請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55775
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳學禮(Hsuen-Li Chen) | |
dc.contributor.author | Bo-Yi Chen | en |
dc.contributor.author | 陳博義 | zh_TW |
dc.date.accessioned | 2021-06-16T05:08:19Z | - |
dc.date.available | 2019-09-05 | |
dc.date.copyright | 2014-09-05 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-19 | |
dc.identifier.citation | [1] D.A.Neamen, “Semiconductor physics and devices: basic principles”, McGraw-Hill (2003).
[2] S. M. Sze, K. K. Ng, Physics of Semiconductor Devices (Wiley, Hoboken, NJ, ed. 3, 2007). [3] D.Wood, “ Optoelectronic semiconductor devices”, Prentice Hall, 1994, Ch.6. [4] W. C. Dash and R. Rewman, Physical review, Vol.99. P.11151-1155. 1955. [5] X. Gong, M. Tong,Y. Xia,W. Cai, J. S. Moon,Y. Cao, G.Yu, C.-L. Shieh,B. Nilsson, and A. J. Heeger, Science, vol. 325,pp. 1665–1667, 2009. [6] E. Monroy, F. Omnes, and F. Calle, Semicond. Sci. Tech., 18 (2003) R33. [7] L. W. Sang, M. L. Liao, M. Sumiya, Sensors, 2013, 13, 10482. [8] W. Grundfest, in Proc. Quantum Electron. Laser Sci. Conf., 1999, pp.23–28. [9] A. Karczemska and A. Sokolowska, in Proc. 3rd Int. Conf. Novel Appl. Wide Bandgap Layers, Zakopane, Poland, 2001, p. 176. [10] Dabing Li, Xiaojuan Sun, Hang Song, Zhiming Li, Yiren Chen, Hong Jiang and Guoqing Miao, Adv. Mater, vol. 24, pp. 845-849, 2012. [11] Peng, L., Hu, L. and Fang, X, Adv. Mater., vol. 25, pp. 5321–5328, 2013 [12] Zhai, T., Li, L., Wang, X., Fang, X., Bando, Y. and Golberg, D., Adv. Funct. Mater, vol. 20, pp. 4233–4248, 2010. [13] M. Liao, H. Xiang, X. Gong, L. Zhang and X. Fang, Adv. Mater., vol. 24, pp. 2305–2309, 2012. [14] Mandal, L., Deo, M., Yengantiwar, A., Banpurkar, A., Jog, J. and Ogale, S, Adv. Mater., vol. 24, pp.3686–3691, 2012. [15] Sabina M. Hatch, Joe Briscoe and Steve Dunn, , Adv. Mater., vol. 25, pp. 867-871, 2012. [16] Gedamu, D., Paulowicz, I., Kaps, S., Lupan, O., Wille, S., Haidarschin, G., Mishra, Y. K. and Adelung, R., Adv. Mater., vol 26, pp. 1541–1550, 2014.. [17] Bie, Y.-Q., Liao, Z.-M., Zhang, H.-Z., Li, G.-R., Ye, Y., Zhou, Y.-B., Xu, J., Qin, Z.-X., Dai, L. and Yu, D.-P., Adv. Mater., vol. 23, pp. 649–653,2011 [18] F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi and J. Huang, Nat. Nanotechnol.,vol. 7, no. 12, pp. 798-802, Nov. 2012. [19] L. Shi and S. Nihtianov, IEEE Sensors J., vol. 12, no. 7, pp.2453 -2459,2012. [20] L. Shi, S. Nihtianov, L. K. Nanver, F. Scholze, and A. Gottwald, Proc. SPIE, vol. 8145, pp. 21–25, Aug. 2011. [21] K. Solt, H. Melchior, U. Kroth, P. Kuschnerus, V. Persch, H. Rabus, M. Richter, and G. Ulm, Appl. Phys. Lett. 69, 3662–3664 (1996). [22] X. An, F. Liu, Y. J. Jung and S. Kar, Nano Lett, 13, 909,2013. [23] D.-S. Tsai , C.-A. Lin , W.-C. Lien , H.-C. Chang , Y.-L. Wang and J.-H. He, ACS Nano, vol. 5, no. 10, pp.7748 -7753 2011 [24] K. K. Manga, J. Wang, M. Lin, J. Zhang, M. Nesladek, V. Nalla, W. Ji and K. P. Loh, Adv. Mater., 24, 1697,2012. [25] M. S. Arnold, J. D. Zimmerman, C. K. Renshaw, X. Xu, R. R. Lunt, C. M. Austin, et al., Nano Letters, vol. 9, pp. 3354-3358, Sep 2009 [26 ] Peng, L., Hu, L. and Fang, X., Adv. Funct. Mater., 24, pp. 2591–2610, 2014. [27] Peng, L., Hu, L. and Fang, X. Adv. Mater., 25, pp. 5321–5328, 2013. [28] Y. Hu , Y. Zhang , C. Xu , G. Zhu , Z. L. Wang , Nano Lett. 2010 , 12 ,5025 . [29] J. Han , F. Fan , C. Xu , S. Lin , M. Wei , X. Duan , Z. L. Wang , Nanotechnology 2010 , 21 , 405203 . [30] Y. Hu , C. Xu , Y. Zhang , L. Lin , R. L. Snyder , Z. L. Wang , Adv. Mater., 2011 , 23 , 4068 . [31] M. Lee , J. Bae , J. Lee , C. S. Lee , S. Hong , Z. L. Wang , Energy. Environ. Sci. 2011 , 9 , 3359 . [32] M. Chen , L. F. Hu , J. X. Xu , M. Y. Liao , L. M. Wu , X. S. Fang , Small , 7 , 2449, 2011 . [33] H. Kind , H. Q. Yan , B. Messer , M. Law , P. D. Yang , Adv. Mater., 14 , 158,2001. . [34] X. S. Fang , L. M. Wu , L. F. Hu , Adv. Mater., 23 , 585,2011. . [35] Y. Hu , Y. Zhang , C. Xu , L. Lin , R. L. Snyder , Z. L. Wang , Nano Lett., 11 , 2 572,2011. [36] F. Greer, E. Hamden, Blake C. Jacquot, M. E. Hoenk, T. J. Jones, M. R. Dickie, S. P.Monacos, and S. Nikzad, Journal of Vacuum Science & Technology A 31, 01A103, 2013. [37] S. Nikzad , M. Hoenk , F. Greer , T. Jones , B. Jacquot , S. Monacos , J. Blacksberg , D. Schiminovich , E. Hamden , C. Martin and P. Morrissey, Appl. Opt., vol. 51, no.3, pp.365-369,2012. [38] Zhu, J., Hsu, C.- M., Yu, Z., Fan, S. & Cui, Y. Nano Lett. 10, 1979–1984 (2010). [39] K. Q. Peng, X. Wang, L. Li, X. L. Wu, S. T. Lee, J. Am. Chem. Soc. 2010, 132, 6872. [40] Peng, K.-Q. and Lee, S.-T., Adv. Mater., 23,pp. 198–215,2011. [41] J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, Appl. Phys. B100(4), 891–896 (2010). [42] S. C. Tseng, H. L. Chen, C. C. Yu, Y. S. Lai, H. W. Liu, Energy Environ. Sci. 2011, 4, 5020. [43]D. M. Schaadt, B. Feng, E. T. Yu, Appl. Phys. Lett. 2005, 86, 063106. [44] D. H. Wan, H. L. Chen, T. C. Tseng, C. Y. Fang, Y. S. Lai, F. Y. Yeh, Adv. Funct. Mater. 2010, 20, 3064. [45] Fang, C.-Y., Liu, Y.-L., Lee, Y.-C., Chen, H.-L., Wan, D.-H. and Yu, C.-C., Adv. Funct. Mater., 23: 1412–1421.2013. [46] Lee, Y. J.; Ruby, D. S.; Peters, D. W.; McKenzie, B. B.; Hsu, J. W. P. Nano Lett, 8,5,pp. 1501-1505,2008. [47] Y. C. Chao, C. Y. Chen, C. A. Lin, Y. A. Dai and J. H. He, J. Mater. Chem., 2010, 20, 8134 [48] J.Y. Chen, K.W. Sun, Sol. Energy Mater. Sol. Cells, 94, pp. 930–934,2010. [49] J.S. Im, H. J. Kim, and M. O. Thompson, Appl. Phys. Lett., 63,1993, 1969. [50] J. S. Im and H. J. Kim, Appl. Phys. Lett. 64, 2303, 1994 [51] M.Tsubuku, K. S. Seol, I. H. Choi, and Y. Ohki, Jpn. J. Appl. Phys. 45, 1689, 2006. [52] L. Mariucci, A. Pecora, G. Fortunato, C. Spinella, and C. Bongiorno, Thin Solid Films, 427, 91, 2003 [53] D. H. Choi, K. Shimizu, O. Sugiura, and M. Matsumura, Jpn. J. Appl. Phys. 31, 4545, 1992. [54] C. H. Oh, M. Ozawa, and M. Matsumura, Jpn. J. Appl. Phys. 37, L492, 1998. [55] K. T. Lin, S. C. Tseng, H. L. Chen, Y. S. Lai, S. H. Chen,Y. C. Tseng, T. W. Chu, M. Y. Lin and Y. P. Lu, J. Mater. Chem. C, 2013, 27, 4244–4251. [56] J. Maeng, S. Heo, G. Jo, M. Choe, S. Kim, H. Hwang, and T. Lee, Nanotechnology, 20, 095203,2009. [57] Oh M-S, Hwang D-K, Lim J-H, Choi Y-S and Park S-J, Appl. Phys. Lett. 91 042109,2007. [58] J. T. Torvik, J. I. Pankove, and B. J. Van Zeghbroeck, IEEE Trans. Electron Devices, 46(7 ), 1326 (1999). [59] E. D. Palik , Handbook of optical constants of solids , Academic Press , Orlando 1985 . [60] H. S. Kang, J. S. Kang, J. W. Kim, S. Y. Lee, J. Appl. Phys. 2004, 95, 1246. [61] R. Hong, J. Huang, H. He, Z. Fan, and J. Shao, Appl. Surf. Sci. 242, 346 (2005). [62] Aravind, A., Jayaraj, M. K., Kumar, M., & Chandra, R., Applied Surface Science, 286, 54-60, 2013. [63] I. Lorite, P. Diaz-Carrasco, M. Gabas, J.F. Fernandez, J.L. Costa-Kramer, Mater. Lett., 109 (2013), p. 167 [64] H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, Nature 433, 292-294 (2005). [65] Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, and S. Noda, Nature 498, 470 (2013). [66] M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, Nature, 456, (7218), 81–84 (2008). [67] B. Jalali, Nat. Photonics, 4(8), 506–508 (2010). [68] Lin, K.-T.; Chen, H.-L.; Lai, Y.-S.; Yu, C.-C. Nat. Commun. 2014, 5, 3288. [69] Knight, M. W.; Sobhani, H.; Nordlander, P.; Halas, N. J. Science, 2011, 332, 702−704. [70] S. Alkis, B. Tekcan, A. Nayfeh, and A. K. Okyay, J. Opt. 15, 105002 (2013). [71] Hamamatsu Corporation (USA), Hamamatsu, Inc., 2012, September, http://www.hamamatsu.com/. [72] OSI Corporation (USA), OSI, Inc., 2013, http://www.osioptoelectronics.com/. [73] I. Khodami, F. Taghibakhsh, and K. S. Karim, IEEE Electron Device Lett. 29, 1007 (2008). [74] A. Rochas , A. R. Pauchard , P. A. Besse , D. Pantic , A. Prijic and R. S. Popovic , IEEE Trans. Electron Devices, vol. 49, no. 3, pp.387 -394 2002 [75] G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, M. Giersig, Nano Lett. 2009, 9, 1. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55775 | - |
dc.description.abstract | 光偵測器已廣泛運用在影像感測、光通訊、環境監控、太空偵測、光譜儀、及生醫感測等領域。然而光偵測器為操作偏壓大、可偵測之光譜範圍限制與弱光偵測能力不足等限制了它實際的應用性。本論文即針對上述之限制提出改善方案,分別針對偵測紫外光(單一波段)、可見光至近紅外光(涵蓋兩個波段)及紫外光至近紅外光波段(涵蓋三個波段)之光偵測器進行研究。
論文第一部份針對紫外光偵測器進行開發,藉由準分子雷射退火技術,大幅的改善氧化鋅(Zinc oxide)薄膜於極淺層的結晶性,元件只需外加10毫伏特(mV)偏壓即可正常操作,使氧化鋅光導體於弱光下達到0.38 fW 〖μm〗^(-2)光電響應。 論文第二部分我們將鋁摻氧化鋅(Aluminum-doped Zinc Oxide, AZO)透明導電薄膜與氧化鋅奈米柱結構(zinc oxide nanorod)組成複合式抗反射透明電極,並利用鋁摻氧化鋅薄膜能與矽基板形成具良好整流效果之蕭特基接面(Schottky junction),成功的製作出可見光至近紅外光於零伏操作下即具有高光電轉換效率的光偵測器,此元件具有不會受到入射角度的改變而影響效能之高光電流響應度(R=0.59 A/W, λ=850 nm)且具有高光電壓響應度(R_V=8,200 V/W, λ=850 nm)。此外,元件本身因氧化鋅奈米柱結構而具備自潔效果。 論文第三部分研究紫外光、可見光至近紅外光波段(涵蓋三種波段)操作之光偵測器,本論文提出於矽基板上製作出一個倒錐狀深溝槽結構(Inverse-cone deep-trench structure)並披覆連續銀薄膜之設計來達成,此矽奈米結構披覆銀薄膜具有多重功能: 光偵測器之電極、三維大面積蕭特基接面及涵蓋紫外光至近紅外光波段三種波段內之光學低反射層。更可提供光學高穿透於寬波段使其具備弱光偵測能力,以及高外部量子效率 (External quantum efficiency, EQE)。此元件於寬波段範圍內EQE皆大於60 %。特別值得一提的是,此光偵測器可於零伏偏壓條件下操作且對入射光極化型態不敏感。此元件也相容於成熟之互補式金氧半(Complementary Metal-Oxide-Semiconductor, CMOS)製程,可以低成本且快速地製作出數百奈米尺度深溝槽狀的薄層連續金屬結構為基礎之低耗能光偵測器。 | zh_TW |
dc.description.abstract | Photo-detectors have been applied in wide range of applications, such as image sensing, optical communication, environmental monitoring, astronomical studies, spectrometer, and medical therapy. However, large bias voltage, narrowband of sensing spectral and insufficient detection capability limited the practical applications of detectors. In this thesis, some techniques and specific nanostructures were proposed for improving the performances of photodetectors.
The first part of thesis was focused on photodetector working in the ultraviolet (UV) range. A KrF excimer laser was used to rapidly anneal and largely improve the crystallinity of zinc oxide (ZnO) film within ultrashallow region, thereby enhancing the photoresponse of ZnO-based photoconductors. Moreover, the laser annealing process has successfully improved the photoresponse of ZnO photoconductor at low power density of 0.38 fW 〖μm〗^(-2) by only applying 10 mV of bias voltage. In the second part of thesis, we combined an aluminum-doped zinc oxide (AZO) film with ZnO nanorods to construct a hybrid anti-reflection of transparent electrode. Since the AZO could form a rectifying Schottky contact with n-type silicon (Si), we fabricate a Schottky photodiode with broadband photoresponse from visible to near-infrared (NIR) regime. The photodetector exhibited high photoelectric conversion efficiency without applying any bias. At the wavelength of 850 nm, the photoresponsivity of detector was 0.59 A/W, and the photovoltage responsivity was 8,200 V/W. Moreover, the photodetector exhibited omnidirectional light-harvesting ability, and the hydrophobic surface of the nanorod based photodetector performed a great self-cleaning ability. In the third part of thesis, we demonstrated an inverse-tapered deep-trench Si structure covering with a continuous thin metal film that can be used a superior photodetector working from the UV to NIR spectral region. This corrugated metal film on Si plays the important role of (1) the conducting electrode of photodetector, (2) large area of three dimensional Schottky junction, and (3) low reflectance of metal film ranging over the UV to NIR regime. The multifunctional structured metal film form a well rectifying Schottky contact with Si substrate, it greatly enhanced the external quantum efficiency of Si in the UV regime up to 60 % and also enhance the corresponding low-light detection capability under zero bias voltage. It is worth to note that this strategy exhibit high responsivity under zero bias voltage, while preserve the advantage of polarization-insensitive detection. The device can be easily fabricated by the mature and low-cost Si-based processes. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T05:08:19Z (GMT). No. of bitstreams: 1 ntu-103-R01527059-1.pdf: 11282205 bytes, checksum: f7018d30d1b0c08c8b1b360b7f968791 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 誌謝 ...............................................................I
摘要 .............................................................III Abstract ...........................................................V 目錄 ............................................................VIII 圖目錄 ............................................................XI 表目錄 .........................................................XVIII 第一章 緒論 ........................................................1 1.1 前言........................................................1 1.2 論文架構....................................................2 第二章 文獻回顧.....................................................3 2.1 光偵測器之原理 .............................................3 2.1.1蕭特基光二極體之原理..................................6 2.1.2 光導體之原理 .........................................8 2.1.3 評斷光偵測器特性之參數................................9 2.2各波段之光偵測器介紹 . .....................................11 2.2.1 紫外光偵測器.........................................11 2.2.2 寬波段光偵測器.......................................19 2.2.3 光偵測器未來之趨勢...................................23 2.3 改善光偵測器之光響應之方法.................................25 2.3.1 抗反射層 ............................................25 2.3.2準分子雷射結晶技術...................................33 第三章 利用雷射退火增強紫外光導體響應之研究 .......................38 3.1 研究動機與目的 ............................................38 3.2 研究方法...................................................41 3.2.1 元件設計.............................................41 3.2.2操作原理.............................................42 3.3實驗方法...................................................45 3.4 實驗結果與分析討論.........................................47 3.4.1材料分析.............................................47 3.4.2 雷射劑量對於元件電阻之影響 ..........................54 3.4.3 雷射劑量對於光電轉換效率之影響.......................57 3.4.4 指狀電極間距設計對於元件光電響應之影響 ..............59 3.4.5 雷射劑量對於弱光偵測之影響 ..........................62 3.5 結論 ......................................................66 第四章 利用複合式抗反射透明電極應用於高效率寬波段矽基光偵測器 .....67 4.1 研究動機與目的 ............................................67 4.2 研究方法 ..................................................69 4.2.1 元件設計示意圖與光學模擬架構 ........................69 4.2.2 元件之光學模擬 ......................................71 4.2.3模擬結果與討論 ......................................73 4.3實驗方法 ..................................................77 4.4 實驗結果與分析討論 ........................................79 4.4.1 元件製作結果分析 ....................................79 4.4.2 元件之光學性質分析 ..................................81 4.4.3 元件之光電效率探討 ..................................83 4.4.4 不同入射光強度對於元件光電響應之影響 ................90 4.4.5 不同入射光角度對於元件光電效率之影響 ................92 4.4.6 元件之自潔效應測試 ..................................94 4.5 結論 ................................... ..................95 第五章 開發紫外到近紅外光波段之高效能矽基光偵測器 .................96 5.1 研究動機與目的 ............................................96 5.2 研究方法..................................................99 5.2.1 元件設計與操作原理................................. 99 5.2.2 光學模擬架構 .......................................102 5.2.3 單純矽基倒錐狀結構模擬結果 .........................105 5.2.4 完整元件光學模擬結果 ...............................108 5.3 實驗方法 .................................................113 5.3.1 實驗用材料與設備 ...................................113 5.3.2 元件製作流程 .......................................114 5.4 實驗結果與分析討論 .......................................116 5.4.1 元件製作結果分析 ...................................116 5.4.2 結構設計週期對元件光學性質之影響 ...................119 5.4.3 結構設計週期對元件光電轉換效率之影響 ...............121 5.4.4 倒錐狀深溝槽結構對元件光電轉換特性之影響 ...........127 5.4.5 電場偏振方向對元件光電轉換特性之影響 ...............130 5.4.6 入射光強度對元件光電轉換特性之影響 .................134 5.4.7弱光環境下之偵測成像能力測試 .......................138 5.4.8 元件與其他紫外光偵測器之比較 .......................141 5.4.9 元件於長時間下的穩定性 .............................143 5.5 結論 .....................................................145 第六章 結論 ......................................................147 6.1 論文結論 .................................................147 6.2 未來展望 .................................................149 參考文獻 ........................................................150 | |
dc.language.iso | zh-TW | |
dc.title | 紫外至近紅外光波段之高效率低耗能奈米結構光偵測器之研究 | zh_TW |
dc.title | Nanostructured photodetectors for detecting light from the ultraviolet to near-infrared region with high efficiency and low power consumption | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 劉柏村(Po-Tsun Liu),潘同明(Tung-Ming Pan),賴宇紳(Yu-Sheng Lai),莊尚餘(Shang-Yu Chuang) | |
dc.subject.keyword | 光偵測器,光導體,氧化鋅奈米柱,蕭特基光二極體,雷射退火,弱光偵測,寬波段光偵測,低耗能, | zh_TW |
dc.subject.keyword | photodetector,photoconductor,ZnO nanorod,Schottky photodiode,laser annealing,low light detection,broadband photodetection,low power consumption, | en |
dc.relation.page | 157 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-08-19 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 11.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。