vol. 509, no. 7, pp. 3319-3325, (2011). [ 21 ] J. Glazer, “Metallurgy of low temperature Pb-free solders for electronic assembly”, International Materials Reviews, vol. 40, no. 265, (1995). [ 22 ] N. Snunders and A. P. Miodownik, “The Cu-Sn (Copper-Tin) System”, Bulletin of Alloy Phase Diagram, vol. 11, no. 3, pp. 278-287, (1990). [ 23 ] A. K. Larsson, L. Stenberg and S. Lidin, “The Superstructure of Domain-Twinned η'-Cu6Sn5 “, Acta Crystallographica Section B: Structural Science, vol. 50, pp. 636-643, (1994). [ 24 ] J. D. Bernal, “The Complex Structure of the Copper–Tin Intermetallic Compounds”, Nature, vol. 122, pp. 54-54, (1928). [ 25 ] K. Nogita and T. Nishimura, “Nickel-stabilized hexagonal (Cu, Ni)6Sn5 in Sn–Cu–Ni lead-free solder alloys”, Scripta Materialia, vol. 59, no. 2, pp. 191-194, (2008). [ 26 ] 顏怡文、方揚凱、江昱成、陳昭銘、李嘉平、黃孟槺,“電子構裝中銅基材與無鉛銲料界面反應之文獻回顧”,化工技術,第15卷,第11期,第219-220頁,(2007)。 [ 27 ] C. S. Tan, R. J. Gutmann and L. R. Reif , “Wafer Level 3-D ICs Process Technology”, Springer, pp. 1-39, (2008). [ 28 ] J. S. Lee, W. H. Bang, J. P. Jung and K. H. Oh, “Application of TLP(Transient Liquid Phase) Bonding Method to the High Tm Lead-Free Solder”, Materials Science Forum, vol. 475-479, pp. 1869-1872, (2005). [ 29 ] S. Bader, W. Gust and H. Hieber, “Rapid formation of intermetallic compounds by interdiffusion in the Cu-Sn and Ni-Sn systems”, Acta Materialia, vol. 43, no. 1 pp. 329-337, (1995). [ 30 ] J. F. Li, P. A. Agyakwa and C. M. Johnson, “Interfacial reaction in Cu/Sn/Cu system during the transient liquid phase soldering process”, Acta Materialia, vol. 59, no. 3, pp. 1198-1211, (2011). [ 31 ] 黃宏勝,林麗娟,FE-SEM/CL/EBSD分析技術簡介,工業材料雜誌,第201期,第99頁,(2003)。 [ 32 ] A. J. Schwartz, M. Kumar, D. P. Field and B. L. Adams, “Electron Backscatter Diffraction in Materials Science”, Springer, pp. 1-20, (2000). [ 33 ] S. K. Seo, S. K. Kang, D. Y. Shih and H. M. Lee, “An Investigation of Microstructure and Microhardness of Sn-Cu and Sn-Ag Solders as Functions of Alloy Composition and Cooling Rate”, Journal of Electronic Materials, vol. 38, no. 2, pp. 257-265, (2009). [ 34 ] D. Chen, C. E. Ho and J. C. Kuo, “Current stressing-induced growth of Cu3Sn in Cu/Sn/Cu solder joints”, Materials Letters, vol. 65, no. 9, pp. 1276-1279, (2011). [ 35 ] V. Randle and O. Engler, “Introduction to Texture Analysis: Macrotexture, Microtexture and Orientation Mapping”, CRC Press, (2000). [ 36 ] J. K. Mason and C. A. Schuh, “Electron Backscatter Diffraction in Materials Science”, Springer, pp. 35-51, (2000). [ 37 ] T. Laruila, V. Vuoriene and J. K. Kivilahti, “Interfacial reactions between lead-free solders and common base materials”, Materials Science & Engineering R: Reports, vol. 49, no. 1-2, pp. 1-60, (2005). [ 38 ] Y. Liang, P. Kondos, P. Borgesen, Y. Liu, S. Bilznakov, F. Wafula, N. Dimitrov, D. W. Henderson, C. Park, G. Mao, J. Therriault, J. Wang and E. Cotts, “Controlling Cu electroplating to prevent sporadic voiding in Cu3Sn”, Electronic Components and Technology Conf. 2009, pp. 406-414, (2009). [ 39 ] F. Gao, H. Nishikawa and T. Takemoto, “Additive Effect of Kirkendall Void Formation in Sn-3.5Ag Solder Joints on Common Substrates”, Journal of Electronic Materials, vol. 37, no. 1, pp. 45-50, (2008). [ 40 ] K. J. Zeng, R. Stierman, T. C. Chiu, D. Edwards, K. Ano and K. N. Tu, “Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its effect on joint reliability”, Journal of Applied Physics, vol. 97, 024508, (2005). [ 41 ] Z. Mei, M. Ahmad and M. Hu, G. Ramakrishna, “Kirkendall voids at Cu/solder interface and their effects on solder joint reliability”, Electronic Components and Technology Conf. 2005, vol. 1, pp. 415-420, (2005). [ 42 ] C. R. Kao, “Microstructures developed in solid-liquid reactions: using Cu-Sn reaction, Ni-Bi reaction, and Cu-In reaction as examples”, Materials Science and Engineering: A, vol. 238, no. 1, pp. 196-201, (1997). [ 43 ] M. L. Huang, T. Loeher, A. Ostmann and H. Reichl, “Role of Cu in dissolution kinetics of Cu metallization in molten Sn-based solder”, Applied Physics Letters, vol. 86, 181908, (2005). [ 44 ] J. M. Wang, K. J. Wang and J. G. Duh, “Cu Substrates with Different Grain Sizes”, Journal of Electronic Materials, vol. 40, no. 7, pp. 1549-1555, (2011). [ 45 ] T. Laurila, J. Hurtig, V. Vuorinen and J. K. Kivilahti, “Effect of Ag, Fe, Au and Ni on the growth kinetics of Sn-Cu intermetallic compound layers”, Microelectronics Reliability, vol. 49, pp. 242-247, (2009). [ 46 ] G. T. Lim, B. J. Kim, K. Lee, J. Kim, Y. C. Joo and Y. B. Park, “Temperature Effect on Intermetallic Compound Growth Kinetics of Cu Pillar/Sn Bumps”, Journal of Electronic Materials, vol. 38, no. 11, pp. 2228-2233, (2009). [ 47 ] M. H. Jeong, G. T. Lim and B. J. Kim, “Interfacial Reaction Effect on Electrical Reliability of Cu Pillar/Sn Bumps”, Journal of Electronic Materials, vol. 39, no. 11, pp. 2368-2374, (2010). [ 48 ] W. M. Tang, A. Q, He, Q. Liu and D. G. Ivey, “Solid state interfacial reactions in electrodeposited Cu/Sn couples”, Transactions of Nonferrous Metals Society of China, vol. 20, no. 1, pp. 90-96, (2010). [ 49 ] R. Labie, W. Ruythooren and J. V. Humbeeck, “Solid state diffusion in Cu-Sn and Ni-Sn diffusion couples with flip-chip scale dimensions”, Intermetallics, vol. 15, no. 3, pp. 296-403, (2007). [ 50 ] K. N. Tu, “Cu/Sn interfacial reactions: thin-film case versus bulk case”, Materials Chemistry and Physics, vol. 46, no. 2-3, pp. 217-223, (1996). [ 51 ] M. G. Cho, S. K. Kang, D. Y. Shih and H. M. Lee, “Effects of Minor Additions of Zn on Interfacial Reactions of Sn-Ag-Cu and Sn-Cu Solders with Various Cu Substrates during Thermal Aging”, Journal of Electronic Materials, vol. 36, no. 11, pp. 1501-1509 (2007). [ 52 ] J. O. Suh, K. N. Tu and N. Tamura, “Dramatic morphological change of scallop-type Cu6Sn5 formed on (001) single crystal copper in reaction between molten SnPb solder and Cu”, Applied Physics Letters, vol. 91, 051907, (2007). [ 53 ] J. O. Suh, K. N. Tu and N. Tamura, “Preferred orientation relationship between Cu6Sn5 scallop-type grains and Cu substrate in reactions between molten Sn-based solders and Cu”, Journal of Applied Physics, vol. 102, no. 6, 063511, (2007). [ 54 ] H. F. Zou, H. J. Yang and Z. F. Zhang, “Morphologies, orientation relationships and evolution of Cu6Sn5 grains formed between molten Sn and Cu single crystals”, Acta Materialia, vol. 56, no. 11, pp. 2649-2662, (2008). [ 55 ] H. Tsukamoto, T. Nishimura and K. Nogita, “Epitaxial growth of Cu6Sn5 formed at Sn-based lead-free solder/non-textured polycrystalline Cu plate interface”, Materials Letters, vol. 63, no. 30, pp. 2687-2690, (2009). [ 56 ] M. Yang, M. Li and C. Wang, “Interfacial reactions of eutectic Sn3.5Ag and pure tin solders with Cu substrates during liquid-state soldering”, Intermetallics, vol. 25, pp. 86-94, (2012). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56055 | - |
dc.description.abstract | 近半世紀以來,半導體產業一直遵循摩爾定律的預測而發展。然而,對於電子產品的小尺寸與高功能性的不斷追求,摩爾定律持續發展的瓶頸已然迫在眉睫。因此,封裝技術轉而朝另一維度展開,3D IC技術與其相關領域的研究遂逐漸為業界及學術界所共同關注。藉由穿晶矽導孔技術,訊號的傳遞距離縮短,並可降低電子元件的功率損耗,隨著I/O數的提升,封裝模組也能有效達到尺寸減小的效果。然而,在小尺度銲點中,必須仔細考慮接點空間受限效應(space confinement)對銲點所造成的影響。由於銲點尺寸較小,介金屬化合物(IMC)在銲料體積中勢必佔有較高的比例,同時也影響了銲點的機械性質,介金屬化合物因此在3D IC結構中扮演十分重要的角色。此外,在RoHS與WEEE環保法令實行之後,無鉛銲料的相關研究至今持續蓬勃發展,基板與無鉛銲料之間的介面反應也成為各界相當關心的議題。
本研究主要觀察3D IC尺度之微銲點下銅基板與無鉛銲料之介面反應,並針對其與接點空間受限效應相關之三項關鍵議題進行討論。第一項議題與介面反應之微結構有關。將以熱壓接合法製備的Cu/Sn(10 μm)/Cu三明治結構試片分別在高溫下進行固液反應以及固態時效反應,觀察介面上所生長出的介金屬化合物形貌。在固液反應中,分別來自介面兩側的扇貝狀Cu6Sn5晶粒在經過短時間後即發生上下碰撞的現象,介金屬碰撞時間也在此被定義。而在固態時效反應中,層狀的Cu3Sn中有大量Kirkendall voids生成,對銲點的機械性質有造成嚴重威脅的可能。此外,本實驗也針對銲料中微量元素添加後的介面進行形貌變化的觀察。 第二項議題主要研究介金屬化合物之生長動力學。為了解3D IC中微小的銲料體積是否會對介金屬之生長速率造成影響,本研究將在小尺度下不同反應時間長度之介金屬厚度對反應時間作圖分析,並與文獻之數據互相比較,發現介金屬的生長速率與銲料體積並無明顯關聯,證實銲料體積對介金屬之生長機制的影響相當有限。若在銲料中微量添加其他元素,則可對Cu3Sn的生長造成抑制的效果。 第三項議題與介金屬的合併行為和晶粒方向性(grain orientation)有關。在固液反應中,由介面兩側生長出的Cu6Sn5在垂直接觸後合併成為較大的晶粒,並由EBSD的鑑定結果證實,合併後的Cu6Sn5已密合為一個具有相同晶粒方向性的單晶,並以極圖(PF)顯示晶粒之從優取向,說明在合併的Cu6Sn5之間是否有特殊之晶粒方向性存在。另一方面,在固態時效反應中,Cu6Sn5在互相碰撞之初並不立即密合,而是在反應時間拉長之後才會發生合併,其尺寸不但較固液反應中為小,晶界也相對較不平整,這些行為可歸因於晶粒之粗化(coarsening)現象,以及在較低反應溫度中原子的擴散速率較慢所致。在本研究中,除了實驗數據之外,亦針對理論假設與結果分析進行詳細而深入的探討,盼能對3D IC產業的發展有所助益。 | zh_TW |
dc.description.abstract | Semiconductor industry has been guided by Moore’s law in the past 50 years. However, smaller size and better functionality of electronic devices is now forcing Moore’s law to face its imminent limitation. As a result, 3-Dimensional Integrated Circuit (3D IC) is regarded as a promising innovation in packaging industry. By means of through silicon via (TSV) technique, shorter interconnect distance is provided, which decreases power consumption of the electronic devices. With higher input/output (I/O) density, the package volume is able to be effectively scaled down. Due to the miniaturized size of the solder joints in 3D IC packages, intermetallic compound (IMC) forming at the interface occupies higher percentage in the solder volume and plays a very important role in the joints, raising the concern about mechanical properties. Therefore, the space confinement effect on the interface should be under careful consideration. Furthermore, research of lead free solder has been under vigorous development since RoHS and WEEE were put into practice. The interfacial reactions between lead free solder and substrates in the micro jointing for 3D IC applications are worthy of investigation.
In this study, interfacial reactions between Cu substrates and lead free solder for 3D IC micro joints are revealed. Three critical issues arising from the space confinement effect are discussed. The first issue is about the morphology of IMC forming at the interface. After thermal compression, Cu/Sn (10 μm)/Cu sandwiches experienced solid-liquid and solid state aging reactions. During solid-liquid reactions, scallop-type Cu6Sn5 grains which originally formed at opposite interfaces were able to impinge on each other after a short time frame. The time-to-impinge of IMC is defined in the case. In contrast, Kirkendall voids formed in the thick Cu3Sn layer after solid state aging process, which threaten mechanical properties of the joints. Moreover, the effect of minor element addition on morphology is also proposed. The second issue relates to the IMC growth kinetics. In order to investigate whether solder volume affects the growth rate of the IMC on 3D IC scale, diagrams of thickness of IMC versus reaction time was illustrated. Compared to literature, the growth rate was independent of solder volume in the diagrams. That is, the limited solder volume had little impact on the IMC growing mechanism before impinged. When the minor elements were added, the growth rate of Cu3Sn was retarded. The last issue arises from the merging behavior and grain orientation. After solid-liquid reactions, the vertically contacted Cu6Sn5 grains merged into a larger one and were identified as a single crystalline grain by electron back-scattered diffraction (EBSD) analysis. The pole figure (PF) showed the preferred orientation among the Cu6Sn5 grains after merging. On the other hand, Cu6Sn5 grains did not merge immediately after impingement during solid state aging reactions but after aging for longer time. After merging, the grains had smaller size and the grain boundaries were not as smooth as those in solid-liquid reactions. These behaviors could be attributed to coarsening process of the grains and slower diffusion rate at the lower temperature. The experimental results are reported in this study. Theoretical hypothesis and detailed analysis of above-mentioned issues will also be discussed. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T05:14:10Z (GMT). No. of bitstreams: 1 ntu-103-R00527002-1.pdf: 8162134 bytes, checksum: 582ddfe76673a83ac9959e7889c5c7a9 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 致謝 i
摘要 iii ABSTRACT v 目錄 ix 圖目錄 xi 表目錄 xvii 第1章 緒論 1 1.1 3D IC封裝簡介 1 1.2 無鉛銲料的使用 6 1.3 銅與無鉛銲料的介面反應 7 1.4 接點空間受限效應 11 1.5 介金屬的晶粒成長與合併 16 第2章 研究動機與目標 19 第3章 實驗步驟與方法 21 3.1 實驗設備與儀器 21 3.2 試片的準備 21 3.2.1 銲料 21 3.2.2 熱壓接合 21 3.2.3 單側迴銲試片 24 3.2.4 銲料微添加試片 24 3.3 實驗步驟 25 3.3.1 固液反應 25 3.3.2 固態時效反應 25 3.3.3 單側迴銲 25 3.3.4 金相分析試片準備 26 3.4 實驗結果分析 27 3.4.1 掃描式電子顯微鏡(SEM)觀察 27 3.4.2 電子微探儀(EPMA)分析 27 3.4.3 電子背向散射繞射儀(EBSD)分析 27 3.4.4 生長動力學分析假設與理論 33 第4章 結果與討論 35 4.1 介面形貌觀察 35 4.1.1 Cu/Sn/Cu固液反應 35 4.1.2 Cu/Sn3.5Ag/Cu固液反應 38 4.1.3 Cu/Sn/Cu固態時效反應 40 4.1.4 微添加的影響 42 4.2 生長動力學分析 49 4.2.1 Cu/Sn/Cu固液反應 49 4.2.2 Cu/Sn/Cu固態時效反應 50 4.2.3 微添加的影響 52 4.3 晶粒方向性分析 56 4.3.1 Cu/Sn/Cu固液反應 56 4.3.2 Cu/Sn單側迴銲 62 4.3.3 Cu/Sn/Cu固態時效反應 68 第5章 結論 71 參考文獻 75 | |
dc.language.iso | zh-TW | |
dc.title | 3D IC 封裝中銅基材與無鉛銲料接點之介面反應 | zh_TW |
dc.title | Interfacial Reactions Between Cu Substrates and Lead Free Solder for 3D IC Applications | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 顏怡文,陳志銘 | |
dc.subject.keyword | 3D IC,介金屬化合物,接點空間受限效應,無鉛銲料,介面反應,生長動力學,合併,晶粒方向性,EBSD,極圖, | zh_TW |
dc.subject.keyword | 3D IC,IMC,space confinement effect,lead free solder,interfacial reactions,growth kinetics,merging,grain orientation,EBSD,pole figure, | en |
dc.relation.page | 84 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-08-18 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 7.97 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。