Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5535
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor邢禹依(Yue-Ie C. Hsing)
dc.contributor.authorChing-Ching Wuen
dc.contributor.author吳晶晶zh_TW
dc.date.accessioned2021-05-15T18:02:01Z-
dc.date.available2016-09-05
dc.date.available2021-05-15T18:02:01Z-
dc.date.copyright2014-09-05
dc.date.issued2014
dc.date.submitted2014-08-20
dc.identifier.citation吳永培。2013。利用IR64突變庫篩選耐旱水稻之研究。台灣農業研究。62: 195-208。
邱啟洲。1997。胺基酸類似物誘導大豆第一族低分子量熱休克蛋白質生合成之生理生化分析及其與耐熱性的探討。國立台灣大學植物學系碩士論文:pp 8-12。
王泳傑。2013。比較水稻IR64耐旱突變系之生理反應及其相關基因表現。國立台灣大學農藝學系碩士論文:pp 54。
莊榮輝 主編。2005。酵素化學實驗。台灣大學生化科技學系。
Abe, H., T. Urao, T. Ito, M. Seki, K. Shinozaki and K. Yamaguchi-Shinozaki. 2003. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15: 63-78.
Adler, V., Z.M. Yin, K.D. Tew and Z. Ronai. 1999. Role of redox potential and reactive oxygen species in stress signaling. Oncogene 18: 6104-6111.
Anders, S. and W. Huber. 2010. Differential expression analysis for sequence count data. Genome biology 11: R106-R106.
Anderson, C.M. and B.D. Kohorn. 2001. Inactivation of Arabidopsis SIP1 leads to reduced levels of sugars and drought tolerance. J Plant Physiol 158: 1215-1219.
Aryadeep, R., P. Saikat and B. Supratim. 2013. Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress. Plant Cell Rep 32: 985-1006.
Baker, J., C. Steele and L. Dure. 1988. Sequence and characterization of 6 Lea proteins and their genes from cotton. Plant Molecular Biology 11: 277-291.
Bartels, D., M. Singh and F. Salamini. 1988. Onset of desiccation tolerance during development of the barley embryo. Planta 175: 485-492.
Basu, S., A. Roychoudhury, P.P. Saha and D.N. Sengupta. 2010. Comparative analysis of some biochemical responses of three indica rice varieties during polyethylene glycol-mediated water stress exhibits distinct varietal differences. Acta Physiol Plant 32: 551-563.
Bengtsson, H., B. Calder, I.S. Mian, M. Callow, E. Rubin and T.P. Speed. 2001. Identifying differentially expressed genes in cDNA microarray experiments authors. Sci Aging Knowledge Environ 2001: vp8.
Blackman, S.A., S.H. Wettlaufer, R.L. Obendorf and A.C. Leopold. 1991. Maturation proteins associated with desiccation tolerance in soybean. Plant Physiology 96: 868-874.
Boston, R.S., P.V. Viitanen and E. Vierling. 1996. Molecular chaperones and protein folding in plants. Plant Mol Biol 32: 191-222.
Bowman, J.L. 2000. The YABBY gene family and abaxial cell fate. Curr Opin Plant Biol 3: 17-22.
Boyer, J.S. 1982. Plant productivity and environment. Science 218: 443-448.
Bridger, G.L. and N.K. Alfrey. 1964. Process for production of non-burning fertilizer. U.S. Patent No. 3,125,411. Washington, DC: U.S.
Brocker, C., M. Vasiliou, S. Carpenter, C. Carpenter, Y. Zhang, X. Wang, et al. 2013. Aldehyde dehydrogenase (ALDH) superfamily in plants: gene nomenclature and comparative genomics. Planta 237: 189-210.
Cabib, E. and L.F. Leloir. 1958. The biosynthesis of trehalose phosphate. J Biol Chem 231: 259-275.
Chaves, M.M., J.P. Maroco and J.S. Pereira. 2003. Review : understanding plant responses to drought — from genes to the whole plant. Functional plant biology 30: 239-264.
Chaves, M.M. and M.M. Oliveira. 2004. Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. Journal of Experimental Botany 55: 2365-2384.
Chen, Y., L.Q. Qu and X. Jia. 2003. The characters and gene expression of rice seed proteins. Hereditas 25: 367-372.
Cingolani, P., A. Platts, L.L. Wang, M. Coon, T. Nguyen, L. Wang, et al. 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118 ; iso-2; iso-3. Fly (Austin): 80-92.
Cui, X., P. Jin, X. Cui, L. Gu, Z. Lu, Y. Xue, et al. 2013. Control of transposon activity by a histone H3K4 demethylase in rice. P Natl Acad Sci USA 110: 1953-1958.
Dai, M.Q., Y. Zhao, Q.F. Ma, Y. Hu, P.F. Hedden, Q. Zhang, et al. 2007. The rice YABBY1 gene is involved in the feedback regulation of gibberellin metabolism. Plant Physiol 144: 121-133.
Das, S., A. Bose and B. Ghosh. 1995. Effect of salt stress on polyamine metabolism in Brassica campestris. Phytochemistry 39: 283-285.
Davies, P.J. 2011. Plant hormone. 3 ed. Springer, Netherlands.
Degenkolbe, T., P.T. Do, E. Zuther, D. Repsilber, D. Walther, D.K. Hincha, et al. 2009. Expression profiling of rice cultivars differing in their tolerance to long-term drought stress. Plant Mol Biol 69: 133-153.
Delseny, M., B. Han and Y. Hsing. 2010. High throughput DNA sequencing: The new sequencing revolution. Plant Sci 179: 407-422.
Diedhiou, C.J., O.V. Popova, K.J. Dietz and D. Golldack. 2008. The SNF1-type serine-threonine protein kinase SAPK4 regulates stress-responsive gene expression in rice. BMC Plant Biol 8.
Doubnerova, V. and H. Ryšlava. 2011. What can enzymes of C₄ photosynthesis do for C₃ plants under stress? Plant Science : an international journal of experimental plant biology 180: 575-583.
Doubnerova Hyskova, V., L. Miedzinska, J. Dobra, R. Vankova and H. Ryslava. 2014. Phosphoenolpyruvate carboxylase, NADP-malic enzyme, and pyruvate, phosphate dikinase are involved in the acclimation of Nicotiana tabacum L. to drought stress. J Plant Physiol 171: 19-25.
Du, H., L.H. Liu, L. You, M. Yang, Y.B. He, X.H. Li, et al. 2011. Characterization of an inositol 1,3,4-trisphosphate 5/6-kinase gene that is essential for drought and salt stress responses in rice. Plant Mol Biol 77: 547-563.
Dubouzet, J.G., Y. Sakuma, Y. Ito, M. Kasuga, E.G. Dubouzet, S. Miura, et al. 2003. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant Journal 33: 751-763.
Dunn, M.F., J.A. Ramirez-Trujillo and I. Hernandez-Lucas. 2009. Major roles of isocitrate lyase and malate synthase in bacterial and fungal pathogenesis. Microbiology 155: 3166-3175.
Dure, L., M. Crouch, J. Harada, T.H.D. Ho, J. Mundy, R. Quatrano, et al. 1989. Common amino acid sequence domains among the Lea proteins of higher plants. Plant Molecular Biology 12: 475-486.
Eastmond, P.J., V. Germain, P.R. Lange, J.H. Bryce, S.M. Smith and I.A. Graham. 2000. Postgerminative growth and lipid catabolism in oilseeds lacking the glyoxylate cycle. P Natl Acad Sci USA 97: 5669-5674.
Ernst, J. and Z. Bar-Joseph. 2006. STEM: a tool for the analysis of short time series gene expression data. BMC Bioinformatics 7: 191-191.
Flores, H., F. Campos, R.C. Araujo and B.A. Underwood. 1984. Assessment of marginal vitamin A deficiency in Brazilian children using the relative dose response procedure. Am J Clin Nutr 40: 1281-1289.
Fukai, S., G. Pantuwan, B. Jongdee and M. Cooper. 1999. Screening for drought resistance in rainfed lowland rice. Field Crops Research 64: 61-74.
Furihata, T., K. Maruyama, Y. Fujita, T. Umezawa, R. Yoshida, K. Shinozaki, et al. 2006. Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. P Natl Acad Sci USA 103: 1988-1993.
Gao, C.X. and B. Han. 2009. Evolutionary and expression study of the aldehyde dehydrogenase (ALDH) gene superfamily in rice (Oryza sativa). Gene 431: 86-94.
Garber, M., M.G. Grabherr, M. Guttman and C. Trapnell. 2011. Computational methods for transcriptome annotation and quantification using RNA-seq. Nat Methods 8: 469-477.
Garg, A.K., J.K. Kim, T.G. Owens, A.P. Ranwala, Y. Do Choi, L.V. Kochian, et al. 2002. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. P Natl Acad Sci USA 99: 15898-15903.
Gilmour, S.J., D.G. Zarka, E.J. Stockinger, M.P. Salazar, J.M. Houghton and M.F. Thomashow. 1998. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant Journal 16: 433-442.
Goddijn, O.J., T.C. Verwoerd, E. Voogd, R.W. Krutwagen, P.T. de Graaf, K. van Dun, et al. 1997. Inhibition of trehalase activity enhances trehalose accumulation in transgenic plants. Plant Physiol 113: 181-190.
Good, A.G. and S.T. Zaplachinski. 1994. The effects of drought stress on free amino acid accumulation and protein synthesis in Brassica napus. Physiologia Plantarum 90: 9-14.
Griffiths, J., K. Murase, I. Rieu, R. Zentella, Z.L. Zhang, S.J. Powers, et al. 2007. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell 19: 726-726.
Hadiarto, T. and L.S. Tran. 2011. Progress studies of drought-responsive genes in rice. Plant Cell Rep 30: 297-310.
Harlow, E. and D. Lane. 1988. Antibodies: a laboratory manual. Cold Spring Harbor Laboratory
Hirano, K., M. Ueguchi-Tanaka and M. Matsuoka. 2008. GID1-mediated gibberellin signaling in plants. Trends Plant Sci 13: 192-199.
Hong Bo, S., L. Zong Suo and S. Ming An. 2005. LEA proteins in higher plants: structure, function, gene expression and regulation. Colloids Surf B Biointerfaces 45: 131-135.
Hsing, Y.I.C., R.W. Rinne, A.G. Hepburn and R.E. Zielinski. 1990. Expression of maturation-specific genes in soybean seeds. Crop Science 30: 1343-1350.
Hsing, Y.I.C. and S.J. Wu. 1992. Cloning and characterization of cDNA clones encoding soybean seed maturation polypeptides. Botanical Bulletin of Academia Sinica 33: 191-199.
Hu, H., M. Dai, J. Yao, B. Xiao, X. Li, Q. Zhang, et al. 2006. Transcription factor enhances drought resistance and salt tolerance in rice. P Natl Acad Sci USA 1.
Imai, R., L. Chang, A. Ohta, E.A. Bray and M. Takagi. 1996. A Lea-class gene of tomato confers salt and freezing tolerance when expressed in Saccharomyces cerevisiae. Gene 170: 243-248.
Ingram, J. and D. Bartels. 1996. The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47: 377-403.
IRRI. 1980. Standard evaluation system for rice (SES). International Rice Research Institute, Los Bafios, Philippines.
IRRI. 1982. Drought resistance in crops with emphasis on rice. International Rice Research Institute, Los Bafios, Philippines.
Ismail, A.M., A.E. Hall and T.J. Close. 1997. Chilling tolerance during emergence of cowpea associated with a dehydrin and slow electrolyte leakage. Crop Science 37: 1270-1277.
Jang, I.C., S.J. Oh, J.S. Seo, W.B. Choi, S.I. Song, C.H. Kim, et al. 2003. Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol 131: 516-524.
Jeong, J.S., Y.S. Kim, K.H. Baek, H. Jung, S.-H. Ha, Y. Do Choi, et al. 2010. Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol 153: 185-197.
Jones, L. and S. McQueen Mason. 2004. A role for expansins in dehydration and rehydration of the resurrection plant Craterostigma plantagineum. FEBS Lett 559: 61-65.
Karp, P.D., S.M. Paley, M. Krummenacker, M. Latendresse, J.M. Dale, T.J. Lee, et al. 2010. Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology. Brief Bioinform 11: 40-79.
Kasuga, M., Q. Liu, S. Miura, K. Yamaguchi Shinozaki and K. Shinozaki. 1999. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17: 287-291.
Kawasaki, S., C. Borchert, M. Deyholos, H. Wang, S. Brazille, K. Kawai, et al. 2001. Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13: 889-905.
Kikawada, T., Y. Nakahara, Y. Kanamori, K. Iwata, M. Watanabe, B. McGee, et al. 2006. Dehydration-induced expression of LEA proteins in an anhydrobiotic chironomid. Biochem Biophys Res Commun 348: 56-61.
Kim, J.S., H.M. Park, S. Chae, T.H. Lee, D.J. Hwang, S.D. Oh, et al. 2014. A pepper MSRB2 gene confers drought tolerance in rice through the protection of chloroplast-targeted genes. Plos One 9.
Koch, K.E. 1996. Carbohydrate-modulated gene expression in plants. Annu Rev Plant Physiol Plant Mol Biol 47: 509-540.
Koslowsky, S., H. Riegler, E. Bergmuller and R. Zrenner. 2008. Higher biomass accumulation by increasing phosphoribosylpyrophosphate synthetase activity in Arabidopsis thaliana and Nicotiana tabacum. Plant Biotechnol J 6: 281-294.
Kushwaha, H.R., A.K. Singh, S.K. Sopory, S.L. Singla Pareek and A. Pareek. 2009. Genome wide expression analysis of CBS domain containing proteins in Arabidopsis thaliana (L.) Heynh and Oryza sativa L. reveals their developmental and stress regulation. BMC Genomics 10.
Laemmli, U.K. 1970. Cleavage of structural ptoteins during the assembly of head of bacteriophage. Nature.
Lenka, S.K., A. Katiyar, V. Chinnusamy and K.C. Bansal. 2011. Comparative analysis of drought-responsive transcriptome in Indica rice genotypes with contrasting drought tolerance. Plant Biotechnol J 9: 315-327.
Li, Z. k. and J. l. Xu. 2007. Breeding for drought and salt tolerant rice (Oryza sativa L.): progress and perspectives. In: M. A. Jenks, P. M. Hasegawa and S. M. Jain, editors, Netherlands. p. 531-564.
Lian, H.L., X. Yu, Q. Ye, X. Ding, Y. Kitagawa, S.S. Kwak, et al. 2004. The role of aquaporin RWC3 in drought avoidance in rice. Plant Cell Physiol 45: 481-489.
Lisar, S.Y.S., R. Motafakkerazad, M.M. Hossain and I.M.M. Rahman. 2012. Water Stress, Prof. Ismail Md. Mofizur Rahman (Ed.): ISBN-978-953-307-963-9. In Tech.
Liu, S., Y. Cheng, X. Zhang, Q. Guan, S. Nishiuchi, K. Hase, et al. 2007. Expression of an NADP-malic enzyme gene in rice (Oryza sativa. L) is induced by environmental stresses; over-expression of the gene in Arabidopsis confers salt and osmotic stress tolerance. Plant Mol Biol 64: 49-58.
Liu, W.Y., M.M. Wang, J. Huang, H.J. Tang, H.X. Lan and H.S. Zhang. 2009. The OsDHODH1 gene is involved in salt and drought tolerance in rice. Journal of Integrative Plant Biology 51: 825-833.
Lu, P.l. 2013. Physiological functional analysis of a stress - induced protein , HVA22 , in Escherichia coli. 1: 14-23.
Luna, M., M. Badiani, M. Felici, F. Artemi and G.G. Sermanni. 1985. Selective enzyme inactivation under water-stress in maize (Zea mays L.) and Wheat (Triticum aestivum L.) seedlings. Environmental and Experimental Botany 25: 153-156.
Lyu, J.I., S.R. Min, J.H. Lee, Y.H. Lim, J.K. Kim, C.H. Bae, et al. 2013. Overexpression of a trehalose-6-phosphate synthase/phosphatase fusion gene enhances tolerance and photosynthesis during drought and salt stress without growth aberrations in tomato. Plant Cell Tissue and Organ Culture 112: 257-262.
Magome, H., S. Yamaguchi, A. Hanada, Y. Kamiya and K. Oda. 2008. The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis. Plant Journal 56: 613-626.
Maqbool, S.B., H. Zhong, Y. El-Maghraby, A. Ahmad, B. Chai, W. Wang, et al. 2002. Competence of oat (Avena sativa L.) shoot apical meristems for integrative transformation, inherited expression, and osmotic tolerance of transgenic lines containing HVA1. Theoretical and Applied Genetics 105: 201-208.
Maruyama, K., K. Urano, K. Yoshiwara, Y. Morishita, N. Sakurai, H. Suzuki, et al. 2014. Integrated analysis of the effects of cold and dehydration on rice metabolites, phytohormones, and gene transcripts. Plant Physiol 164: 1759-1771.
Matsumoto, T., J.Z. Wu, H. Kanamori, Y. Katayose, M. Fujisawa, N. Namiki, et al. 2005. The map-based sequence of the rice genome. Nature 436: 793-800.
Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7: 405-410.
Moons, A., G. Bauw, E. Prinsen, M. Van Montagu and D. Van der Straeten. 1995. Molecular and physiological responses to abscisic acid and salts in roots of salt-sensitive and salt-tolerant Indica rice varieties. Plant Physiol 107: 177-186.
Moons, A., A. De Keyser and M. Van Montagu. 1997. A group 3 LEA cDNA of rice, responsive to abscisic acid, but not to jasmonic acid, shows variety-specific differences in salt stress response. Gene 191: 197-204.
Morillon, R. and M.J. Chrispeels. 2001. The role of ABA and the transpiration stream in the regulation of the osmotic water permeability of leaf cells. P Natl Acad Sci USA 98: 14138-14143.
Mortazavi, A., B.A. Williams, K. McCue, L. Schaeffer and B. Wold. 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5: 621-628.
Nakashima, K., T. Kiyosue, K. YamaguchiShinozaki and K. Shinozaki. 1997. A nuclear gene, erd1 encoding a chloroplast-targeted Clp protease regulatory subunit homolog is not only induced by water stress but also developmentally up-regulated during senescence in Arabidopsis thaliana. Plant Journal 12: 851-861.
Nookaew, I., M. Papini, N. Pornputtapong, G. Scalcinati, L. Fagerberg, M. Uhlen, et al. 2012. A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays: a case study in Saccharomyces cerevisiae. Nucleic Acids Research 40: 10084-10097.
O'Leary, B., J. Park and W.C. Plaxton. 2011. The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs. Biochem J 436: 15-34.
Olsen, O., X. Wang and D. von Wettstein. 1993. Sodium azide mutagenesis: preferential generation of A.T-->G.C transitions in the barley Ant18 gene. P Natl Acad Sci USA 90: 8043-8047.
Owais, W.M. and a. Kleinhofs. 1988. Metabolic activation of the mutagen azide in biological systems. Mutat Res 197: 313-323.
Paul, M.J., L.F. Primavesi, D. Jhurreea and Y.H. Zhang. 2008. Trehalose metabolism and signaling. Annu Rev Plant Biol 59: 417-441.
Peleg, Z. and E. Blumwald. 2011. Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14: 290-295.
Rabbani, M.A., K. Maruyama, H. Abe, M.A. Khan, K. Katsura, Y. Ito, et al. 2003. Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA get-blot analyses. Plant Physiol 133: 1755-1767.
Ramanjulu, S. and D. Bartels. 2002. Drought- and desiccation-induced modulation of gene. Plant, Cell and Environment 25: 141-151.
Rathinasabapathi, B., W.M. Fouad and C.A. Sigua. 2001. β-Alanine betaine synthesis in the Plumbaginaceae. Purification and characterization of a trifunctional, S-adenosyl-L-methionine-dependent N-methyltransferase from Limonium latifolium leaves. Plant Physiol 126: 1241-1249.
Ried, J.L. and M.K. Walker-Simmons. 1993. Group 3 late embryogenesis abundant proteins in desiccation-tolerant seedlings of wheat (Triticum aestivum L.). Plant Physiol 102: 125-131.
Romero, C., J.M. Belles, J.L. Vaya, R. Serrano and F.A. Culianez-Macia. 1997. Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleiotropic phenotypes include drought tolerance. Planta 201: 293-297.
Rosenberg, L.A. and R.W. Rinne. 1989. Protein synthesis during rehydration, germination and seedling growth of naturally and precociously matured soybean seeds (Glycine Max). Annals of Botany 64: 77-86.
Roy, S.C. and T. Roy. 2013. Peptide mass fingerprinting of rice ( Oryza sativa L .) leaves during UV-B induced stress at seedling stage : a proteom analysis. Indian J. Biotechnol 12: 504-508.
Saeed, A.I., V. Sharov, J. White, J. Li, W. Liang, N. Bhagabati, et al. 2003. TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34: 374-378.
Samuel, D., T.K. Kumar, G. Ganesh, G. Jayaraman, P.W. Yang, M.M. Chang, et al. 2000. Proline inhibits aggregation during protein refolding. Protein Sci 9: 344-352.
Seo, P.J., F. Xiang, M. Qiao, J. Y. Park, Y.N. Lee, S. G. Kim, et al. 2009. The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis. Plant Physiol 151: 275-289.
Shen, Q.X., C.N. Chen, A. Brands, S.M. Pan and T.H.D. Ho. 2001. The stress- and abscisic acid-induced barley gene HVA22: developmental regulation and homologues in diverse organisms. Plant Mol Biol 45: 327-340.
Shen, Q.X., P.N. Zhang and T.H.D. Ho. 1996. Modular nature of abscisic acid (ABA) response complexes: composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley. Plant Cell 8: 1107-1119.
Shih, M.D., F.A. Hoekstra and Y.I.C. Hsing. 2008. Late embryogenesis abundant proteins. Advances in Botanical Research 48: 211-255.
Shinozaki, K. and K. Yamaguchi Shinozaki. 2000. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3: 217-223.
Singh, K.K. and S. Ghosh. 2013. Regulation of glutamine synthetase isoforms in two differentially drought-tolerant rice (Oryza sativa L.) cultivars under water deficit conditions. Plant Cell Rep 32: 183-193.
Stepansky, A. and T. Leustek. 2006. Histidine biosynthesis in plants. Amino Acids 30: 127-142.
Tabuchi, M., T. Abiko and T. Yamaya. 2007. Assimilation of ammonium ions and reutilization of nitrogen in rice (Oryza sativa L.). Journal of Experimental Botany 58: 2319-2327.
Taji, T., M. Seki, M. Satou, T. Sakurai, M. Kobayashi, K. Ishiyama, et al. 2004. Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol 135: 1697-1709.
Tardieu, F. 2005. Plant tolerance to water deficit: physical limits and possibilities for progress. C R Geosci 337: 57-67.
Touchette, B.W., L.R. Iannacone, G.E. Turner and A.R. Frank. 2007. Drought tolerance versus drought avoidance: a comparison of plant-water relations in herbaceous wetland plants subjected to water withdrawal and repletion. Wetlands 27: 656-667.
Urao, T., B. Yakubov, R. Satoh, K. Yamaguchi Shinozaki, M. Seki, T. Hirayama, et al. 1999. A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell 11: 1743-1754.
Verelst, W., E. Bertolini, S. De Bodt, K. Vandepoele, M. Demeulenaere, M.E. Pe, et al. 2013. Molecular and physiological analysis of growth-limiting drought stress in Brachypodium distachyon leaves. Mol Plant 6: 311-322.
Vierling, E. 1991. The roles of heat-shock proteins in plants Annu Rev Plant Physiol Plant Mol Biol 42: 579-620.
Vijn, I. and S. Smeekens. 1999. Fructan: more than a reserve carbohydrate? Plant Physiol 120: 351-360.
Wang, F.Z., Q.B. Wang, S.Y. Kwon, S.S. Kwak and W.A. Su. 2005. Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. J Plant Physiol 162: 465-472.
Wang, W.X., B. Vinocur and A. Altman. 2003. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218: 1-14.
Warnes, A.G.R., B. Bolker, L. Bonebakker, W. Huber, A. Liaw, T. Lumley, et al. 2014. Various R programming tools for plotting data Description. The Comprehensive. R Archive Network.
Wise, M.J. 2002. The POPPs: clustering and searching using peptide probability profiles. Bioinformatics 18 Suppl 1: S38-45.
Xiao, B., Y. Huang, N. Tang and L. Xiong. 2007. Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor Appl Genet 115: 35-46.
Xie, C., X. Mao, J. Huang, Y. Ding, J. Wu, S. Dong, et al. 2011. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Research 39: W316-322.
Xu, D., X. Duan, B. Wang, B. Hong, T.-h.D. Ho and R. Wu. 1996. Expression of a late embryogenesis abundant protein cene, HVA1 , from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110: 249-257.
Xu, W., L. Jia, W. Shi, J. Liang, F. Zhou, Q. Li, et al. 2013. Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress. New Phytol 197: 139-150.
Yoshida, S., D.A. Forno, J.H. Cock and K.A. Gomez. 1976. Laboratory manual for physiological studies of rice. International Rice Research Institute, Los Bafios, Philippines.
Yoshida, T., Y. Fujita, H. Sayama, S. Kidokoro, K. Maruyama, J. Mizoi, et al. 2010. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J 61: 672-685.
Zhang, L., A. Ohta, M. Takagi and R. Imai. 2000. Expression of plant group 2 and group 3 LEA genes in Saccharomyces cerevisiae revealed functional divergence among LEA proteins. Journal of Biochemistry 127: 611-616.
Zhang, S.W., C.H. Li, J. Cao, Y.C. Zhang, S.Q. Zhang, Y.F. Xia, et al. 2009. Altered architecture and enhanced drought tolerance in rice via the down-regulation of indole-3-acetic acid by TLD1/OsGH3.13 activation. Plant Physiology 151: 1889-1901.
Zhao, Z. and S.M. Assmann. 2011. The glycolytic enzyme, phosphoglycerate mutase, has critical roles in stomatal movement, vegetative growth, and pollen production in Arabidopsis thaliana. J Exp Bot 62: 5179-5189.
Zhu, J.K. 2002. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53: 247-273.
Zrenner, R., M. Stitt, U. Sonnewald and R. Boldt. 2006. Pyrimidine and purine biosynthesis and degradation in plants. Annu Rev Plant Biol 57: 805-836.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5535-
dc.description.abstract耐旱機制是多數量性狀遺傳,受到不同基因型和環境的影響故不易探討,因此作物耐旱機制的完整探討須建立於生理與遺傳的整合性研究才能加速耐旱水稻的育成,而次世代定序的優點在於提供快速且全面性的轉錄體及代謝途徑概況,可初步提供資訊以進一步吻合前述的要求。
本研究利用5種對乾旱敏感程度不一的秈稻品系為材料,分別是SM13、SM47 (兩者為疊氮化鈉誘變IR64所產生的耐旱突變系) 以及IR64 (乾旱敏感),再配合HY15及TCN1做為耐旱與敏感品種的對照。以23.3% PEG 6000模擬滲透壓-0.6 Mpa的乾旱逆境,處理3、24小時以及處理24小時後回復24小時,萃取地上部RNA後利用Illumina平台進行RNA-Seq,將基因表現量數據化後利用統計軟體篩選乾旱下顯著差異表現基因(differentially expressed genes, DEGs),接著利用基因本體(gene ontology)找出對乾旱顯著反應的基因功能。
結果顯示DEGs的功能會隨著乾旱處理時期以及基因型而改變,不同秈稻在乾旱初期的基因表現相似但24 hr及回復期則漸漸採取不同機制,特別是細胞溝通與細胞壁內的生理反應。而基因型間的差異以SM47較為明顯,SM47獨特的耐旱相關基因功能包含訊息傳遞及碳水化合物代謝路徑等,另外為探討IR64與SM47在本質上的差異,嘗試以生資軟體分析兩者地上部轉錄體間的SNP。
SM47的生長勢及耐旱生理指標均顯示其具有耐旱特性,推測可能是由於滲透調節物質以及活化氧族清除者的生合成。這些存在不同基因型間的DEGs均有可能為耐旱候選基因,然而仍需要進一步的研究以驗證其功能。這些結果期望能提供乾旱反應的背景知識並加速耐旱水稻的育成。
zh_TW
dc.description.abstractBackground: Drought tolerance mechanism is a complex trait that involves multiple genes and affected by genotypes and environments. Because improved methods of cultivation could not enhance yield efficiently, it is faster to conduct molecular breeding for drought tolerant rice to maintain a constant food supply. This research aims at building up background knowledge for drought tolerance mechanism in indica rice by transcriptome analysis.
Methods: The materials contained 5 types of indica rice which had different sensitivity to drought, including SM13 (highly drought tolerant), SM47 (moderate drought tolerant), IR64 (drought sensitive), HY15 (drought tolerant) and TCN1 (drought sensitive). SM13 and SM47 were sodium azide (NaN3)-induced IR64 mutant lines. We conducted -0.6 Mpa drought treatments by PEG 6000 for 3 hr, 24 hr and recovery 24 hr (normal hydroponic solution after drought treatments for 24hr) when the materials reached three-leaf stage. Digitized gene expressions were calculated and differentially expressed genes (DEGs) were identified by CLC bio and DESeq, respectively.
Results: Gene ontology analysis suggested that some functions of DEGs were different among drought treatments and genotypes. The drought responses may be similar between 5 indica rice genotypes under early stage (3 hr) but different under 24hr and recovery. Drought related genes specific to SM47 involved in signaling transduction, carbohydrate metabolic process and other metabolic pathways. In addition, bioinformatics tool unravelled that SNP induced by NaN3 existed in some SM47 transcripts.
Conclusions: SM47 seemed to be more drought tolerant than the others and had good growth potential. The ability of drought tolerance might be related to osmolytes and ROS scavenger biosynthesis. The different DEGs between materials which had different sensitivity to drought were suggested to the candidate genes for drought tolerance. However, further research is needed to confirm their functions. The results could provide a genetic reference to accelerate the selection and breeding of drought tolerant rice.
en
dc.description.provenanceMade available in DSpace on 2021-05-15T18:02:01Z (GMT). No. of bitstreams: 1
ntu-103-R01621110-1.pdf: 8009642 bytes, checksum: da85364489de3589820ccdde3f3a8e45 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents謝辭 i
摘要 ii
Abstract iii
目錄 v
表目錄 viii
圖目錄 ix
第一章、前言 1
第二章、前人研究 3
一、植物對乾旱的感知與訊息傳遞 3
1. 離層酸所調控的乾旱逆境反應 4
2. 非離層酸所調控的乾旱逆境反應 4
二、植物遭遇乾旱時的形態及生理代謝變化 5
三、植物的耐旱策略 6
1. 水稻已知的耐旱機制 7
2. 滲透調節機制 8
3. 抗氧化系統的活化 8
4. LEA蛋白質在逆境中的功能 9
5. 賀爾蒙調控逆境機制 9
6. 疊氮化鈉 (NaN3) 誘變對於作物耐旱性的改良 10
四、 次世代定序發展演進與優勢 11
1. 次世代定序及轉錄體研究起源 11
2. 生物資訊軟體的應用 12
3. SNP (Single nucleotide polymorphism)的定位方式 13
五、 利用IR64突變庫篩選耐旱水稻 14
第三章、材料與方法 16
一、 水稻材料、生長環境與乾旱處理條件 16
二、 RNA萃取與Quantitative real-time PCR 16
三、 生物資訊分析軟體的應用 17
1. Illumina定序與序列組裝 (assembly) 及註解 (annotation) 17
2. 篩選差異表現基因及功能分析 18
3. SNP定位分析 19
四、 水稻地上部總蛋白質的萃取及含量分析 20
五、 蛋白質單向電泳SDS聚丙烯醯胺膠體電泳分析 (SDS-PAGE) 20
第四章、結果 23
一、 五種秈稻在乾旱處理下之外表形態 23
二、 即時聚合酶連鎖反應 (Real-time PCR) 分析乾旱相關基因之表現量 23
三、 利用RNA-Seq分析乾旱敏感程度不同的秈稻轉錄體 24
1. Illumina定序與基因組裝註解 24
2. 五種秈稻在乾旱逆境下的DEGs數量及基因表現趨勢分群 25
3. 不同基因型秈稻在乾旱處理期及復水期的DEGs之共通性與差異 26
4. 耐旱突變系與IR64的轉錄體在乾旱處理前的差異 27
四、 以路徑分析不同基因型秈稻對於乾旱反應的差異 27
五、 IR64與耐旱突變系在乾旱及復水處理下的蛋白質變化 28
一、 IR64與耐旱突變系的地上部總蛋白之SDS-PAGE分析 28
二、 IR64與耐旱突變系地上部之LEA蛋白質表現 29
六、 定位SM47中的突變基因 29
七、 水稻已知的耐旱相關基因表現 30
第五章、討論 31
一、 五種不同基因型的秈稻在乾旱下的轉錄體表現 31
1. 不同乾旱處理時期的整體反應 31
2. 不同基因型秈稻間的乾旱反應 33
二、 耐旱突變系與IR64的轉錄體存在本質的差異 34
三、 SM47與HY15在乾旱下正向調控的DEGs可能為耐旱候選基因 35
四、 乾旱反應路徑富集分析 36
1. 乾旱反應相關代謝途徑 37
2. 耐旱相關代謝途徑 39
五、 IR64與突變系的LEA蛋白質在乾旱下的轉錄體與蛋白質表現 42
六、 SM47突變基因可能為耐旱候選基因 42
第六章、 結論 44
參考文獻 83
dc.language.isozh-TW
dc.title秈稻耐旱性之轉錄體分析zh_TW
dc.titleTranscriptome Analysis of Drought Tolerance in Indica Rice by RNA-Seqen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.coadvisor張孟基(Men-Chi Chang)
dc.contributor.oralexamcommittee林彥蓉(Yann-Rong Lin),劉力瑜(Li-Yu Daisy Liu)
dc.subject.keyword秈稻,乾旱,次世代定序,轉錄體表現,代謝路徑分析,zh_TW
dc.subject.keywordIndica rice,drought,next generation sequencing,transcriptome,pathway analysis,en
dc.relation.page97
dc.rights.note同意授權(全球公開)
dc.date.accepted2014-08-20
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf7.82 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved