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Abstract

Background: Drought tolerance mechanism is a complex trait that involves
multiple genes and affected by genotypes and environments. Because improved
methods of cultivation could not enhance yield efficiently, it is faster to conduct
molecular breeding for drought tolerant rice to maintain a constant food supply. This
research aims at building up background knowledge for drought tolerance mechanism
in indica rice by transcriptome analysis.

Methods: The materials contained 5 types of indica rice which had different
sensitivity to drought, including SM13 (highly drought tolerant), SM47 (moderate
drought tolerant), IR64 (drought sensitive), HY15 (drought tolerant) and TCN1
(drought sensitive). SM13 and SM47 were sodium azide (NaN3)-induced IR64 mutant
lines. We conducted -0.6 Mpa drought treatments by PEG 6000 for 3 hr, 24 hr and
recovery 24 hr (normal hydroponic solution after drought treatments for 24hr) when
the materials reached three-leaf stage. Digitized gene expressions were calculated and
differentially expressed genes (DEGs) were identified by CLC bio and DESeq,
respectively.

Results: Gene ontology analysis suggested that some functions of DEGs were
different among drought treatments and genotypes. The drought responses may be
similar between 5 indica rice genotypes under early stage (3 hr) but different under
24hr and recovery. Drought related genes specific to SM47 involved in signaling
transduction, carbohydrate metabolic process and other metabolic pathways. In
addition, bioinformatics tool unravelled that SNP induced by NaN3 existed in some
SM47 transcripts.

Conclusions: SM47 seemed to be more drought tolerant than the others and had

good growth potential. The ability of drought tolerance might be related to osmolytes



and ROS scavenger biosynthesis. The different DEGs between materials which had
different sensitivity to drought were suggested to the candidate genes for drought
tolerance. However, further research is needed to confirm their functions. The results
could provide a genetic reference to accelerate the selection and breeding of drought

tolerant rice.

Key words: Indica rice, drought, next generation sequencing, transcriptome, pathway

analysis
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sk & NFEE E € Flick T " > &4 NADP-dependent glyceraldehyde
phosphate dehydrogenase, phosphoenolpyruvate carboxylase, NAD-dependent malate
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(Lisaretal.,2012) o ¥ *h3F 5 A Fdg e E 8 7 chplR 1Y £ F 227 5 1L R4 ¢
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Fp S T R R A A D SRR XA S B T I RS 2

i & f s & 4 et i RiEic % (Touchette et al., 2007) -
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() F MBS -kAdr4 L EE 4 R SNACL (STRESS-RESPONSIVE NAC 1)
2 R R 5 B AR fHEeR I 2 A (WT) 5 i A& & d Ak

VM P EE D R 5 ABA AT R e 0 3 IRE KA R RE 0 R E T
gy L8724 (Huetal, 2006) © (2) R ZE3 &5 Faddme gR
dihydroorotate dehydrogenases (DHODHSs) % %22 pyrimidine nucleotides # & = 2
fZehpt % 08 & & I OsDHODHI # 78 th ci4p % & (compatible solute 2 osmolytes)
B ged TR A Fp RE e RiEGCF 2 BT w8 (Hadiarto and Tran,
2011)-(3) ¥ f % & :TLD1 j§3+t 3 474- 8 auxin & J& = Gretchen Hagen3 (GH3)
A F 725 TLDL # 5y & 17 vk feR F 0 ic & (iR ™ ¢ 3% % indole-3-acetic acid
(IAA)-amido synthetase # & = > #= % 1% LEA (late embryogenesis abundant protein)
AFERE A o B RR Sy REROAE LR H 4 (Zhang et al., 2009) - (4)
iy CEEE G “f ROS : manganese superoxide dismutase (MnSOD) z_ fz#: 3+
SWPA2 # 78 -k £ > BT fedz 3 BB T hdp S RS § 3 A Rus e (Wangetal,,
2005) o (5) 45 ApRE v F A & = blde LEA ook 3 39 (aquaporin) © i & %
B OSLEA3-1# etk & § G hgc b X 23 2 2 ¢33 =~ A £ hff 4 (Xiaoetal,
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k1@ E %4 (hydraulic conductivity)~ £ 38-k A B4 1 2 dp R AFTE R B
Bor RWC3 ¥ i & -k fsl 7 @& 5 (2o0E & B4 (Lianetal., 2004) - (6) 45 4p M
oA A Tl R Rdt g e s 48 Nagina 22 chfE 3% 2 423807 microarray A 7
FI- B EEEF S A REP R bde WRKY ~ NAC ~ bZIP ~ Zinc finger 12

%z MADS-box #-v & % (Lenkaetal., 2011) o
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td-d T (LEA 30 7))~ sk &4 (B % pE{r & #%) (Vijn and Smeekens, 1999)
2 B fs (#~p% D-pinitol) 4§+ #% % (mannitol)) (Anderson and Kohorn, 2001,

Chaves et al., 2003) -
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Rk @ e Z AL -4 i pF (superoxide dismutase, SOD) ~ i ¥ - & fiF
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3 @ ULk R (monodehydroascorbate reductase, MDAR) % o 2tf% %
A FF AP E 7 FK e fe (ascorbate, ASA) ~ %5 ® § % (carotenoids) % — &

ZAELATM A F Y &5 4o R A 2% 4 #X (reduced glutathione, GSH) % (Lisar



et al., 2012; Mittler, 2002) -

4. LEA 35 Faiis ¢ i
LEA 3-v F (late embryogenesis abundant protein) & £33 &3%3% 5 Mg & {2

Patay Ay ? >3 Whopt > AFPF R ol KR ET T B0 7 4 4
# B3| (Kikawada et al., 2006) » F]pt ¥ 4] LEA 3= F i 42 25 2 7
e LR R R LS PRI B R - Sar e e = £ S Sy
LEA 3= Fiipdtdp > )= BokenBRe ¥ % M+ %R > d kg @ %5
fadF e 2 it (cellular component) 34 ¢ > F]p E 5 osmoprotection (€ & 7 it
(Shihetal., 2008) - p & LEA F-v B 2 & & ¥ iR 5G9 B domain £ it & 4
12 (Dureetal., 1989) » H =t % F-v F A 7«4 £ (Wise, 2002) » fasg i &+ ¥ U

% 5 ¥+ (Ingram and Bartels, 1996; Zhang et al., 2000) - LEA # #]£2 37 % 3%
BB aim gy o d 5 A ¥ ars 30 (L3 %oR) s e ABA & A%
HA & F (polyethylene glycol ~ manitol %) ¢ 3% % LEA 34 ez &2 2
A EaS: FEafESd R iEic S 35 (Bartelsetal., 1988; Blackman et al.,
1991; Hsing et al., 1990; Hsing and Wu, 1992; Rosenberg and Rinne, 1989) - 7. #&
d @A FApinhers 5k (F6 44k 5)7 > atl 5k enfh s iz iR
(imbibition) # 35-kDadehydrin 2 & #& % & ¥ 33 2 ki B O % (Ismail et

[.,1997) « LEA F-v F 7* ¥ &fd+ ~ £ %’:E’.%‘« PORAE 0 e ABA T 8
L
v

5. 47 5 4 B

C S M N IRR G R L E 4P AR TR O E blhe 1T 5 RS

(SN

LB PR L d YRR RS RGBT 02 KT o 2§ X T
FAFEE R P R ERTEY GBS YP L IRRRD B
Ak FIE (7 d S 4T o B IRT UARSRE FLE 1 0T 252 %] 5 DZIP type

AREB/ABF #4775+ » 2 ¢ & 35 LEA #2%{- 39 Bipips 2C (protein phosphatase



2C) (Yoshida et al., 2010) - ¥ *F d >t arebl areb2 abf3 % %tk et & (4535 ¥ ¢ %
ABA g 147 14 > 39 AREB/ABFS £ 373k fhic 5 5 fudn M A Flend

& ¢ (Yoshidaetal, 2010)- &tk ps e p¥ &2 4 £ % (auxin)~3% b % (gibberellin -
GA) # B W T F iz 7 4p b - afdx 7 Winaes ?s’ﬁfﬁ%}}ﬂ AUX1 &
PIN2 ch 3 > £ 2 /B L3+ §IF G2 Rt BB RL i 7 > B4 R @Y
B #2% i 4 (Xuetal., 2013) - MYB96 ( R2R3-type MYB i 4+ %5+ ) %_ABA 2
auxin 3t & @IRE T 2 R RE A AL 0 TRt E £ R MYBO6 chR ik L
4 BV eniple 2 gaag chmt g 12 (Seo etal., 2009) - GID1 (GA-INSENSITIVE
DWARF1) #_jg 4= g % £ % (Gibberellin» GA)sht % » &2 W f 5 TR P 5= 4P
o GAR L @R Y DELLA 3= W en'd f2 8 & & A4 M 42> DELLA &2 GID1
R T* §_GA F enf » A %]+ (Hirano et al., 2008) - # %] _DELLA

v FiFRAmaiRe (hub) > BFEHEF A3 RHRET M AFE TP -

6. 4% -4 (NaNg) 4 R ¥ (v af 5 (hehec 2

CEFEH G EHRBR A AR AA AR T PR TRA TR
AR F AT E KRS L F R RO B e ST BT A § s
Kfsfel R RFIFA B TR B AR RG RPE A G WAE R
bl PR AT B AT REEE ARG F IR B
BA AP E B I R RR . v PRI AR MR PR P
# (Olsenetal,1993) - fr§ 4pchg ¥ RIL A il d 4 (N) ¢ B3
pARR Y Rt (ST) £ G E L0 At L4 i e ) 2 DNA
T% > 1% = A F]4E 1+ gk % (Owais and Kleinhofs, 1988) - ¥ ¢t fp § i 40 7%
BAHFFHRANTEwEERER Ay E TR EROFF 4 ApH=3 0

PERARR - pH=6 519 % » Flptfp g M4 M pH BB T A ¥ c kR

Y

(Olsenetal., 1993)- 8% ¥ & 7 = fsg 3] #&4% (transition) % Eg% (transversion)

P o ofrd B ke R el BT Lt R S T SR 4 0 B 4 B

10



F AR F LY OBREI T BRREAT 86% 5 Bk R X 2 A -

ToG-Ceaupsiwd (5 G-CoA-Tehz &) Fpiazhlpi LA SRR
97558 5 m4FE (Olsenetal., 1993) - p wide 2 ¥4 2 § &2 & end & = 2 L 1)
R H S HHIRB oA L R A T T R I TR et AR P fl
TR F L R AR R R D F ARSI 4G R ER T fhi e
He fpg P25 3 MAFEREDBREIERR > ZR LR DL FH
2

s

| o
T~ XEREAEFR RS B

1=t 2R 2 B 7 AR

Kb (TP anE B > P AT AL APLIER P O] 0 B
1990 # B4 e F RS KASAFIM T A3~ 5 5 - BT/ =+ it (IRGSP,
2005) c powrd At B E FAMBMOFE o BE P 2o P FE g 4 TS
Fr BREBTRAIFAEXS  GlrBFEE LR RO TR A TH
W E AT A AP S AR ATk R G TR RS G R D
et o

PR Lt R RATLE TR FF DNA LS|4 47
(DNA microarray analysis) % =x+ i Z_A (next generation sequencing, NGS) = £
#71RNA-Seq (Delseny etal., 2010) » & % 1 & HipF a3t i b < £2 - 26
My R g BAFEAIRE o B RARMLI] A 478 BT 1990 £ > Bkt TR
LR WA WL S ok S G A K SRR I B 4 AR PO B LR 7 2 S
RN R T P H irfzend A 7R (expressed sequence tag, EST)
22 > £ CDNA (FL-cCDNA) &2 & 3 B B 4T 32 o JL o e s o 47 2 700 e &
FRAOFTHEE NG P30 AFTHRGPIE 3 FRZLEAT DR FoficE R
M EE - T3 RNAseq - PREFE M CEFOREE T/ 470 I A

Brl AR 2t firn e e h 2k Rl AP mE - 3 B F RAFY S

11



Bl izt c AT LR EDFHAEE ;EIJ;PE F132 &>t microarray >
yoebs v i pl i B g R Al (splice variants) ¥ & o2 ] (Nookaew et al.,

2012) > p =& % 2 B RNA-Seq Hre 1548 et 71 & 47 2. 24 o

2.4 P E AR
CLC Genomics Workbench (CLC Bio) (CLC Inc, Aarhus, Denmark) % - £ &
e R PR > 2478 § DNASRNA 22 Fov A S ehf > 32
SPRIART S PRAT R BN AT ORAR B R AFIARE
AATERT L ) = cCLCBi0 7 WA & P Wi BT AR TR & P 477 50
HB Ao > 35K FRT il 8 Fi k3 iv o
RE- B2 EHRENFAPFIEEF R ERF DL M BiE= LD
HEF RN VU TEg RN B AR % F R o 27 Bioconductor project
% H.d Fred Hutchinson g 3 » wapdeanitd » p end £ Z 73 AT T
HMear1 8> T ¥ 5 & ¢ AT R RANE T BRLERAMETT o Fl s
WATAL7HEd REMEUR S TORLBAEEFLEFTH » bldegplots
% ® (Warnesetal, 2014) # 5 3% 5 B & E5E » ¥ ehR* v e 53] 4 45 R &
Z B 4 A 7] (differentially expressed genes, DEG) 5 ! 24 3 erfd 42 -
ARLABRAFIMLLAIRSHAIRE €7 Pi&iFiEmn a7 H
PRV AR L LR RBRADIET Y S REORE A TFL
£ (4 reads per kilobase per million mapped reads » RPKM)" it ] & > i@ 4 12

fold change® ¢ %_log fold change # = > # B 11ix 2 B k 22 1/k I % & & |4 41 log

! RPKM (reads per kilobase per million mapped reads) : ¥ - R AFARE Y 2 o d a0
Bl Sk Bl R e 5 3 R RCEE > Flt @A GIAFINAREF I MK o ¥
RPKM g2 2 A F AL ¥ 11 7 3| mrenfl F1 4 R E - RPKM 1% 3% 407 : RPKM = total exon
reads, mapped reads (millions) x exon length (KB) - total exon reads/mapped reads (millions) #
;AT oread ¥ omap Fl3% AR Fl2 vk B o £ o5 & 4 2 F1£ & ¢ exon length (KB) -

% fold change : &% FARERT > B I BB It E LA EF I elkE -

12



% i (Bengtsson et al., 2001)> &2 ¥ 8 & A 5 5f £ 3k < I ** R #x48 chBioconductor
project ¥ 3 ¥ 3 F A2 2 K éiE DEG-H ¢ DESeq £ i (Anders and
Huber, 2010) & & i * >t & A 2L/ s 71 & > gig?] rENTERL L A A 2
library <05 7| 3 B #ic®  (read count) > =+ A #7 7 % IR read count £2 & 488 e TR E
R R#iTsR M aip i (Mortazavietal.,, 2008)- ¢ €4 4 K @25 B pF s
RPKM ¥ DESeq 57 5t 4 4 5 B e B 12> % i d > DESeq hif B 2%
= 78 & % (negative binomial distribution)> ¥] ¢t p-value eh+ 7 & # % 7z (Garber et
al., 2011) -

GO f /s ts iviifd » H ¢ agriGO 4 - & ™ 5 B iTF A8 chs b &
171 & (http://bioinfo.cau.edu.cn/agriGO/analysis.php)’ v & t-w f8 7 & & 457 % »
= 7 SEA (singular enrichment analysis) ~ PAGE (parametric Analysis of Gene set
Enrichment) ~ BLASTA4ID (transfer IDs by BLAST) 2 2 SEACOMPARE (Cross
comparison of SEA) - SEA ¥ & 2 B LR > WZ & ﬁi%l P HRAT R A
F* 7 & 2% 2 false discovery rate (FDR) %8 % & :E &g ¥ £ B ek %5 5
Pathway tools analysis £ & 3% % #-38 $= et Fri A28 A FI TR E
(Pathway/Genome Database, PGDB)» 4z i 800 i 4+ = 4~ #8:7 PGDB &£+ & &
PEFEFEIEFOT R TR EREAMELDER -~ P A FFER

gnt gt 557y (Karpetal, 2010) -

3. SNP (Single nucleotide polymorphism) rz_iz = 3%

=

FI*F P AP FRAIETUBRREEFAFILRE DL E > Ra TRIATA

|

g

Flenic A &

) w5 A2 & B 4& o SNP (single nucleotide polymorphism)~ £ %

Q

H-PiFp sl LLEDNAARAY - ik iA¥ (ATCG) e g
P FAR S R d BT odr§ L EARATIMA L BRE .
i ac FI SNP evg 4 o (iRl § it 40 & 4 2 SNP en 522 ;% 5 polymerase chain

reaction (PCR) £ non polymerase chain reaction (non-PCR) = #& » 37 %31 & ¢

13
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A5 R 7 331§ SNP ch1 & —SnpEff o SnpEff chig # jifee 7 & 384 !

@

ZERE o E 22 THEF R S AT FASTA R S - M AL
A GTF & GFF einifdfihk » P D pet ¢ VW% 5 §H i3l s & F
FET RS TREETE > PRl ¥ 5 VO R - #F RIS

BRAIRATERDLE WG E G TG HIIRIERSE 7 RS
4 7% 7 3 exon (Cingolani et al., 2012) - SnpEff /& %ﬁ%%rqu Wik w578 4

Y AR TR o w1 fE SNP $ Mg e B o

I~ JI* IRARBRRGEmE -RfS

FrROFFIpNORBS 7 ERFISBFLE G dgfei P R ¥
WEHRITEAS I ABE LN OT - B ivridp g it4 (NaNs) # R fesA
(Oryzasativa L. cv. IR64) (£,2013) » 5 =ci¢ * )k & % 2mM o NaNz > 2 2 3000
M3 f 2 SR E BB B AR B 2 48R & % My 3000 4 My %3
FREPER2PREF-RAR - ¥ - 87 EAE 5 L5mMM o NaNsz 3 % >
PR TS Nz fa S 327 8000 tR My 2 2500 th My %53 > 1 Mafa+ B 4
A ez h X aiE o E T 555 mE SAER o TCSL7 & AR
SR o B AR YRR T TH T EC R AT & (drought sensitivity)
LB Y RAA 2 E VY B 0 HERIFREA S 013
57-9%%  { BmEu %y Fics F ghL® (IRRI, 1980) -

B+ k#EPFL05 B A S B-k#£RF> (Yoshidaetal., 1976) 2 % >
B R 1 ESS{#H LI 3ELBI{ELZLIIBE 271 14X (5
33 4E#) (#57 20%F e - 8 (PEG6000) sk#ik  AJL5 12 | PFRE
W s F 8 396 ] pF o %grf CRAER BT HEIR 0§ B JIL 3 X Fat
bR fEhmt s %5354 33 5% B R F] T o AP P i R e
PRIFIRL 2 7 PEG 6000 -k # 32 & (4-K) R~ 384 @5 S8R 24 - 425

MOSBRERET T X #5352 12 Mgmts v W H A48 VB3t e /F

14



PieiFp L SR H BT Mg+ > B f2 22 126 B My & % 8 730 5 @f
SR o B ¥ e 4 { Bof iz w8 (28% PEG 6000) 0 My % 8 & M s
LriE Mgt RO M REFEDNIBAEEREIRE 35PRE S 5 SMIL3 »
SM36 ~ SM47 ~ SM66 ~ SM72 ~ SM100 ~ SM103 ~ SM117 r2 2 SM130 -

L IRGA L H P A B REE (SM13 &2 SMAT) 7 gtk dq ik o ¥ vh b
bbb ppfesliewt s ke T 15 50 (HY15) & @ hfifeac @ k-
5 (TCN1) 7% 4B (2 % >2013) > A 45 % 5 # & 23.3% PEG 6000 ™ it 5 %
AL o PIEIER S EAR R -~ dg% 385 (survival rate) ~ sk & 1F# sk
(FV/Fn)~4g ¥ 4t i* = (superoxide dismutase, SOD)/# |~ %3 F i ¥ it * (MDA)
kg (proline) % #14 2 sp¥t-k~ 7 £ (relative water content, RWC) %3z 5 2
TWFE s R EHAIT 36 EE 0 aE Rk HYLS tick g B
M HE B FEFs VR LARLE M ELAERRD BIBEAE M
% SM13 ~ SM47 ~ Huhanl5 ~ IR64 # {5 #_TCNL o 4% ¥ pL% IR64 & H R % ko>
i35 iIE’-_#ﬁ%%—t‘ s f e dt dg 8 (H0, 2 MDA 7 £) 4 IR64 AAEEG @

&t dydie (FVIFn > s et 5 £~ SOD 712 RWC) 3901 % % 4 4 i -

SRR I L P LR SRS F BT e R C e R
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2R HMa

-~ kg2 R BRATE RILFEE

AP %P ECE SR PIR6A B At 2%k SM13 2 SMAT L F S
¥eb i HY15 G dt 5 - fim TCNL 5 ARt S48 1% 5 3R o KA+ 2 1% (wiw)
NaOCI 4r » - j# Tween 20 i & 15 ~ 481 » & 3TCHWEREBR T 2V 38
(Reverse Osmosis > RO) -k ¢ 5 o d X (54 1 » L34z 2 43 » pHAT
I A8 AKN kPR (e l) 2P A4 ETZ FRFEY o 2
PR AL FiEE (10L& 7 7)) k% p AL R RSHIEP E 30T 2 &
B 25°C#1 o 3 ¥ §5 % A p] v 23.3% PEG 6000 4 7% 15 /& —0.6 Mpa 32
B M-z kA2 3 (Bhr)~24 ) pF (24hr) R g2 24 ) PRI w
w24 (R24hr) yeBdrdlie (Ohr) 2 2 a2 le2 g b IRTFEFT = €45 0 97
GRS TN R F ¥ R 2 —80C kY = RNA-Seq # * o @ F-v
Fatrm s ) R B EA LA (102E7 7)) 29 £p7F
BeE 3 (1038 43 67 ) ciphal o £ B A srenii B 5 9 2 2 e 2

B LT BE E B EE B0 AR Bt M B AAJE S R0 L ik gp ke -

= ~ RNA %3¢ Quantitative real-time PCR

ByoEf e (total RNA) =h% B~ 8 ik B Trizol® Reagent (Invitrogen, Carlsbad,
CA,USA) ehfl Sinfe P 27 o v 0.1 g8 F3000R i § A7 B S misoh & 14
4v » 1 mlTrizolo Reagent 27323 > B>t 7kt 544818 & 4°C ™ 2 13,000 rpm
oo 15 A 4d o Bt ik 4o » 200 pl Chloroform (Trizol:Chloroform=5:1) » & if &
fetdgpes 16 A4k o B~ 400 pl F it 1L.5ml g ¢ ¢ £ 4e » 400 ul isopropryl
alcohol (3 %1+ & 5 1:1) R friz g B vkt 10 # 46 - 3% 4CT 12 13,000 rpm
Yo 10 A 41T F 5 RNAJTH » 45 F ik i 4~ Lml 75%:FH (12 DEPC
ke fl) AT 28,000 rpmas 548 H 0 b (EAF % B - =) o

k5% 10 ~ 452 3| pellet &35 » 4 » 3§ & Nuclease-free water 1 d s 3.« ¢
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i pallet ® 33t 58 T %% 5 5] 10 A 4ok 5 B~ 1 ul RNA 4c » 99 ul 10 mM pH
8.0 s Tris buffer 14 4 kL g 2-plE He L& o

BFa % RNA che- 8.7 =% &> e 8l 1% agarose gel (73 >t BTPE buffer
(10 mM PIPES -~ 30 mM Bis-Tris 2 0.1 mM EDTA > pH 6.5)) » B 1 ul RNA sample
4v » 5 ul glyoxal reaction mixture (60% DMSO~1.2 M glyoxal ~1.2X BTPE buffer -
4.8% glycerol 2 0.2 mg/ml EtBr) > ;2 4r353 12 65C & & 15 » 458 RNA %4 o
w2 ¥ A kY % BTPE buffer 5 7 4% 7% > 3k 2100 Volt §a 15 4 45 (s
TE A~ RERY o RNA 5218 4] * TURBO DNA-free™ kit (AM1907,
Ambion, Austin, TX, U.S.A) 2 % 7 % DNA > & = 1% ¢cDNA (Invitrogen, Carlsbad,
CA,US.A) - £ % iz g KAPASYBR® FAST gPCR Kit (Kapa Biosystems, Woburn,
MA) ;=42 > # 1% cDNA +4r » PCR reaction mixture (¥ SYBR Master Mix £ p &
A T3 )i 7w pE 2§ R & praady £ R (Quantitative real-time PCR, Q-PCR) -
Real-time PCR {1 * PCR #3# e/ 32 > #pic & 1 DNA 2~ # v § 6 4 &k -
AL Gd R RETEGR > DNAGRSTERAS ¥ Xagrdrd
B2 R @ (Threshold) - % B?%J M fde TR 5 F i (cycle) - x fE s Ct
B PRAFZEN PINHRAFIDCLERE S FIAAHFAFLRE -
Q-PCR 4 472 52% 49 B £ Fl4c™ : OSDREB2A 12 2 OSNAC6 » ¥ ¢} i % 2 £2 tm ¥e
# 2¢ e formin protein i 5 p $8%+ e (internal control) » 513 B 743530 545 2 o
Bt T AD 0 MRNA &35 15pug 2 k& F 4 % 300 ng/ul 0 ¥ ¢ B

5 £ 260/280 5 1.9 1 2.1 ® 260/230>1.7 » RQI (RNA Quality Indicator) > 8

C R FRA A

1. lllumina Z_& £ & 7| %2 % (assembly) % ;1% (annotation)
B RNASd 3 &2 Fpa5 L @ W g cDNA FRE T @ * lllumina
HiSeq 2000 # & ¥ 5 » v =4 % A (paired-end) A2 X 20 M chE L8 2 57 8

£ (reads) &£ & 5 101bp - 4% » £ A& (insertsize) [ = 250 = 350 bp - 77

17



R he-reads B ¥ A {4 32/0d FastQC sk~ 47 &1 0 ¢ 3 R Pldk A h4F 1~ GC 2
£12 Qi (Q=—101logop-value) % - 2 7 v 7 b 43 A FHE e 81 B
B2 £ (mapping) &% 0 & * MSUrice 7.0 %% »

(http://rice.plantbiology.msu.edu/) ~ 9311 (Oryza sativa L. ssp. indica) 2 2 RAP-DB

(Oryza sativa L. ssp. japonica) =7 IRGSP-1.0 (http://rapdb.dna.affrc.go. jp/) iF 5 %
& AT 1 E Pl ¢ 7 CLC Genomics Workbench version 4.9 (CLC Bio) (CLC
Inc, Aarhus, Denmark) » 2 F1 5 7 e % 2 ;xf2 4] * CLC Bio /2 2 TopHat i& {7 - &
¥_mapping if i & 35 2L % - coread Be & 13T 100 4 E R AR MY 2 B B F
2 RPKM (Reads Per Kilobase per Million mapped reads) #-7k %1% & % it > =
5\ % total exon reads,”mapped reads (millions) x exon length (KB) (Mortazavi et

al., 2008)

2. GELRARAFIZ #H N LT

BN RS ERE LA 0 FI A RS DEGs éiEeh N1 & A% R
18 3.0.1 5% & Bioconductor project ¥ =7 DESeq (Anders and Huber, 2010) » 1 #-$%
ArREE DR B TR S A i 2RSSR ] P B (read
count) - read count E_2_A 4> F AL 4 R FSA FIR HEE47E D] (J1* CLC
Bio i {7) » &% @ p-value = 0.05 5 B F L o ¥ *h3- § izt DEGs ch& R E
RPKM » #-igt LA F14 7 k&% ¢ 7 RPKM #p 4c > ;ﬁﬂ iR e E 20 1 F 2
FEIE AT

A 2P T 44 DEGs - ) A 540 1 (1) # A grfE I

agriGO (http://bioinfo.cau.edu.cn/agriGO/analysis.php) i& {7 L F] & %8 4~ 47 » A%+

o P ARAT LA > LR LFDR = 0.05 A 4 ¥ £ £ o iv > FDR (False
Discovery Rate) & it i 7 p-value-(2) BL% 5z 5 40 B A Flen% it 141 * heatmap
Z3TARB A A N A 4728 F1 A& ABS - Heatmap «h4 477 1% MeV it dli 4k i®

(Saeed etal., 2003) > ¥ ¢t~ ¥ 24| * R #1482 ¢ gplots » 7 heatmap.2 (Warnes et

18
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l,2014) # HIFE 2 A AN wm A2 FiEde (euclidean distance) % T i5id
LR L% 5+ (average-linkage agglomerative algorithm) 4 47 5 @ $7 3% B3] 3 B
41 * Short Time-series Expression Miner (STEM) #x %84 i= (Ernst and Bar-Joseph,
2006) - (3) B4~ 17 (pathway analysis) : ™ 4% Pathway tools analysis version 13.0
##1 (Karpetal,2010) » & 2 e (v ¢ g7 4 2 KA TR E - 2 m2 T

A1z Gramene + #: 7 3¢ RiceCyc ver 3.3

(ftp://ftp.gramene.org/pub/gramene/pathways/ricecyc/) - fe &-F8 P #4315 52 % rd2 v 357

#] % % log, fold change > 1 ﬁ?DEGS’ﬁi%J T P RAFTICHE FREANL
FTERBRZE-GRTOAFLARAIARETEBPFT A et F o

KOBAS 2.0 # " 5 A F# E (&4 KEGG PATHWAY ~PID ~ BioCyc ~ Reactome

r1 % Panther ) 2 {7 /= % & 4 17 (pathway enrichment analysis) 1 £ (Xie

etal, 2011) » #-p #24 _'ﬂﬁis?l RER A N S 50 e i s Y S

3. SNP z iz~ 47

A7 SM13 2 SMAT ¢ gk % % 8 % 4 4 3348 SnpEff  (Cingolani et
al., 2012) | SNP eniz ¥ I ¥ FEP| Sff i = 02 58 > £ % SnpEff version 3.6b
(build 2014-05-01) » @ %< ZA FIRERIE * p &5 (MSU release 7.0) « & 7 3 4c 7
ALenfEgrfd > FPsF & SMI13 2 SM4AT7 & p #73 o RNA-Seq 7ok » 3 4c 1t 47
FRERRE > X AR R H R 500bp 1T e R ¥ ik F s ¢ 45 A F
+ T % (upstream f- downstream > 3g 2k & & & S5kbp)~5'% 3@ F R (5% 3
UTR) ~ p &+ (intron) ~ *t 23 (exon) 1 2 A | I§ % (intergenic region) % %
B hFAy & KLHF+  (promoter) % 3 G 44z 485 1000 bp’“lr‘ LS
RIS 2 52 3R RE (5% 3UTR) M nm 05 A F I ¥ -
I3 e 7 2L & (non-synonymous coding) £ F & (Synonymous

coding) 14 % ¥ i RAEF gL E o
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T~ ckfEM FIRAFY FOEBRZ FEL

v FE B2 R LN E A i R ke B4R (FRE 5 1997) o B
N 029 kfexw s FINREF AL migs ko0 de r Iml chged B R B
% (% 50 mM Tris-HCI (pH 8.5) ~ 2% 2-ME (B-mercaptoethanol) ~ 1 mM
PMSF/DMSO % #+# 100 & (v/v) protease inhibitor cocktail (P9599, Sigma—Aldrich,
St. Louis, MO)) & £ A& #-je 5= Brim v - ¥ 30 1.5 ml gw ¢ 02 11,600 xg &
15 4o Pt Fipde r w BMFHROP M (5—20CF4) 5 » —20TC k4
IUAK R e o MUK e F-d v 8,000 xg s 3 A4 TS 2 FEpmLt i
TR R R P RITF L 4o~ i B el A B (62.5 mM Tris-HCI (pH 6.8) ~ 3%
SDS (sodium dodecyl sulfate) ~ 5% 2-ME 4= 10% glycerol) % j# o d % 3-9 % >
B kAR R A (2-ME) & 4 6 =& (SDS) ¢ o b g o g B sk i
BT FILrZELFTEY ARA X ik 2 e RC DC assay kit | (Bio-Rad, 500-0121)

AR f

Sy

¥ - Biotek Synergy Mx #c & 4 4 45 i% » & 12 bovine y-globulin (BGG)

Y
(4«}

CPE LR R P EE R R R R RS KRR

—80C k4 -

I~ %0 FES LA SDSKP FRIEMT AL 4 (SDS-PAGE)

SDS-PAGE ¢ w42 %+ i 13 :x p (Laemmli, 1970) » SDS-polyacrylamide gel
fe > %% Harlow - Lane (1988) fe %l 12%4 %"} %83 ;% (separating gel » 30%
acrylamide mix~1.5M Tris-HCI, pH 8.8~10% SDS ~10% APS (ammonium persulfate)
% TEMED (N,N,N',N'-Tetramethylethylenediamine)) (*f4% 3) 12 2 & & %4873 %
(5% stacking gel » 30% acrylamide mix ~ 1M Tris-HCI (pH 6.8) ~ 10% SDS ~ 10% APS
2 TEMED) (¥if45 4) -

VEMR EES R (RB Y CBIAFE ERFOFIRE) ) S kTR B R
eV T PRI Ao+ EiEHE 12%k % SDS MAgA R oA 7 15

mm B s 2 97 25 ml 4 e aga e 2 10ml BRI R o B R frR iR
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A e s e r Bitpd AHTEMED > ¢ * ?5’15’14“ xR (g A
= %) & 4 isopropanol FEFEF F 4eid R0 5 60 A 4R 1S “f isopropanol >
P2adr BEEVMARITH d W RASEREZT R ’3’»_'}"\—#@%%%1‘%&'%‘?’%%%%

B g e c FEEMMRAREERTEARE FA 2@ > P RERe R
Ry e LB ke BY 5 4T YT 1 I 2 o

B EACE I L BT AR T S el WA F o AR A
Mo BFF 1+ 2D B m»ﬁ%"fﬁ'ﬁﬂ AREREEN LT BHA GV
WP IR AL SR A R B R S B R o P~ F-9 F loading £ 5 10 pg >
S~ 7 F i€ B bromophenol blue 35X sample buffer (FA0020-0025,
BIONOVAS, Toronto, Ontario, Canada) » ;& 3 {512 100°C 4r # 10 4 48 - x4 =df
P TTERAEB20MII AR A RAFGER AR E VIR
Mo RANTIOV 2FRTA30 L4 HF 7 180VE~ 1 B 7 B30

SREM T FRDE o R ERRF YT L EIES AR NPT &

PR R ) P e 73 CBR#% 4 & (0.2% Coomassie brilliant blue R-250 -
50% methanol 2 10% aceticacid) 2. 7% B*® 4¢ > 2R T3 HEE G 10 248> F
LT Ry FHER QAT o md T H R RIS DL S o N iF G
20 ml ep-3# 194 7% (5% methanol % 7% acetic acid) £ #5477 - F% J f=x 3
FREP RV F I 30 FengEd ¥ o

& LB F 2 (WesternBlot) F s imfz 44 T3 ecp it 89 % (8
2005) - % F T A i@ A2 &7 - (PVDF) (Hybond, GE Healthcare, NJ, USA) *» =
YoRE R A F S F T FRRRBT 0 T Per R g 2 A 2 A08 R 20
» i B i e (25 mM Tris, 192 mM glycine, 20% (v/v) methanol) # & # o & & &
BT RARE - R AR H A RRRA EE TR T

Lo BBIEAEECKRBENYS L ORRAF I F AL E N ES R AN o
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Rz pinF A Y B R AT IR R R RFRErE
e o~ gEEPH 0 B N4 %02 400 mA HEE K 15 ) B o

2 B -NET (0.25% Gelatin ~ 0.15 M NaCl ~ 5 mM EDTA ~ 50mM Tris base 2
% 0.05% Tween 20 > pH 8.0) i+ % re %] (blocking buffer) » B~ 1) PVDF %% /B3t
AP g RET 930 A4 R R-NET i 4a 3 % - PVDF 34 ¢
T IR RREE 2 AL Y B o mFUTIBS kR ‘}Pii'*
= (15 A 48/=) fs2ar - B MA R TREF LI - AR %I A 4R
Bk REE A G ik 3 0 igA - sz eh anti-rabbit HRP (horseradish
peroxidase) &_i- # ;4 sk;x (chemiluminescent detection) ¥ # * et 2 - & {8 F 1k
n TTBS ki iFie s = (15 A 4/=) 16 WS @i » v 4 pef ECL
(Amersham Biosciences, GE Healthcare, Piscataway, NJ, USA) 7 HRP substrate
(peroxide : luminol = 1:1) &7 i- &5 k2 o X Beif F A %353 7 18 PVDF %% iF

MO R > FETF NI A ELEP ARG Fe BT 80w 5 R

-~

T
k45 OSLEA 2h Fulll — 7 33k feE » 16 kD =+ 6 F » 478 10000 i (4
AR RERE) -

%« § pHVAL Fubl — 7 5k 42 ¥ & 27D 3v F » 478 15000 & (4 ¢ 7 1%

AT R E X AR ) (Xuetal, 1996) -
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Yr& 2%

- IR RIET L AR
IR64 22 a5 2 & 42 £ 93 = Fd 11 23.3% PEG 6000 57 5 i B & e

Wiz wm R > R 4 SMAT &7 IR64 vk g 2749 4 & F g fp iz 0 @ SM13

a7 S B LU &ﬁ‘m = ol RCRLE RPN B (Bhr) &7 1 :F:]
4 ;‘fﬁfiﬁkf*ﬁ#ﬁfi% — » 11 |R64 AR &+ » SM47 2. » m SM13 ¥

ﬁhf') (]%] 2) o @24 E& (24 hr) |9 » |R64 f’ :%ﬂ.u\ |J\§{‘é‘ #_ L /{45\-4]‘ ir}:}ﬂ
YR d 2 E G )RR P B SMAT XG0 R B ez R . IR64 g B

LRSI B G EARMALAA Bl S SMI3 Bl AT ¢ A st B o eee

H
“F

Fdleg Botick 24 [ PFiswipr ¥-k#£R 24 % (R24hr)> ¥ 124 31 IR64
E AV 2FUcE it > Ragd T APEE D ELAIL > 33 |R64 R & 5 s

RERIGR RS RS FE N RAHIIEEAD () h (24
hr) & 2w/ (R24hr): IRGA i % & & chvh 2 41308 4 Fid cmt £ 1> 9 & 5
CHbE KGR RCRRZ R BIEF WY (3 2013) o @@ LA s

SMI3 a2 A7 X e F BB EL L > PREOAIFE Ra v d ¥R
THBARFERFI A RDEIE SRR TN LEFFALRFLE AT AITS
it 5 i3 iE S fE e SMAT o 3 3 HY15 12 % TCNL fdz % AJZ (6 ch2 fi £ B 3 P
B 2@l k36 o HYLS et £ 3o TCNL ek » # a0 § BS304 R BT e

AT A e

=~ TERLFEHF B (Real-timePCR) AHric S M A FI2 2§
ok B &R RNA-Seq 2 % iy eh— + M Flp i g 8
e F AP @AM DL RE BRI o AF RPECE AN O£

OsDREB2A 12 2 OsNAC6 » 1 % i & 34 47 ' % F 2 o formin protein i % p 384

B RlD F RSl Bt GRT ORAFRARE > ok ST B 5 3
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1224 | PEILE 4ok 24 [ PF o o &% ¥ 4o (B 3) » OSDREB2A toif B T chsp i
12 SMAT Bepr & 0 tit % 3] Prend B 2 SMAT L B 0 2= 5 TCN1-SM13
122 HY15 ¢ OsDREB2A » @ IR64 474 3 & j o % ¥ 57 % P& 7 4 4. OsDREB2A
i B S AR T R RS AR -KkPFE O SMAT indk B X + 2 91 2 IR64
2 HY15 % 45 4kcH 4r - OSNACG feifi s ™ e it 4 12 SMAT & & » £2 SM13 2
TCNLF # &3 pFrent REEEF 4 5§ SMAT adp kB ehd mE 5 52 >
@ IR64 2 HY15 Rl 8t iz % 24 /| PP b B oo S M EE TS 7 B ALY
&

S A g 0 %P PEG 6000 4

oy
¢
3

AMAEAE > 2B E X D

TR G BT A 2 ok F s
Z ~  fI* RNA-Seq A 173 % T 2R 7 F infhfeid &l

1. lllumina E_F & 7L Flie 1%

B3 20 B &F1* Hlumina Hiseq 2000 (Hllumina Inc., San Diego, CA, USA):&

T RNA 2B » T354 4 1 22994564 B -&F 7] % £ (reads) » 5 Bl & o

mapping &% - fI* 3 g A TR 2 1 B e it reads o £ A FIRE ¢ 32
% P A @ MSUrice 7.0 f= IRGSP-1.0 12 2 9311 fh4& > @ 2 %1 2 @l 5 CLC

bio 2 TopHat- 3% % ¥ ;&= & mapping = 3* :MSU_CLC (2 p g (MSU rice 7.0)

& %% A T4 4 CLCbio ¢ $%i¥)~MSU_TopHat (2 p »9F (MSUrice 7.0) =

%+ A F)48 ¥ & TopHat * 3 i¥) ~ 9311 TopHat (2 9311 % %% A F|4 ¥ &
TopHat # 3% i¥) r2 2 OsNB1 (2 p »58F (IRGSP-1.0) & %% ;A ¥4 ¥ { TopHat
¢ 3 (F) (% 1) % &1 MSU_CLC s mapping +* & & 77.1%% 83.8%FF » H i
d B @ ik A % 9311 TopHat (78.6% % 86.5% M )~MSU_ TopHat (78.6% % 86.5%
BF) r2 % OsNBL (77.9%3% 85.5% ) - 827X F s H L0 5 fl i fh » R a8 %3
AFMr H 25 L8722 R0BIL s REREEBOARL » Fpt (v
Fr MSUrice7.0 (75 45 AFM o ¥ b % 2 o1 B ch %4 4pig» Fp

AT EHRBE TR T ehMSU_CLC 5 mapping (1% % - reads ' ¥ | e % 32
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fasg~ 5 exon (¢ 7z H - exon £ exon-exon) 14 % intron (¢ z ¥ - intron {- R ¥

B 710) (% 2) - Mapping ** 5 & 77.1%% 83.8%F » H ¢ vt 4+ 3] exon 5 reads ¥ £
97%> % 3%-E_i=>%intron- & 4§ if 1 * iz mapped reads 3+ & & F1 % I E RPKM >
B fé reads fe g = f A5 AL F3LfE(F 1) 55801 1 AL F12 2 66153 B A+

(transcripts) -

2. I fEffetick $R T O DEGs #c® & A FlL AR 4 H
LAt SRR A - hH Y 0% BB F3¥ > 7 )% DESeq %

BT A BICE AT R ET P 4 1.4 7] (Differentially expressed
genes, DEGs)> & i% log, fold change > 1 &% <-1 % % p-value<0.05 2 ¥ £ 8 -
LM B YR L Z Bich kAT DEGs: & %3 &2 DEGs (i 3 hr/24 hriR
24 hr e7vig B) #c& & B 5 HY152679 B (1093/911/675) ~ TCN1 2520 i
(1079/787/654) ~ IR64 2456 i (1019/800/637) ~ SM13 2067 i (630/902/535) 12 %
SMA47 1887 & (840/742/305); f + 3 & i & 5 SM47 2123 & (630/806/687)-IR64
1830 7 (485/760/585) ~ HY15 1776 & (470/736/570) ~ TCN1 1706 (454/764/488)
r1% SM13 1196 # (326/628/242) - I — FhfEl # k52 % AJE T ¢ DEGs 58 fr
oA EFTT AL a- BRERETIRFLEDATD SHLIAAS
A FEEd fa b kA 5 HY15(1787)~TCN1 (1673)~IR64 (1656)~SM13 (1471)
& SMAT (1284) 5 f » B 4reanfd Flic®E d F @~ kB 5 SMA4T (1600) ~ IR64
(1382) ~ HY15 (1274) ~ TCN1 (1245) 2 2 SM13 (984) (® 4) -

{575 5 fEANAEY M2 §iE 1) 5520 1 DEGs » &A@ 5 1 @i iFit & RE B
M BT AFA AR FLE RPED S A AR Y R E R
RPKM > 15 ek F] » 518 17 3] 3263 % DEGS © 4 %] #-izit &L Flen RPKM 12 2 %
FJ2 ke e log, fold change 41 % MeV #c 48 (Saeed et al., 2003) 4 +7 » % RPKM
¢iheatmap (Bl 5A) > d 23+ % 445 1404500324 [ 112 427k 24

A FIAIRE o ffSR A G SM13 ~ SM47 ~ IR64 ~ HY15 1 2 TCN1 » % %
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FIAFnE RABE A KAple»Ra d 3 SMI3 2 EH WAL [ & Rims F
B g FI AT 6 FE A b fI R and Bt o i F % SM4T IR64-
HY15 2 2 TCN1 #iz % AJZ T 1 log, fold change ( B] 5B) % B+ 84 ek 7]
RULAEAFHRIRIPE PeBHAFIE A3 | pFrAIZHFT 24 ] Fo
MR REP PR O ) PR AL o @ f e AP I 3 ) PR 4niR BT YR T 24 0 pF
HhF o AR kDR EFREE A AILEG

d A 4 5 A ANfeRT 5 4 2T 3 T oo SMAT ¢ HY15 it at % 3]s @
IR64 &2 TCNL E»tacpg 3] » FA T2 RABS 27 AT 5 22 3 > RIS 8EA T
F P 5wt FE AT o Flpt AFT 7 f1* heatmap #- DEGs % mE 48% 4 3 (F
6) &% I SMAT 4p$>> IR64 & % HY15 4p 412> TCNL § £ B enfh F13 > B % -

£5)0 103 B AT »H P - £ 5 26 B expressed protein r2 % 17 i 222 35 5 1)

FAn B A ) o

3. AR AFAIFEAICE B2 W 2 ok H e DEGs 2 £ £ B

A&7 7 F1* venn diagram SLE 4k B DEGs o4 %> Flpt ¥ g di & g 3 hr s
24hr 2 R24hr 525 2™ #1582 cnfk Flic® (B 7) - jic® 5 & AL v 1
FREF LA S0 S A AFShr Ak 5o B G 24hr 2 R24N0 @ fi o
AT 24hr 5% > B 5 3hr2 R24hre 2 F# 2 5 - i fe? 2w
P4 DEGs 2 A FA & i et w4y DEGs » g 5 % A 1% agriGo i
TAFILFE ¢ 7 ZfIFAE ¢ 4 422 (biological process) ~ » =+ # i (molecular

function) 2 % w2 e it (cellular component) » 3% T_FDR <0.05 % % ¥ -k & o d

sl

HHELE (R 9) FHAHRET e ¥ A 3hr24hr 122 R24hr 358 F 4 en2
s
(GO:0009628) 14 % 4 i3 5 115(G0O:0009607) » @ A + 3 it B & A7)+ 7 1

LB F b (GO:0006950) ~ fick i (GO:0050896) « 24 37 5 1k

(GO:0030528) o ¥ #b 3 st 74 iy R A dF T PP £ IR > 4o 24 hr chvh flmve 1

F s (GO:0009991) ~ fm% %@ (GO:0007154) 11 2 ¢ 2R il4cF fis (GO:0009605) ;
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R24 hr 7 DNA & £ (GO:0003677) ~ *k¥n4t % 4 (external encapsulating
structure) (GO:0030312) -~ fw?¢ £& (GO:0005618) 12 % *w® ¢t F (GO:0005576)° +
WA Fahsa < S8 b ifdpk (B 10) 0 7 @@ F]F B

(GO:0030528) Rl 3hr £ o

4, wtE X% 2 IR6A chig st A gr 5 2w ind B

d >RG4 Emtd R e 2 A AR FRRT 2 5 AR FIUt K E S
FRBERF CHFRE DR L AT F L EFRT > 2% 12 IR64 F i
P AMAFF J1* DESeq éF:E 41 k - SMI3 45 7 DEGs - £ 7 139 B » 3 &
2 261 B g v & AT SMAT %5 7 DEGs 7 227 B v & 2 108 B f w3
GATF DA R LW DEGSRF 0B I v B &2 I5BE »a &A% (8
8) o & ¥ I * agriGO #£ 7 &% DEGs ¢k Fl#4 it » % % 4F ¥ 1% & FDR (False
Discovery Rate) = 0.05 > 4 % &1 SM13 &2 SMA7 et & A 47 DEGs & & ¥ ¥
1 GO term » # i p-value # = ML Fl#t i ¢ 2B F B (GO:0006950) ~ 15
F & (GO:0050896) ~ 24 4~ 5 3 ] (GO:0009628) ~ # 4 i 4 {1k
(GO:0009607) & s o m e f wdAiy” 3 =2 BHEF > ¢ FHHBF & (response to
stress) % {lck & (response to stimulus) 12 2 X B3 & (receptor binding) -
FEipE A F AGE 5 T st I heatmap AT S S i TR M A 2

TR AF AR -

T~ NBEEAYF FAFIIFEHEN TR F RDLR

R F R WD EERA L 5 B REM DR MR g E TR
#-briE I ken3000 5 A1 w2 f e iy DEGS MELEF B AT P X RER
N T o BETF UFR  BEFXITE B BRE (p-value<0.05) 5§ &
i e (dosa00910) ~ % & % E§ £ (dosa00710) ~ & Ffic & - # ik 1% dha i
(dosa00630) ~ &% ik 3 (dosa01200) % (% 4) - ¥ 5 7 A7 Nk 2@ el -

K F AT bRl ph A BL oS (L 5 Tt ik T ¢ 1 DEGS $¢ 21 & 2 heatmap % T
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ﬁ%o%&iﬂ’ LATE S BN S F T AR G Ay R AT
PR RET S B AR M O B P IH DA E T Rk 2 R

WEL TR L B

7 IRGAZatE: RE X it 2 kAT 3y TR
RNA-Seq f217 IR64 &2 @ % R % % 2055 pdL™ e A R > A d % F
WA MRNA B ek Rl g%t { 2L hich F RIBHIZ 8 L 3o Fep
£ 2 RS QAR E A 4T o Pl R - R R Lk RIET
IR64 1o 5 %% 4 ehders WAMMET) o0 29 %3 £ A ki LEA Jv Feh
B0 F10 0B 8 OSLEANFall > ¥ ¢ £ 4o b sk B 7 % 0 enpHVAL Fedt -
2 Western Blot g% LEA 3-v B350 % 0k i o et 2 w0 p)3# OsLEA2h &

PHVAL & if Ak & 4 ] 5 10000 & 2 15000 & -

- ~IR64 &2 mt % %%k ey F 3% 3o 2. SDS-PAGE % 47

AFTF J1™ SDS-PAGE 4 17 IR64 2t % % % ) 3 o RJL T 0% i 4

\4

R -
BF > P B IR64 F S BPFH G0 ROt B RERSRIUER B ETE
10 ng 58 %> A8 E & 5 3% 12% s 4 + £ /%> 10kDa 1 200 kDa shg-v -
2 Coomassie Brilliant Blue % ¢ #7189 Bl ¢ & «ﬁﬁ D192 Few BT b IR Few i
£ 3 (B 26) "2 39 paFaigd ~ §i=* 100kDa = + ~68 kDa 2 24 kDa >
AoE R Gen Jpr s ¥ BE AR W=t 14kDa 0 2 BB G By T F BB hiEF
=% 63 kDa 4% 28kDa- ¥ ¢t i QF‘« Fihd-o FAF o 7 F R G0 o
FEAANEFF TS D G LM o B D Fehz &0 3 AR g o
€3¢ = Fv FiEA chg it 2 d »> Coomassie Brilliant Blue st gt &
CRBAEZEPRE RSP e gl e i d AN R L

» EE RN TP T RE- B F S g F 2 (Western Blot) A IR e
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= ~IR64 &t 5 R ki P82 LEA 30 T AR

0 LR VR PR SSORe FAR 0 Fet R i SDS-PAGE ¥ Bl F T
PVDF %t i& {7 Western Blot » I &-%+5z % 4p B <9 LEA 3-9 & 4 +7 OsLEA2h 2
PHVAL % #f - d %% 7 4v (Bl 27)0 & fEded FF fiasr s b 30 8% 4158 %
ep kgL f > OsSLEA2h &i2? 5 SfiE+ » & % i=* 21 kDa ~ 28 kDa 14 2 35
T 4BKDaf s ¥ b3%A & F 1EIEF = 28KkDa e @ pHVAL &iae i ¥ #i
BAEA LW A Bt B 309 hiEd §4F 4 33kDa £ 35kDac A 48 LEA 3-v
Fasind A&’ B2 L i

FTREYRT IR AT ey Tk A E 7 B o OSLEAZh & ¥ 3K g4t

\F‘b

SONEF e P A B e 0 BB

—%—M—_ﬁ"‘r /Q_Tiﬂ- 28kDal' %ml? ’7‘3@+24hr35—+}¢ __1 —'}; %7}%‘;’;"']\%—1];’
MARRSER R AFE o R iEF AIRGAE R AR DLE > FIRALR
7R 7 i SMAT 14 R edZen Rk fF R b o @ IR64A BIE_24 hr 52 5% 240 K

Behjo FyELE7 % pHVAL533kDa 4+ F 4p ke g% -

A v ZSM4AT ¥ hR B AT

s R IR64 5 d NaNg ¥ m = ehg ko pieand @4 § 4 243018
BIBER R 4 tpk o FP )% SnpEff FEPIBER B EE T T iR Tid A R
d 3% SM13 et 442 % & SNP 3% 2o 7]t % SMAT ¢ R %A Fets o
SnpEff t* #4en’E % (B 5| 28 B R % =8> H ¢ 1 B =LA FFIE % (intergenic
region) (% 7|3+ % ¥ )3 2 B =37 2@ F T (BUTR) ;5 B 3t = 42 i35
(B UTR)I 2 4 i 22t p B3 (intron) e @ CBRERNB R 45 10 B2k £ % %
(Non synonymous coding) ~ 6 i F+ & % % (Synonymous coding) ™ % 1 B¢ 1+ %
BFHEF 4 A2 & xR% (nonsense mutation) (£ 5) - & F MR Bl
% il e 2 log, foldchange & F AL 7|3t £ 6 3t 5'UTR & 3'UTR 4
¥l & % 5 5'UTR 7 LOC_0s12942610.1 §= 3' UTR 7 LOC_0s03953550.1 ~

LOC_0s08g02050.1 ~ LOC_0s06¢25950.1 12 2 LOC_Os11g03540.1 = % % & |
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W@ R o 21555 2 4 @ vE4p B chProtein Kinase 2 ABA 3 #7555 4 BE il 45 F)
+ AP2> ¥ ¢hiR G F #E4&rpeEE S (retrotransposon) 4 E G res g4 T4 E AR T
FIYABBY £ F] o 23 QB2 HZRENE 1 BP ) BBFanLfB L% i o &

£ ¢ 7 4 1 expressed genes ~ 45 F)F fF H 8 G B o

= v okfEs weha R AR A RA R

PE B ook feat R Ap AT BB R A FA AR - A ] 7 AR
% & P B aF i 0B o dihydroorotate dehydrogenases (DHODHS) ~ f 7
F & enTLDL ~ 47§ i 24 i % ROS <0 superoxide dismutase (SOD) ~ 4% 4p B
SR F-v (aquaporin) 14 % - FlF NAC A& FI52% » 2 5l iz & L™

log, foldchange ‘¥ 7>t % 8-
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1%~

Pi%ﬁwawﬁ%%k&ﬂﬂﬂﬁ&ﬁ&ﬁﬁfﬁﬁ&@ﬁﬂ,w
RicF AR ARG - P KA R Y FENGTEAMARBI 2RSS E
365 L -kfsEeF (transcripts) > £ 0% 23t 408y & 01 K 3000 B DEGs o
BET PR hd &g IR fRAIAS B 5 RS S B K AR b v
Fgh F1Ap 026 IR6A 21t 5 R ET RSB L BT F 0 5 41T HY15 &
TCNL et e 7 00 g 24 ot & 2k Flenii i o B (835 BEAT A 17 00 & iRl fodfe tit

F T BRI

-~ I RAFISERIcE T eI R
§o % g2 enpEdp 2 L 713 en L B0 ¢ B HICE R R4 e
FRFEF LTS b TS A RS T ATRE S A T
A RAT AR BRI RE B L AT cF AR - AT LA 00
#p ¥ hiz kA8 Bhr) oLl (24hr) 2 E w4 (R24hr) 14 4 hF 5 r &
EFEBIRPAFYUF T I 20 & £ AT A FA] 4 £ R DEGs -
DEGs thiéf i i it & 7 g e drrdlie s v @B log,>1 & <-1> &K 2 A Fi
L op-value<0.05 AT 5 WA GE AR EERPAT) > W A FF ] GiE
RPKM > 3 ek )17 15 3 A 45 (Cuietal, 2013)> F]pt 2575 4 F G112 5 &

BAFIE S - A 0hr~3hr~24hr 22 R24hr 22 RPKM #,qe >15 -

1 7 leich RJZpFE R F R

d SRR B AP B A FIOR fAn § AR SR Tl AAT Y PR A S A TR ein
PRSI B A& T A G A S A F R T e A g o L B
VR A et P (oA ) 0 PR FIBAT A S 3 E 1L TSI R A Flen
WEFS R F A TGS P R (ol PE) 0 3 B A RPE § s

4 (Zhu, 2002) - %3263 i DEGs ® F 3% 5 A3 #7538 » 3 “ A0 I 4R
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KPP EFEFEARDAF] » § T AGEE I T FA ST OAF T S A - fBicE
R TEe R ATgE- 2 s MAAERIE3 ] FRAETFYL 24)
o 2R PRI R ¥R (B 5B)e & et iy DEGS #cR "g FicF W/
4@ R 0 L3 ) PR 1700 0 3 24 ] PR 1365 B 0 4ok R4 A K
(1465 B); f o et PIREFic s PR A H 40 > £.1084 B ~ 1372 B |4
kHp 1404 B o B ACKASR A AL A S T ST T BT o - L i
ePlic S A ¢ P e R AT A M EfH it % F & (Degenkolbe et al., 2009;
Rabbani et al., 2003) -

#-+ it 3~24 2 R24hr & p enit w33 4728 FIiE (7 gene ontology 4 +7 sk F]
#iw (B 9) B¥ GO # i (FDR<0.05) e v » 5 =% 1 (1) = fhic
ERHBEAR . AFe Z ¥ LR A AN AT LEA 2 Bk 0 F (heat
shock proteins, HSPs) 14 2 universal stress protein & - i 3 # 4% %] )4
AP2-EREBP ~ MYB ~ HBP-1b 2 2 bHLH #2%2% - (2) fic% 32 24hr £ ;&
§_24 22 R24 hr % 3 > )4 cytochrome P450 ~ protease inhibitor 2 ABC-2 type
transporter & » i 4% %]+ |4 AP2-EREBP ~ NAM ~ C3HC4 725 % - (3) {24
hr & _R24 hr % 38> 54 HSPs 2 2 osmotin F-v B - $& 5 fA4F chfd &5 55 blde

AP2-EREBP ~ MYB ~ NAM ~ bHLH ~ C2H2 2% % - 3% F -3 -24 2 R24 hr

o5 JLY v AR G ol e A A FE T GO A4 (B 10) > B F
FUAGZH 2B -HERN ik 32 24hr A 2 FHR W 3hr s
Fl+ B e

S AW NE Bad P AFIRR A RPN G2 24 ) FFE R RY S8R
Foa F B Een e > 3B # B A8 s F AJEREY (B 9) - glycosyl
hydrolase family ~ protein disulfide isomerase (LOC_0s01958194.1) -
aminotransferase (LOC_0s04952450.2) 2 % serine/threonine-protein kinase
receptor precursor (SAPK) (LOC_0s05¢42210.1) ~ dihydroorotate dehydrogenase

protein (DHODHLI) (LOC_0s02g50350.2) % 3% & i %_24 -] pF & Jciadp B 2L 7]
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IR R AR B R e £2¢ 0 Bil4e glycosyl hydrolase £ ROS i
73 -‘F*{ v E R ¥ SR AIRB ST R4 T a2 £ (Jeong et al., 2010) « SAPK4
FURSES LRI ER T L EF TR AR T T AR R
3 @3 dp 5]+ (Diedhiou etal., 2008) - OSDHODHL *£ 7 /2 3 2 #h» g X 2R T

§o% 012 b4 ABA e 0 i £ 4 3 OSDHODHI e 78 %%f i#_# DHODH1

AR S 0 4 g R E S 3B R g5 5 oAt 12 (Liuetal., 2009) ¢ I 3 A
ok Ep g eni Fla i 3t hmre BEE fmie th R 0 fwve BEEDR 4 12 chaperone

Ay 7] % > # 7 glycosyl hydrolase family~DnaJ (HSP40) (LOC_0s02g43930.2) -
DnaK (HSP70) (LOC_0s03916920.1) » ¥ “t &5 expansin (LOC_0s05939990.1) ~
chitinase family protein (LOC_0s04941680.1) 2 %2 conserved hypothetical protein
(LOC_0s06¢g02510.5) % - {4k %184~ Craterostigma plantagineum -k 4 i 3 2
T¢I H e BEchut B RN ¢ X TRk E R R > X T e fEY
shexpansin z £+ € H{ 4v 0 Flpt diip] expansin B2 oK A iR T chim e BEaE B 5
i (Jones and McQueen-Mason, 2004) o I >t fwm% ¢t F ¢ Wb R dF ) el Fl e 35
porphobilinogen deaminase (PBGD) (LOC_0s02907230.3) ~ cupin domain containing
protein (LOC_0s03g48780.1) 14 % defensin and defensin-like DEFL family- & & #
7. CaMSRB2 (pepper (Capsicum annuum) methionine sulfoxide reductase B2) #& 7
KRR g Rdaat R R 0 F VB B RS IEH g b e g RaE i A
¥ % 3 PBGD 3 CaMSRB2 % 5 > MSRB ¥ it i% 18 PBGD # 55 = 3 4 #:if
(retrograde signaling) (Kim et al., 2014) - Defensin * 7 44 2 #5534 %>+ § k25
A BB Gy B fed TR T T T A B A R R e

BT % ¥ 12 & 47 Defensin ek B84 o

2. H A FAAERE S F b
B RIS & p o1 DEGS #e 7 4o3f 9 22 A F1 3] et & B iap b () 4) -

J_DEGS e iy A 7 8 3% it AR A PR B ehmt 5 f2 & £ B> T GO A 47t
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for fAfnfet 324 2 R24hr 7 coDEGs # iy (B 11)° 7 ¢ fgc b 2 4 43
KA FRT R A SMAT A SRR F A 0 0 AW R AR R a4 R
74 BB AT A S E R TEF RARM 0 R A PFulad s 1 SMAT o
BRI &P AR T L RN SR R F F S B P gl ¥ @ 32 inositol 1, 3,
4-trisphosphate 5/6-kinase (LOC_0s02¢26720.1) ~ trehalose-6-phosphate synthase
(LOC_0s02g54820.1) r2 % sucrose synthase (LOC_0s03g22120.2) =1}t = 2 #ic
SMA47 2 IR64 fFF £ £ e~ o F i A F14 & &7 osmolytes e24 & = 24475 B (Chaves
and Oliveira, 2004) > % 2011 7%= 3 ¥ > T-DNA #& » OsITPK2 % % ke ik &2
VAPER Bt > T F inositol 1, 3, 4-trisphosphate 5/6-kinase % 3K
fetgch 2 AT comX A€ & (Duetal, 2011) - 52 % 24 | Efi“‘!r‘ O ANFER & A
Bk eip b - SMAT 22 TCNL & p 5 b ahs + s 4las % 2 ¢ SM47
el o B F LTS L iR 24 ) AR E A - R oo ISR R R L R A
BoKEP P B 0 3 A FIAJNAET G R PR R R F R -
=y @WERR AL IRCA S AT LR

GRSk A TR NIV R R CL U E Ay LR R

P U ARUSTAL PR R

=k

P Flpt 50 4217 IR64 E Atk Rk AR
0 SR —fg it B R AT i et TR ) % DESeq bt # & iE 1) DEGs B %
SM13 & SM47 &~ % & 5 149 2 237 B » A4 A F] 5 276 B 2 123 B § = B i
wEFlem A pfefian ant 3P J I i i BT L ST B Ap A 17
F R A kBT i A (Tajietal, 2004) » F)ptat % (T4 ¢ £ A

Flad A BIGERAFRTFRAAR BV o s o Hiabiade 1 e R
F ¢ e At £ (GO:0006950) « ek i (GO:0050896) ~ 2124 #- i 5 11
# (GO:0009628) ~ # # i Bt 11 (GO:0009607) % 7 ic ek ] » 12 heatmap #
BB ZE SMAT 2 IRGA 038375 chse 1 » 7 A LA 204 B Tl A 4TS UL ¢

MEEAR L fr- RAG RGP TELA L w | E FRE o
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=~ SMA47 & HY15 &3t % T & » AL DEGs ¥ &t & % i 1E A F)

doa Ay VA AR Y e SMAT & HY15 5 a5 i id el fi o Bt 4

%

Blick EaRe S F AL W A DEGS ¥t 5wt & 42k 42 3000 % 5 DEGS
#oo B i SMAT ~ HY15 b cha 88 ¥ % = i w3 iy A F]- & f 103
BAF > ffeR LR P MR RAES L - X SM4A7 ~ HY15 fhaF & > 1
3 SM47 &2 HY15 & = &g+ 2 e #1737 B> ¢ 4% gibberellin receptor GID1L2
(LOC_0s07g44850.1) ~ transferase family protein (LOC_0s08902030.1) ' 2 PB1
domain containing protein (LOC_0s05¢g35260.2) H 4w i3 35 5 expressed protein o
GA iz kB E ™ a3 iy g;ﬁﬂ 8 e BEehEL B @ D jcimie chat B > @ GA h
 Bf% % GA-2-oxidases (GA20x) ¢ w4 ¥ m "% M GA aiEid > 3 ¥ fE 2
DELLA 3-v Fe&r 4 £ > 2P GID1 v 5 ¢ P GA 2 f 5421 ¥ &2 DELLA
A2 2R (Griffiths et al., 2007; Magome et al., 2008) - # Brachypodium distachyon
2 7 ¢ ¢ > GIDIL2 h3 44 insoform < Flsc & gt R IRMF i 3 o
Bradilg56860 # Bradi4g32300 = § & # 47 ™ Bradi4g32310 z & =4y > o
FALR D F GA Hlwre P R B e pF > 7 A Ad 3t GIDIL2 s & @ik s
2t GA % 2 (Verelstet al., 2013) - d ** transferase family protein & - #&
acyltransferase 77 expressed protein » p % i7 2 e € B # 5c > 2 i~ 3w AL A
i acyltransferase £7 57 % i 8 «hf (%0 Gl4r & MYB96 3 fchwax # & i 5@ o
WAX ESTER SYNTHASE/ACYL-COA: DIACYLGLYCEROLACYLTRANSFERASE1
(WSD1) ¢ /2 5z % % ¢t 4 ABA ez # (Seoetal., 2009) - phox and bem1
(PB1) E_j=+ # CBS domain 3¢ F «rdomain> ¢ 7 g CBS domain 2 PB1 domain
chij-v FH- 5 CBSCBSPB > p =i {4~ ¥ 1 PB1 domain containing protein 17 2
w2 % > 2 i CBSCBSPB crF g 4aiR| H # i Vi § HH s 3o FlH s foiz
& (ATP~ADP & SAM) i®% » = mbe FF a2 4, @ vE (Kushwaha et al., 2009) -
%0 1t K6 SMAT 2 HY15 £ e A 2 R L F]T A G Rk SMAT

& HY15 p? &g £ 2 g LT A R end AR AP T 0 2 & SMAT7 & HY15 et »
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DI P A o SR ATFRF AT R A BB 9 F (LEA 1722 HSPs) -
osmolytes er14 & =3 f ~ #4xF]3 2 2 prEE S (transposable element, TE) - LEA
12E HSPs 3-v B A A AL A RAE R0 o € ok B BB ER
TRAH XY g FEwre R Bk (Boston etal., 1996; Gilmour et al.,
1998; Vierling, 1991) - DEGs ¢ g 5 4p b v F > ¢ &% = 3 LEA v F
(LOC_0s01g50910.2) 14 2 7 i3t i & 7 # 1 HVA22 (LOC_0s08g36440.1) -
HVA22 & % & ~ % (Hordeumvulgare L.) fa+ crofsds K IR & ¥ B 475 &
EfAy (FPdr AR ME AG) ¢ AR A 49 BlL5 #3R (Shen
etal., 2001)- % 2013 = 4|* E.coli £ kserwry @ >4 Ecoli i X BT 58 »
HVA22 sz & § B 4c 3 i Fended F ~ e B0R dmie 0045 Tt g 2
gt 1 (Lu, 2013) - 52 % 4p B & F1:® 5 ¢ 7 HSP20/alpha crystallin family
protein (LOC_0s03g16020.1 2 LOC_0s01g04380.1) 14 2 HSF-type DNA-binding
domain containing protein (LOC_0s03¢g53340.1) - HSPs i & x4 5y 5 & &+ 33
(molecular chaperones) » # 3y 30 B/ E = ~ EH ~ SR 1 % 2B o fat 2
o RHB TR LY TR w3 e b FE AT R R
BERFE KRBT MIENZ F B E R (Bostonetal., 1996;

Gilmour et al., 1998; Vierling, 1991; Wang et al., 2003) -

BRI F GR PP R L2 LI R g TRFR PR

I

gt m g F gl F R FIRARAFREREF RZEFE ¥ P2 2R

\

HHEA AR BN RO LT T s A LAz B £ B R EHE

FEHE g 92K § B ] AT T 0 b 4o R osmolytes shd & 2 U E e

R AE T AEUR . S AR E Y ipi“f‘ﬁiﬁfé'uil BE G T o R A
PR B R AR R e 50 (2

R LR > EpmE - ATt X 2B N RITE PR HRIE . R T

o e {7 it b B AR SRR o



SR F G S AR R R (5 R 2 hir k] AR A 7 i

kg (F 4 BFERERONHRLe a2 A0 dul § S ST 0 B
bk ESER T F A SBEBRY £o E T R0 A TS S | b
A oY A EFELIEEEBTA L PR B 2NV B0 5 R (AR B g

ERG LR S BMASHLE T AR RA L A T2 £ E

g I -

1 5% F i M s AT
W QLIS A R BT d ARS T HHE TRE B bic s T

IR OAR -t QLR FUS T T S st P Sl & T SR At S

E

BiEHEAPTTSSR o g 2 AHBRAIXGEFREER S EF a2

\‘a

Vig T
P- XA F) 5 DEGS T ARA ArE T R h e A AL AR KPR
APrd] o B HELE m{*f 7 SM47> H & = fEfn 4% glutamine synthetase (GS, EC
6.31.2) hirh 32 24 [ pFoi i B R ¢ x U TCNL et 2B 4rd L P &g
(B 12) o -k #241* ammonium £ 5 1 & ehg % ki » &7 % GS #-H 1+ 3
glutamine > F]st GS 2§ % k¥ OB 4EfEE o W A T L E Flwre F Y
OsGS1;1(GS1 £ #47) ek Ten®i » 3 Airp 6 IRGAE ¥ i MEP
B *t it & 548 Khitish > 48785 7 a0 £.d % IR64 enj-v B0 f2id FOpP-r R
(Singh and Ghosh, 2013) - Tabuchi % + » £ 3] OsGS1;1 & § #-¢ F'4f2{s £ & &
(remobilization) ¥ £ 41 * (reutilization) ¥ # < it (Tabuchi et al., 2007) -
é%GS&@%#@E@%&H&?%@’iE%%ﬁ#ﬁmﬁwﬂ@uazkg$
e E @ AP 0 A B4F OsGS2 11 2 352 OsGSL;1 ek I > 235 7 {5 B4 i 47 3

it 3z % i 8 ehatte (Singh and Ghosh, 2013) -

B TATE (er LA EATAf L A2 A RanE RGBT A 00 S8 eh

N

AFARBLDGc 54 2B - LAF A (B 19829 7 3

aldehyde dehydrogenase (ALDH) (EC 1.2.1.3) ~ 2,3-bisphosphoglycerate-independent
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phosphoglycerate mutase (iPGAM) (EC 5.4.2.12) 12 %2 dehydrogenase E1

component domain containing protein (EC 1.2.4.1) % -ALDH %A 4{e 4 * g & &
g > “f TR ATA TR L R S s A & T blde carnitine 2 £
= el AL > ALDH A %) 725 ¥ & 5 13 3 (Brocker etal., 2013) o % 2 £ %
#R OALDH Z 5 A4t - k457 3 20 B ALDH A %> 2?5 4505 - @
222 ABA# ¥ 28w ALDH 7 it & F Fars kel e i B i 5 st i (Gao
and Han, 2009) - iPGAMSs &% it * ¢ R4t % > § § i&i* 3-phosphoglycerate
F 2% 2- phosphoglycerate » 5 % % g 4 IPGAMS & ehfe f2 4 7 3 78 4187 7
B BHFIVLIFER ABAUZ MCOBIreniEdw 2§ » TP | ¥ 2 BT
B R E T T BT IPGAMS ¥t R iEme # i 2 B 4 ehd B 1 (Zhao et

al., 2011) -

TS XN R ELRIES EPEEGEEBEAmA > Ch R LT

* ¢ 9 Phosphoenolpyruvate carboxylase (PEPC) ~NADP-malic enzyme (NADP-ME)
11 % pyruvate phosphate dikinase (PPDK) Ak %5 COp 4p M crfis & » 7 i is o 2%
EhR b hory e Y E=NER IR i pH ESA LRER AR T A
Frenpt i Bt Rt e p et B e L ehl A A i d B R kR
#7% NADPH (Doubnerova and Ryslava, 2011) - j&_heatmap ¥ % 3 NADP-ME (EC
1.1.1.40) fw BASY 0LFlgE s R 2 > X2 24 FLE (B 13) ¢

A3 7] NADP-ME ¢ %% - L35 F Ebldeicy BT £ £ H 2 2 p2
i1k ¢ (Doubnerova and Ryslava, 2011; O'Leary et al., 2011) o ¥ “} 3% % ¢h
NADP-ME % F|§z % ch@ Bl chA F1 2 R E 2 Fov F3oR 4> 2B RO L5
¢ 53 NADP-ME 2 ‘f#il’;” @ E MR T R 2 4 COp 2 pyruvate
(Doubnerova Hyskova et al., 2014)  F? £ a7 i & % -k f= NADP-ME; s 58 $x
24 % B2 gk enat i+ (Liuetal, 2007) » 8278 &7 NADP-ME ¥ it & F 424

BB > B P BB G
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2. wf R AR B SRE T

A BRI e f Ay DEGS#E £ 7 50T P A& Lgg
532 24 pFF ko Aok wRDT FRGE (B 15) - H P SMAT ¢
trehalose-6-phosphate synthase (TPS) (0s02¢g0790500) #sz % ™ hx s 5 P &g >
K+ #1024 % > @ IR64 P& A F %1 o trehalose £ - 84 s 3 AT FE B
PR R AR 2T R EES g Y 7 24K (Pauletal,
2008) - TPS &_ig-i* glucose-6-phosphate ¥ UDP-glucose 1/ = trehalose-6-phospate
erfiz% > @ trehalose-6-phosphate phosphatase (TPP) R :#-trehalose-6-phospate 2
Eifs v &2 2 trehalose (Cabib and Leloir, 1958) - A {54~ ¢ & L L E.coli 2 | 2
2 TPS 2 TPP e 3 2 > a2 {22 g am < > Am gkt
A EFXIUH > L mF v 2 22eE35 (Goddijn et al., 1997; Romero et al.,
1997) - 7 i % 2013 £ crFm 3 ¢ > A f iV J‘/.}”ﬁé o~ TPS 2 TPP chg & A&
FlA G E 2 RIS VO Ap Rt IT A Ak ok g o Fpty B 2 ¥
4 £ ¥ (Lyuetal, 2013) - trehalose 4>k feii B Lt 2 £ & » B E £
3R E. coli ertrehalose 2 & = A ¥] (OtsA and OtsB) 2 #& 78 FI-K A8 7 $& if chaffd >
bk BT 2 MR TR RFS EF T o kY LG T RERT AERBS T
T 4= (Gargetal., 2002) o % 2003 & -k feAT 3 ¢ 3 R > TPSP 8-k fo e 4 J&
Bigam o EFAE 5 Y atrehalose 7 £ 2 #aa ¥ 0200 & o
Tt i ip B2 2R trehalose f ¥ dhde BI5GB H A o P RFRE I AR iR T
e BT ES 445 (Jangetal., 2003) -

L FERAZ -k (NEEL /ST AT F (Y AR (peroxisome) £ e FEEL ETRAR ¢
(glyoxysome) » & gl-K it & 47 j& Fq m Bk B« = g Sk4» (acetyl-CoA) & = end & 2
EognmfApRiBERE ST N FU LB FTRNEY L R FHERE
34 H > 2 ¢ isocitrate lyase (ICL) ¥* malate synthase (MS) & R 4£f% % (Dunn et
al., 2009; Eastmond et al., 2000) o ¢* i i< dw fAfFEH 3505 0k Y SR 5§

A 3BT 2 BAFAATURG 2 P ARAER - £ A5 % 32 24 )



PE e X T E A % 5§ £ K PFHE 8B+ glutamine synthetase (EC 6.3.1.2) ~malate
synthase (EC 2.3.3.9) 2 % isocitrate lyase (EC 4.1.3.1) » malate synthase # IR64 &
HY15 eh= fd 2 prdp 3o+ 2 > @ SMAT &2 TCN1 B gz & T %147 ~ w4 -k
T % > 3 3% isocitrate lyase % 3% Hendg R e AA - R O(B 16) o 5 A
* PEG § i kA 3 B % 3 © 4 JRisocitrate lyase € " F s 2 K 2 ) & ¢ R
## (Lunaetal, 1985) > iT ## 7 » #& 3| malate synthase % isocitrate lyase ¥ i #>
R A N TR & T h VRS A FI AR E B T A R T
20 - @ » % AMET i €@ glucose R fE 0 B R0 ¢ 7&&&5&@
(Maruyama et al., 2014) -

CEIREE - ;%% ROS e # » E4e 4~ 8 F L 5 af & b 4> 4 heatmap
Fop e BAER SRE %m,—}“f * & 3= acyl-CoA oxidase (ACOX) ~
hydroxymethylglutaryl-CoA lyase (HMGCL) ~ xanthine dehydrogenase (XDH) -
superoxide dismutases (SOD) 12 % fatty acyl-CoA reductase (FAR) > 2 # 12 SOD #&
G AT FehL B > SMAT (h SODP B/ 3 | PR 4a 4 M HF 14k (B
23) > 2 H B SRR T HEAE PRI F o d @ 4 §R MDA 2 Hy0,
R FIRY o SMAT & HYL5 i 4 % #5298 IR64 2 TCN1 Z ™ > & or
3 F il X ehy 1B R B ,%“f ROS & # 5 7 av = SMAT & 2wt 5 {2

¥ g2 oo AN goept 7 €44 > % Brassicanapus £ #

FF TP I AL AR E €W R A L RIEM % (Good and
Zaplachinski, 1994) - %3z 5 ™ ot = 3 £ 2 HY15 7 succinic semialdehyde
dehydrogenase (SSADH; EC 1.2.1.24) 12 2 SMA4T7 =raminotransferase (EC 2.6.1.44)

B 5 PR (B 17) B>t SSADH £ aminotransferase (EC 2.6.1.44) i 8 7™ 3

¢ it g I o ¥ ¢k alanine aminotransferase (EC 2.6.1.2) % heatmap * & 77 iz %
FJLT R BEAR > BER AP AFAEE T EMRT B4 (Good and

Zaplachinski, 1994) - 3 *t 7 g bEmips ® i j5 ¢ 12 SM4T7 % phosphoribosyl
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pyrophosphate synthetase (EC 2.7.6.1) #1it & 3k 2 P &2 0 jbi (B 21) o
phosphoribosylpyrophosphate (PRPP) ®_& & <@ B & 4 » 4% %] % ~ amino
acids histidine 2 2 ¢ "=pi 4 & = (Koslowsky et al., 2008; Stepansky and
Leustek, 2006; Zrenner et al., 2006) > F]p* PRPP - X 43t (L 3F iv 2 2 4 £ 3%
7 -+ & & & >phosphoribosyl pyrophosphate synthetase &_#- ribose 5-phosphate (R5P)
Y2 ATP F Jis & % PRPP it % » B BTt AF| e 7 97 5 > B2 B85
BEAR R R O
o7 0 fEd R o] 4~ 3 £ chosmolytes bi4edf vepk ~ pEAE L 2 polyamines

BiEH LA IRE 0 % =@ 3E polyamines (PAs) ~ spermidine (Spd) ~ spermine
(Spm) 2 % % Bg4~ putrescine (Put) f w4 £ &2 4o it € & enL % o H ¢ ornithine
decarboxylase (ODC; EC 4.1.1.17) &_polyamines # & = enif 4£f% % 2. - (Royand
Roy, 2013) » Flpt & B s f4p M o @ 87 7 45 1) ODC 2 arginine
decarboxylase (ADC) #+ »#1% 3 ¢ i ¢ g 54 ¥ (Floresetal., 1984) »
TR RIS F AR Y OBTEREP LR > Ra @ RT 4G E
252 18 % > 82 ODC sf B #efi 7 > 7 3 ADC 4 30 i A4 A fLenif 5
10 B 2 7] (Dasetal., 1995) o 3 > viefik 2 o viefik (% #3445 ¢ 2 ALDH (EC
12.13)% GS(EC6.3.1.2) e i £ i P AF (W 18)° & ¥ b PFA W27 § & R 35

TR OREfREMETATA (T ApM 0 & SMAT ¢ chA LB 391 o A 2013 £ 1 IR64 &

HRB A2 EFAT P E P EPEGic: rd2- X eng £ R B i

P

B0 A BAIEA X IRGA g BB A IONIIMA R LN EG R
(2 > 2013) - Busa % * «7%= 5 + 45 | % IR-29 (% 2 scp) - Pokkali (71 5-48) 1
% 4 f (PusaBasmati) :#:8 PEG ic% i3 » i< E R IR-29 12 4 ¢
RAFEE > A ‘Ff PAENESE2 3R BER &S F 0 14 Pokkali B d

glycine betaine 2 polyamines z £ 4% » :c L Ap¥-kA» z £ 2 2 EHn 24 R

M kg enat < 4 (Basu et al., 2010) -

41



-

T IRG4ZRBIALEA B Fhich T sl 39 T4 R

LEA 30 i & £i4s 3+ €% (10-30kDa) § afi+ & h < B4
R BEORMAINLERIEE BT i F RS e ABAPTE R
(Baker et al., 1988; Imai et al., 1996) - H 4 & = ~ A F|L L% +7;rs§ FlF 5 513
(FTHDIFREFE) e LR e B w57 o %9 LEAm L ek
#& (Moons et al., 1995; Moons et al., 1997) ~ - % (Ried and Walker-Simmons, 1993)
2 # % (Magbool etal., 2002) c:if Bt ad = 125 B o Flpt KA AL 0P Ag

0 LEAATINARE §EFAET SR A M4 0 0 As 0 RlEEA

fc% i (B 25) - FhO FARas e v e R YR
P OFEREE S HN IS T EEI RS FERY TR 23

P omt X gy 4p b (Chenetal, 2003)c % = ¥ R| f § fti 4 -k pF3 4o gt
SR AL KBS 0 % PMAL949 12 2 + & pGMPM2 T B3t in— ¥

(Hong-Bo et al., 2005) - & 4 #* 3 Western Blot hig % 7 105 ) LEA % = % = #

£

v FAER hic % RJRen® i P3P R4 (B 27) > 7 4 IR64 &2 H R % %
FdFEL227 < FIR LEAT i 2 £ a5 L4 8 ehd & F] % o 2300k
fochit & fr gt LEA v FenM i P 2 A m A g i B fESEanin e R
dehydrin & % = # LEA 39 TR P & 5508 % 4 5 130585 15 B 5k
mis > p 4 ABAehz £+ 530 arp 5k (Moonsetal., 1995) » F]pt » HVAL # 2
Flokfenat 5 fe P RAS > AEBRTALERAPRTE S A L B RRu iy
ii’é%‘fﬁ#ﬁ%i‘%i%iﬁﬁﬁi%%ﬁwﬁ4 v Tt da & MR gk 2 27 HVAL
v FenR A B (Ismailetal., 1997) o ¥ ¢ OSLEA3-1:8 & # R-RFER FHRE

7 AFenat R T 2 ¢ FRAE 4 (Xiaoetal., 2007) o

A~ SMAT REATFIV N 2 a3 GEER T
FOFEE AT EESAE R AATIR Y eI A T

1y SNP 15 £ 12 SnpEff £ & #3512 IR64 A% 2 % 4 chBL 2 % =% o B 6 & SMA47
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chip b REEE Y I 25 B SNP A 175 % (£ 6)0 # i o SM13 f 1+ g
Y PR B RA P SR T 2R T SMI3 4 ¢ S n g e ehflc A 4 BER %
SNP ¥ it i &t intron & promoter % 3>+ ¥ it 3tk - A RenigeAn e

F o e Nt R E ) ¢ MR P enFELe @ A 45 SMAT ¢ SNP efisg s IR
¥ % (untranslated region, UTR) R % e Fl& 3 5 » 45 %5 ¢ 7 AP2
(LOC_Os11g03540) % YABBY (LOC_0s12¢42610) 4 ¥ tfh 74| £ B i
K0 X239 SMAT AR okEp et A RS BF o RlA ERDiThG & R iR e
(adaxial-abaxial) &1+ d & A& Eah o 4 e yr )5 A4 2 ¢ YABBY
AFIRIE ] T Az hiwre £3F (abaxial cell fate) (Bowman, 2000) - ¥ *t:E £ %

7. YABBYL (YABL) srggza -k 4 ¢ L&A v %ﬁé “b4e GA w4 > YABL ¥ &t

\

2 GAresponse element (GARE) &% & # 5 & GA30x2 fx#+ # » F]pt YABL ¥ it
%2 GA 4 & =7 chw 4B (Daietal., 2007)- 3 *t % = early stop codon 7 SNP
AR Y PR ENE A T fea B AR R RFNI B AT
bHLH £ PHD finger & i3 #73 S 1 © 3 4o & AL F) (54 cnad < 12 bHLH B>t a4
R Bk Wengc 5 s Ap B 45 7] (Abeetal, 2003) > 7 BT &5 BAfESFE
LB 3 (RPKM 5 2)> Fpt ¥ i # £ w5 (b 424 7 3 2 PHD
finger protein f ¢ < 3| %@ % 3£ % (Kasugaetal, 1999) > 7 i v e RE & ffSF
A B AR TA < o b B 771 enE_expressed gene (LOC_0s11g03190) 7% IR64
Il e AF AR AT E B R ko Ra B A F] AT RS ¢ 7 RPKM /i 3t 0.01

2029 > FIpt ¥ i3 B o ¥ — i expressed gene (LOC_0s04g49940) : 17 4~
% ¢ Dnal/HSP40 cysteine-rich domain superfamily 3-v el Rz > 2 H 4
E ¢ & SMAT7 s -k 2 2 (log, foldchange = 0.66) > #% @ i@ 143 IR64 (log,
foldchange = 1.17) » 3-v HerE B 5 X )37 5 FlR 8 > H - el phema g &

R EREE AR Fpigt SNP & F A PR T R E- B awrin i

&

LR FAEHFELRE
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AR B

RERAOELEF GHBREY A ERLFEAE AL A TR EH
AR hRFER R G T FP L g;j}ug B R e A w Fl R e B AR - R
moa s A S B E R XD R AT R B PR SR S R A

M ARFERE LCE T R R AR B Y TR FE e
Rp ats RfeT AT AFEE BN 2 {0 o

DEGs et it § "E ¥ it % RUZpF# 11 2 A B4 5 2> 3 F AW fe it b 4o 9
hF JAp iz ie 24hr 2w AR B Qe B2 R 48] 0 S| S e e A 5 e B
14 IBE i o @ AT E B SMAT i i P AR > SMAT BhiF chat 5 4p W A T4
B F ZAL B BR Y &P RS R 0 A SMAT &2 HY15 £ e 23 #r e DEGs
otk BsF 5 BB AITAPRE A Flo ¥ H I 4 T A A0S INE S Y T
i) IR64 22 SMAT ¥ 51 SNP o SMAT ¢h2 £ 412 a5 4 30 Jq {53088 7+ 4

EREORRT R LE A NREPES T B RS L S

L A R AT DEGS 32V i 2 R i E AT RA v F

i
\\‘:‘
F~

€ aw g

£
VIR R SR AR EICE F Rend B mE e at kR feehT & o
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2 1@ 2 kY AFMEd T8 5R S ¥ (mapping) %%

Table 1. Mapping of RNA-Seq reads obtained from shoot samples of 5 indica rice
genotypes by different reference genomes and assembly tools

Library Raw MSU_ MSU_ 9311 OsNB1
Read CLC TopHat TopHat TopHat
SM13_0 hr 22,609,066 83.4% 81.7% 83.2% 81.7%
SM13_3 hr 21,978,228 82.4% 84.6% 83.9% 84.5%
SM13_24 hr 22,451,860 80.5% 82.2% 84.1% 82.2%
SM13_R 24 hr 23,979,662 81.7% 83.4% 84.6% 83.3%
SM47_0 hr 23,303,096 82.6% 80.7% 82.1% 80.6%
SM47_3 hr 22,579,886 78.5% 79.0% 80.5% 78.9%
SM47_24 hr 22,234,400 80.0% 81.9% 83.9% 81.8%
SM47_R 24 hr 22,686,756 81.2% 83.3% 84.4% 83.3%
IR64_0 hr 23,812,666 82.5% 81.2% 82.7% 81.2%
IR64_3 hr 23,019,410 77.8% 77.9% 79.5% 77.9%
IR64_24 hr 23,762,288 79.9% 81.9% 83.9% 81.9%
IR64_R 24 hr 22,917,540 79.6% 81.4% 82.8% 81.3%
HY15 0 hr 21,810,512 82.2% 81.2% 82.6% 81.1%
HY15 3 hr 21,984,248 79.8% 81.7% 83.5% 81.6%
HY15 24 hr 23,132,390 77.1% 78.7% 80.8% 78.6%
HY15 R 24 hr 23,724,834 80.5% 81.8% 83.2% 81.8%
TCNL1 Ohr 23,115,034 83.8% 85.6% 86.5% 85.5%
TCN1 3 hr 23,551,718 80.1% 81.5% 78.6% 81.4%
TCN1 24 hr 23,571,526 79.6% 81.2% 82.6% 81.1%
TCN1 R 24 hr 23,666,160 83.7% 84.6% 85.6% 84.6%
Average 22,994,564 80.9% 81.8% 82.9% 81.7%

EES

MSU_CLC: 2 p + 5 (MSUrice7.0) % %% A F48® & CLC bio ¥ 4 i¥; MSU_
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# 2~RNA-Seq 7 7| ¥ &1 p & 5 mapping 7.5 %
Table 2. Mapping of RNA-Seq reads obtained from shoot samples of 5 indica rice
genotypes into MSU rice 7.0 reference genome

Mapped

Raw reads Exon Intron
reads

SM13 22,609,066 18,866,596 97.52% 2.48%
SM47 21,978,228 18,157,834 97.56% 2.44%
0hr IR64 22,451,860 18,519,058 97.27% 2.73%
HH15 23,979,662 19,701,264 97.13% 2.87%
TCN1 23,303,096 19,533,752 97.22% 2.78%
SM13 22,579,886 18,602,680 96.82% 3.18%
SM47 22,234,400 17,458,326 97.67% 2.33%
3hr IR64 22,686,756 17,661,128 97.67% 2.33%
HH15 23,812,666 19,006,806 97.62% 2.38%
TCN1 23,019,410 18,444,366 97.64% 2.36%
SM13 23,762,288 19,131,528 97.33% 2.67%
SM47 22,917,540 18,337,756 96.93% 3.07%
24 hr IR64 21,810,512 17,433,804 96.92% 3.08%
HH15 21,984,248 16,942,854 97.07% 2.93%
TCN1 23,132,390 18,403,850 97.70% 2.30%
SM13 23,724,834 19,387,784 97.43% 2.57%
SM47 23,115,034 18,774,004 97.51% 2.49%
R 24 hr IR64 23,551,718 18,743,250 97.23% 2.77%
HH15 23,571,526 18,967,954 97.29% 2.71%
TCN1 23,666,160 19,816,698 97.20% 2.80%

e

gt i p Ag (MSUrice 7.0) 2 %% A T4 Y & CLCbio ¥ & (Fcha B g % o
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% 3+ SMA7 &2 HY15 4475 ~ & % 2 427 DEGs (Jic e 5 2 logy 5 & et & (355 ASL/E 4] )

Table 3. List of up-regulated DEGs in SM47 and HY'15 (the fold change is calculated as log, (drought/control))

Feature ID Annotation SMa7 IRO4 i) s

3hr 24hr R 24hr  3hr 24hr R 24hr  3hr 24hr R 24hr  3hr 24hr R 24hr
LOC_0s07g44850.1 gibberellin receptor GID1L2 10.7810.07 6.45 6.80 6.22 330 7.25 7.10 286 5.93 588 298
LOC_0s08g02030.1 transferase family protein 10.751152 6.70 522 560 157 654 754 322 536 6.19 292
LOC_0s11g10590.1 expressed protein 6.94 690 203 583 544 151 6.49 695 234 756 6.27 172
LOC_0s03g61160.5 expressed protein 8.99 10.24 6.40 471 6.39 344 9.68 10.70 0.00 496 598 2.56
LOC_0s03g61160.2 expressed protein 750 750 327 479 524 326 11.0112.11 0.00 4.93 537 4.47
LOC_0s05¢35260.2 PB1 domain containing protein 10.9310.10 0.00 264 183 -0.34 1044 998 7.88 225 203 -1.94
LOC_0s11g19850.1 expressed protein 12.27 9.62 0.00 6.05 231 098 8.66 482 0.00 396 2.67 -1.02
LOC_0s01g50910.2 late embryogenesis abundant protein, group 3 12.1912.73 0.00 11.8212.62 0.00 11.1211.55 0.00 4.25 443 -7.20
LOC_0s10g39110.1 expansin precursor 10.36 9.41 0.00 10.07 9.79 6.32 11.11 9.64 0.00 6.11 4.33 -4.68
LOC _0s12g32610.1 expressed protein 1154 12.07 6.05 705 731 230 7.30 7.63 -440 6.73 522 1.98
LOC_0s02g26470.1 expressed protein 10.9212.37 0.00 3.82 580 098 578 6.89 -522 553 6.87 0.98
LOC_0s07g34570.2 FAD dependent oxidoreductase domain containing protein 10.57 954 0.00 10.57 837 0.00 7.90 6.02 -3.74 10.30 9.00 0.00
LOC_0s02g57840.1 remorin C-terminal domain containing protein 125812.38 0.00 5.09 5.06 -7.00 6.14 5.12 -6.33 12.0411.91 0.00
LOC_0s06g44190.1 expressed protein 11.0211.35 0.00 3.77 434 -6.47 554 439 -6.38 10.7411.73 6.38
LOC_0s03g12890.5 aminotransferase domain containing protein 326 3.09 084 250 280 1.33 577 6.70 4.04 320 4.84 1.40
LOC_0s02g55890.1 inorganic H+ pyrophosphatase 238 230 089 311 262 157 430 497 406 4.06 4.14 2.08
LOC_0s01g56070.1 RING finger protein 281 3.01 131 350 3.89 213 6.85 652 586 166 162 0.46
LOC_0s05¢06970.1 peroxidase precursor 242 222 014 388 399 310 534 561 491 172 132 156
LOC_0s03916020.1 HSP20/alpha crystallin family protein 486 3.11 008 540 289 047 9.81 7.27 351 425 3.01 0.06
LOC _0s04g52750.1 expressed protein 286 118 -1.27 432 209 -0.02 901 792 7.02 435 3.09 -0.02
LOC_0s02g49720.4 aldehyde dehydrogenase 159 166 036 236 206 160 6.89 775 6.13 248 291 -1.95
LOC_0s09¢g33930.3 farnesyltransferase/geranylgeranyltransferase type-1 subunitalpha 206 251 140 060 090 043 7.19 7.71 6.70 0.43 055 0.26
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LOC _0s01g37200.1 retrotransposon protein, putative, Ty3-gypsy subclass
LOC _0s03g07780.1 transposon protein, putative, unclassified

LOC _0s10g19919.2 retrotransposon protein, putative, Ty3-gypsy subclass
LOC_0s03g53340.1 HSF-type DNA-binding domain containing protein
LOC _0s05g41490.1 circadian clock coupling factor ZGT

LOC _0s06g04480.1 expressed protein

LOC_0s01g06560.2 transcription factor HBP-1b

LOC _0s07g36544.2 serine/threonine-protein kinase receptor precursor
LOC _0s04g57340.1 AP2 domain containing protein

LOC _0s02g07760.2 aldehyde dehydrogenase

LOC 0s11g05170.1 expressed protein

LOC _0s04g43200.2 caleosin related protein

LOC 0s06g32610.1 expressed protein

LOC _0s01g24710.4 jacalin-like lectin domain containing protein

LOC _0s10g31330.4 retrotransposon protein, putative, unclassified

LOC _0s09g02180.1 expressed protein

LOC _0s03g57900.1 zinc finger A20 and AN1 domain-containing stress-associated protein

LOC _0s07g49270.1 AMP deaminase

LOC_0s01g22352.1 peroxidase precursor

LOC_0s06g43640.2 Ser/Thr protein phosphatase family protein
LOC_0s03g16670.1 haloacid dehalogenase-like hydrolase family protein
LOC_0s01g03914.2 cation efflux family protein

LOC_0s03g51390.1 expressed protein

LOC_0s11g06130.4 PHD-finger family protein

LOC_0s08g36440.1 HVA22

LOC_0s039g06580.2 MTN26L2 - MtN26 family protein precursor
LOC_0s01g46580.1 actin-related protein 2/3 complex subunit 2
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LOC _0s09g19650.1 3-ketoacyl-CoA synthase precursor

LOC 0s10g14011.1 expressed protein

LOC _0s07g26630.1 aquaporin protein

LOC _0s03g49350.1 lipozygenase protein

LOC _0s02g37610.1 expressed protein

LOC _0s04g52180.1 expressed protein

LOC _0s01g04950.1 peptide transporter PTR2
LOC_0s02g57840.2 remorin C-terminal domain containing protein

LOC_0s06g37140.2 retrotransposon protein, putative, Ty3-gypsy subclass

LOC_0s05¢38290.2 protein phosphatase 2C

LOC _0s07g48830.1 glycosyl transferase 8 domain containing protein
LOC_0s06g09560.1 heat shock protein Dnal

LOC _0s02g55134.1 cytochrome ¢ oxidase copper chaperone

LOC 0s12913910.1 expressed protein

LOC_0s03g22120.2 sucrose synthase

LOC 0s01g16170.5 PQ loop repeat domain containing protein

LOC _0s08g44390.2 EF hand family protein

LOC_0s05¢10620.2 no apical meristem protein

LOC_0s06g41360.1 phosphoribosyl transferase
LOC_0s03g06850.1 B3 DNA binding domain containing protein
LOC_0s11g13620.1 expressed protein

LOC_0s02g28170.1 transferase family protein

LOC_0s05¢02520.1 cupin domain containing protein
LOC_0s12g20390.5 expressed protein

LOC_0s04901810.1 terpene synthase

LOC_0s03g52370.1 sulfate transporter

LOC_0s05904630.4 retrotransposon protein, putative, SINE subclass
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LOC _0s11g05410.2 Ser/Thr protein phosphatase family protein
LOC _0s07g43604.1 expressed protein

LOC_0s04¢52450.2 aminotransferase

LOC_0s01g06640.3 basic helix-loop-helix

LOC _0s07g40220.1 expressed protein

LOC _0s02g09310.1 cytochrome P450

LOC _0s02g48340.1 RNA recognition motif containing protein
LOC_0s12g24020.1 rhodanese-like domain containing protein
LOC _0s03g35750.1 expressed protein

LOC_0s02g54820.1 trehalose-6-phosphate synthase
LOC_0s06g46900.2 phosphosulfolactate synthase-related protein
LOC _0s01g04380.1 HSP20/alpha crystallin family protein

LOC _0s02g09600.1 expressed protein

LOC _0s09g35830.2 RNA recognition motif containing protein
LOC 0s12902660.2 expressed protein

LOC _0s03g20500.1 OsFBX82 - F-box domain containing protein
LOC _0s06g50900.1 expressed protein

LOC_0s12g44110.1 ligA

LOC_0s039g38540.1 folic acid binding protein
LOC_0s11g39220.1 acyl-coenzyme A oxidase
LOC_0s11g04104.3 major facilitator superfamily antiporter
LOC_0s09g37330.1 OsSAUR39 - Auxin-responsive SAUR gene family member
LOC_0s01g07890.1 expressed protein

LOC_0s03g16430.1 RNA polymerase sigma factor
LOC_0s02g20040.1 loricrin

LOC_0s07g04190.1 receptor protein kinase CLAVATAL precursor
LOC_0s03g61910.2 retrotransposon protein, putative, unclassified
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Table 4. List of significant enriched pathways which up- and down-regulated DEGs involved in

Input  Background P Q
Pathway Term Pathway 1D
number number -Value -Value

Nitrogen metabolism dosa00910 18 35 0.00 0.08
Carbon fixation in photosynthetic

: dosa00710 26 73 0.00 0.23
organisms
Glyoxylate and dicarboxylate metabolism dosa00630 21 56 0.01 0.23
Carbon metabolism dosa01200 54 202 0.01 0.31
Alanine, aspartate and glutamate

. dosa00250 16 44 0.02 0.31

metabolism
alpha-Linolenic acid metabolism dosa00592 13 33 0.02 0.31
Pentose phosphate pathway dosa00030 16 46 0.03 0.31
Photosynthesis dosa00195 17 50 0.03 0.31
Linoleic acid metabolism dosa00591 7 14 0.04 0.31
Cutin, suberine and wax biosynthesis dosa00073 7 14 0.04 0.31
Biosynthesis of secondary metabolites dosa01110 160 738 0.04 0.31
Butanoate metabolism dosa00650 10 25 0.04 0.31
Biosynthesis of unsaturated fatty acids dosa01040 13 37 0.04 0.31
Fatty acid degradation dosa00071 14 41 0.04 0.31
Glycolysis / Gluconeogenesis dosa00010 31 115 0.04 0.31

¥

FE

Input number: DEGs # %27 gt X g & e il Fl#cE
Background number: FHLE ¢ pt R 8hA T T AL FlEcE
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Table 5. The distribution of point mutations exsisted in SM47
Region SNP

5 UTR

3'UTR

Intron

Non synonymous coding
Synonymous coding
Early stop gained

oo © &~ b BB
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Table 6. List of cadidate genes that SNP identified in SM47

change IR64 SM13 SMA47 HY15 TCN1
Trancript_ID SNP Type Annotation )

inaa. 3hr 24hr R24hr 3hr 24hr R24hr 3hr 24hr R24hr 3hr 24hr R24hr 3hr 24hr R24hr
LOC_0s03g53550 G—A 3'UTR retrotransposon protein 0.00 0.00 0.00-7.79 -7.79 -7.79 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LOC_0s08g02050 G—A 3'UTR protein kinase family protein -0.12 -0.22 -0.06 0.99 0.89 0.93 0.01-0.05 0.03 0.29 0.26 0.11 0.09 0.18 -0.08
LOC_0s069g25950 G—T 3'UTR expressed protein -0.74-0.40 0.35 6.99 6.72 9.32-0.12-0.47 0.71-0.03-0.63 1.24 0.53-0.33 1..11
LOC_0s11g03540 G—C 3'UTR AP2 domain containing protein -1.93-1.18 -0.90 5.77 6.31 8.13-1.40-0.67 0.58-3.12-0.63 -0.31-0.39-1.59 -0.11
LOC_0s12g42610 A—G 5' UTR YABBY domain containing protein -0.25-0.14 0.14 244 241 272-0.18-0.12 0.42-0.49-0.45 -0.05-0.49 0.03 0.39
LOC_0s109g12480 C—T Stop gained transposon protein, En/Spm Q/* -0.64-0.38 -0.73 7.35 6.21 7.51-1.08 0.61 0.19-0.05 0.12 0.40 0.33 0.60 0.87
LOC_0s11g03190 C—A Non synonymous coding expressed protein GV -479-479 0.98 0.00 5.74 4.72 587 4.80 0.00 5.75 491 0.00 5.15 0.00 0.00
LOC_0s07g09590 C—T Non synonymous coding bHLH transcription factor AT  -093 0.09 098 7.62 6.76 8.74-0.94-0.34 -0.05-0.12-0.95 0.47-0.78-1.40 -0.24
LOC_0s06¢g10690 C—T Non synonymous coding PHD-finger domain containing protein VIM -0.04-0.09 -0.26 1.26 0.94 0.79 0.03 0.03 -0.11-0.26 -0.28 -0.28 -0.30 -0.03 -0.17
LOC_0s10g24004 C—T Non synonymous coding expressed protein R/Q 2.07 226 257 7.78 9.40 9.21 0.83 0.64 2.10 0.00 4.88 4.72 0.00 0.00 0.00

LOC_0s04g41640 G—A Non synonymous coding HEV2 - Hevein family protein precursor A/ 2.06 3.84 3.48 9.0411.35 9.85 1.23 3.29 1.81 2.29 3.49 153 2.45 3.87 3.52
LOC_0s04g43140 A—C Non synonymous coding DEAD-box ATP-dependent RNA helicase L/W  -0.73-0.27 0.21 0.11 0.27 0.41-0.71-0.24 0.14-0.71-0.54 -0.06 -0.97 -1.08 -0.17
LOC_0s05¢g49610 G—A Non synonymous coding ubiquitin carboxyl-terminal hydrolase V/IM -0.17-055 0.36 873 8.82 8.93-0.08-0.18 0.59-0.22-0.54 0.30-0.24-0.48 0.24

LOC_0s06g48500 C—T Non synonymous coding expressed protein AV 108 156 154 277 3.40 3.26 1.06 1.27 050 1.39 1.65 1.82 1.32 1.32 1.20
LOC_0s04949940 G—A Non synonymous coding expressed protein SIN 0.04 0.27 1.17-0.18 0.12 -0.19 0.26 0.14 0.66 0.15-0.38 0.21 0.18-0.27 0.39
Fx

B 50 logy & KAt E (f0 % T/ e
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% 7~ TCNL iz % = b4 f #4260 DEGs (#cid 3 14 logy & A e i (ig 4 ASL/4y 4] 2))
Table 7. List of TCN1 specific down-regulated DEGs (the fold change is calculated as log, (drought/control))

Feature ID Annotation

3hr 24hr R 24hr Feature ID

Annotation

3hr 24hr R 24hr

LOC_0s04935520.1 OsAPx7

LOC_0s03g48940.3 chloride channel protein CLC-d
LOC_0s08g06110.4 MYB family transcription factor
LOC_0s03g16070.2 expressed protein
LOC_0s12g20390.1 expressed protein
LOC_0s09g06950.1 expressed protein
LOC_0s01g33615.1 expressed protein
LOC_0s02911705.1 expressed protein

LOC_0s08g15149.1 oxidoreductase, 20G-Fe oxygenase family protein

LOC_0s04940630.1 BTBZ4

LOC_0s08g25050.1 PIF-like orfl

LOC_0s02937800.1 lecithin:cholesterol acyltransferase
LOC_0s11g11940.1 MLA10

LOC_0s01g02560.1 Ser/Thr receptor-like kinase
LOC_0s03¢g61910.2 retrotransposon protein
LOC_0s11g11950.1 disease resistance protein RPM1
LOC_0s11g35274.1 protein kinase domain containing protein
LOC_0s09911160.1 expressed protein
LOC_0s10g24094.2 expressed protein
LOC_0s11g14150.1 transposon protein, Pong sub-class
LOC_0s11g39660.1 transposon protein, Ac/Ds sub-class
LOC_0s06919200.1 expressed protein
LOC_0s08g09610.1 expressed protein
LOC_0s04940180.1 expressed protein
LOC_0s03g03120.1 transposon protein, Mutator sub-class

-12.05 -2.51
-10.85 -0.66

-10.80 -0.23
-10.10 -2.55
-9.54 -9.54
-9.38 -9.38
-8.98 -8.98
-8.71 -2.50
-8.64 -4.08
-8.62 -2.64
-8.62 -8.62
-8.55 -8.55
-8.35 -8.35
-8.31 -8.31
-8.27 -8.27
-8.14 -8.14
-8.08 -4.91
-7.79 -7.79
S1.7 -1.77
-7.76 -7.76
-7.65 -7.65
-7.64 -7.64
-7.56 -3.37
-7.41 -7.41
-7.41 -7.41

-2.23 LOC_0s05g11064.1 expressed protein
-0.68 LOC_0s099g32510.2 BHLH transcription factor

10.80 LOC_0s07g44670.1 retrotransposon protein

-0.23 LOC_0s08g06800.1 retrotransposon protein

-9.54 LOC_0s129g01290.1 ulpl protease family protein

-9.38 LOC_0s119g14160.1 transposon protein, Pong sub-class
-8.98 LOC_0s039g59774.1 expressed protein

0.79 LOC_0s11g07980.1 ion channel nompc

-1.87 LOC_0s03g47050.1 expressed protein

-0.48 LOC_0s08g30370.1 expressed protein

-8.62 LOC_0s029g20890.1 transposon protein, Mutator sub-class
-8.55 LOC_0s099g17920.1 transposon protein, CACTA, En/Spm sub-class
-8.35 LOC_0s12935465.1 expressed protein

-8.31 LOC_0s01g09370.1 ankyrin repeat domain-containing protein 28

1.44 LOC_0s109g19970.1 expressed protein

-8.14 LOC_0s08g23200.1 transposon protein, Ac/Ds sub-class
-8.08 LOC_0s10g05810.1 transposon protein, Mutator sub-class
-7.79 LOC_0s08g06210.1 expressed protein

-7.77 LOC_0s12936750.1 expressed protein

-7.76 LOC_0s12g16290.1 isoflavone reductase

-7.65 LOC_0s10g02880.1 O-methyltransferase

-7.64 LOC_0s11g10570.1 NBS-LRR disease resistance protein
-7.56 LOC_0s08g28010.1 expressed protein

-7.41 -7.41
-7.40 -1.22

-7.28 -4.37
-1.27 -7.27
-1.24 -7.24
-7.20 -7.20
-7.18 -7.18
-7.05 -7.05
-7.04 -7.04
-6.99 -6.99
-6.90 -6.90
-6.89 -6.89
-6.79 -6.79
-6.62 -6.62
-6.24 -6.24
-6.12 -6.12
-6.04 -6.04
-6.01 -6.01
-5.87 -0.50
-5.41 -541
-5.37 -5.37
-4.51 -4.87
-4.31 -7.96

-7.41 LOC_0s04924220.1 OsWAK32 - OsWAK receptor-like protein kinase -4.09 -3.57

-7.41 LOC_0s099g12050.1 retrotransposon protein

-2.37 -6.89

-7.41

0.60
-1.31
-1.27
-1.24
-7.20
-7.18
-7.05
-7.04
-6.99
-6.90
-6.89
-6.79
-6.62
-6.24
-6.12
-6.04
-6.01
-2.61
-2.61
-5.37
-7.99
-7.96
-9.79
-6.89

54



# 8-~ kfEse wrmtk 4p b 2K F]
Table 8. List of drought related genes that have known in rice

. IR64 SM47 HY15 TCN1
Feature ID Annotation
3hr  24hr R24hr  3hr  24hr R 24hr  3hr  24hr R 24hr  3hr  24hr R 24hr
LOC_0s02g50350.1 . . 2.54 2.07 -0.10 2.87 1.99 -0.45 2.88 2.47 0.28 2.56 2.34 0.43
dihydroorotate dehydrogenase protein
LOC_0s04¢57950.1 -0.50 -0.78 -0.27  -0.87  -1.03 -0.31  -0.74  -1.00 -0.56  -0.76 -1.66 -0.04
LOC_0s02¢51770.2 0.46 -9.42 056 -959  -9.59 0.04 1.65 0.28 -0.74  -1.08 -0.06 -1.01
LOC_0s02¢51770.5 TLD family protein -0.03 0.83 -0.35 2.68 2.43 269 -267 -0.52 -0.01 0.10 0.26 0.17
LOC_0s12g06100.1 0.12 0.33 -0.07 0.56 0.33 0.00 -0.09 0.11 -0.18  -0.10 0.12 -0.20
LOC_0s07g46990.2 . o 2.82 3.76 -0.43 3.96 4.89 2.83 2.79 4.18 0.97 1.35 3.13 -8.77
- copper/zinc superoxide dismutase
LOC_0s03911960.3 1.89 2.24 053 -140 -0.67 -0.46 036 -1.34 -0.62 0.47 0.86 0.98
LOC_0s04g48410.1 copper chaperone for superoxide dismutase 0.64 0.67 -0.17 0.81 0.85 0.20 1.23 1.06 0.08 0.96 0.86 0.07
LOC_0s05¢25850.1 superoxide dismutase, mitochondrial precursor 1.31 1.01 0.49 0.98 0.66 -0.62 1.91 2.07 0.21 1.42 1.02 0.09
LOC_0s06¢05110.2 superoxide dismutase, chloroplast 1.09 1.67 1.34 0.90 1.96 0.74 1.13 2.07 1.15 0.08 0.73 0.05
LOC_0s02g41860.2 -0.11 -0.79 029 -0.04 -0.90 073 -0.16 -1.04 0.07 -0.25 -0.58 -0.12
LOC_0s02g44630.1 -1256 -1256  -12.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 13.17 0.00
LOC_0s02944630.2 0.13 0.24 0.62 0.52 0.71 0.97 0.23 0.23 0.76 0.44 0.68 0.37
LOC_0s02g44630.3 . . 2.42 1.48 1.79 1.02 0.08 0.96 1.54 0.43 0.96 0.41 -0.46 0.41
aquaporin protein
LOC_0s02¢51110.1 0.78 -0.09 0.57 0.41 0.23 0.92 057  -0.46 0.53 0.16 -0.04 0.47
LOC_0s05g14240.1 -0.26 -0.51 0.52 0.78 111 1.10 1.21 1.24 0.85 0.63 0.51 0.58
LOC_0s07g26630.1 1.93 1.71 1.34 2.49 2.45 1.95 1.75 191 1.66 0.78 1.54 0.59
LOC_0s10g35050.1 5.09 7.08 1.79 1070 1213 410 1071 13.22 7.25 9.44 1101 6.34
LOC_0s11g03300.1 NAC domain transcription factor 4.72 5.19 1.85 5.28 5.18 1.87 4.12 4.50 1.84 4.00 4.65 1.71
LOC_0s05¢34830.3 3.74 2.67 0.57 4.05 3.85 -1.37 4.87 3.56 1.34 4.52 3.97 1.56
LOC_0s12g03040.1 . i . 2.89 3.28 0.40 3.69 3.74 0.57 3.29 3.41 1.32 3.13 3.52 0.91
No apical meristem protein
LOC_0s05910620.2 291 2.22 1.18 5.51 5.52 3.83 3.82 4.17 251 2.03 0.66 0.45
LOC_0s02936880.1 1.36 1.69 0.22 3.04 2.89 1.72 1.96 2.19 0.42 2.73 2.56 1.42
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Figure 1. Breeding of drought-resistant rice varieties through genomics strategies
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Figure 2. Phenotypes of 5 indica rice genotypes during drought treatments
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Figure 3. Quantification of transcripts of drought related genes by real-time RT-PCR
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Figure 4. Number of up- and down-regulated DEGs in SM13, SM47, IR64 and TCN1
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Figure 5. Hierarchical cluster analysis of DEGs under drought treatments in 5 indica
rice
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Figure 6. Hierarchical cluster analysis of up-regulated DEGs in SM47 and HY15
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Figure 7. Venn diagrams of DEGs during drought treatments in SM47, IR64, HY 15
and TCN1
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LOC_0s03g21260.1 23-bisphosphoglycerate-independent phosphoglycerate mutase
LOC_0s02g37000.1 mitochondrial prohibitin complex protein 1
LOC_Os04g55170.1 LTPL126 - Protease inhibitor/seed storage/LTP family protein precursor
LOC_0s07g48680.1 zinc finger C3HC4 type domain containing protein
LOC_0s01g08130.1 phototropic-responsive NPH3 family protein
LOC_0s03g20780.1 ethylene-insensitive 3
LOC_0s07g08160.1 early light-induced protein chloroplast precursor
LOC_0s05g12410.1 BURP domain containing protein
LOC_0s03g19720.1 EF hand family protein
LOC_0s02g13800.1 HSF-type DNA-binding domain containing protein
LOC_0s06g44420.1 GDU1
LOC_0s05g03030.1 50S ribosomal protein L10 chloroplast precursor
LOC_0s06g44010.1 WRKY28
LOC_0s01g39010.1 50S ribosomal protein
LOC_0s01g52730.1 DUF584 domain containing protein
LOC_0s02g09510.1 limonoid UDP-glucosyltransferase
LOC_0s06g48780.1 60S acidic ribosomal protein
LOC_0s02g40514.1 h/ACA ribonucleoprotein complex subunit 3
LOC_0Os01g14410.1 early light-induced protein chloroplast precursor
LOC_0s08g29660.1 WRKY69
LOC_0s02g31100.1 LITAF-domain-containing protein
LOC_0s02g01730.1 serine/threonine-protein kinase Atlgl8390 precursor
LOC_0s09g29690.1 beta-expansin precursor
LOC_0s11¢29870.1 WRKY72
LOC_0s01g04370.1 hsp20/alpha crystallin family protein
LOC_0s04g58810.1 CAF1 family ribonuclease containing protein
LOC_0Os06g51060.1 CHITS - Chitinase family protein precursor
LOC_0s12g43450.1 thaumatin family domain containing protein

B 8- IR64 &7th X% 4l ¥IRT onfldrii £ 2

Figure 8. Differences between IR64 and its mutants under normal growth (control)
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I CARBON FIXATION IN PHOTOSYNTHETIC ORGANISMS
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Figure 17. Gene expression analysis of DEGs associated with alanine, aspartate and

glutamate metabolism
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Figure 18. Gene expression analysis of DEGs associated with arginine and proline

metabolism
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Figure 19. Gene expression analysis of DEGs associated with glycolysis and gluconeogenesis
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Figure 20. Gene expression analysis of DEGs associated with plant hormone signal transduction
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Figure 22. Gene expression analysis of DEGs associated with glutathione metabolism
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Sit4 1~ A<k #%  (Kimura Solution)

Stock A mlL
500X (NEL):SO, M1g
KNO; 925¢g
MgSO, 330¢g
KH,PO: 124¢
Stock B mlL
500X Fe-citrate 7150¢g
CH[NG_:}E 300 g
1IN HC1 500 ml
Stock C mlL
10000X H;BO; 155¢
SOy - HaO 034 ¢
Zn50y - THO 058 ¢
CuSO,- SH,O 013g
H;MoO; 008 g
Culture solution mlL
Stock A 1.0ml
Stock B 1.0ml
Stock C 0.1ml
pH: 47-48
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i 2~ Q-PCR #71 * 251+ & 7|

gene id sense primer antisense

OsDREB2 LOC_0s01g071 5’-TGCTGCGGGTCAA 5’-CAGTAAGACGAAAACC

A 20 TAGGAAT-3’ GTAAATGACT-3’

OSNACS LOC_0s01g661 5’-GAGCCGCCGGAG 5’-CTCATCGCCGCCTTTCT
20 TTGACT-3’ C-3

Formin LOC_0s06g111 5’-TGGATAAATTCCC 5-GTGTATCCAGTGTGAA

protein 70 TTTCCTGAAAC-3’ AGAGCAAAA-3’
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4% 3 ~ Tris-glycine SDS-PAGE 2. » %%} %87 /% (separating buffer) fe~

Volume (ml) of Components Required to Cast Gels of Indicated Volumes and Concentrations

Components Gel Volume => S ml 10 ml 15 ml 20 ml 25 ml 30 ml 40 ml 50 ml
6% gel
H:0 2.6 5.3 7.9 10.6 13.2 15.9 21.2 26.5
30% acrylamide mix 1.0 2.0 3.0 4.0 5.0 6.0 2.0 10.0
Tris-Cl(1.5 M, pH 8.8) 1.3 25 38 5.0 6.3 7.5 10.0 12.5
SDS (10%) 0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5
10% ammonium persulfate 0.05 0.1 0.15 0.2 0.25 0.3 04 0.5
TEMED 0.004 0.008 0.012 0.016 0.02 0.024 0.032 0.04
8% gel
H.0 23 4.6 6.9 9.3 115 13.9 18.5 2332
30% acrylamide mix 1.3 27 4.0 53 6.7 8.0 10.7 133
Tris-Cl1 (1.5 M, pH 8.8) 1.3 25 ER 5.0 6.3 75 10.0 12.5
SDS (10%) 0.05 0.1 0.15 02 0.25 03 0.4 0.s
10% ammonium persulfate 0.05 0.1 0.15 02 0.25 03 0.4 0.s
TEMED 0.003 0.006 0.009 0.012 0.015 0.018 0.024 0.03
10% gel
H:0 1.9 4.0 59 7.9 9.9 1.9 15.9 19.8
30% acrylamide mix 1.7 33 5.0 6.7 8.3 10.0 133 16.7
Tris-C1 (1.5 M, pH 8.8) 1.3 25 38 5.0 6.3 7.5 10.0 12.5
SDS (10%) 0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5
10% ammonium persulfate 0.05 0.1 0.15 0.2 0.25 0.3 04 0.5
TEMED 0.002 0.004 0.006 0.008 0.01 0.012 0.016 0.02
12% gel
H:0 1.6 33 49 6.6 82 99 13.2 16.5
30% acrylamide mix 2.0 4.0 6.0 8.0 10,0 12.0 16.0 20.0
Tris-Cl1 (1.5 M, pH 8.8) 1.3 25 ER 5.0 6.3 75 10.0 12.5
SDS (10%) 0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5
10% ammonium persulfate 0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.s
TEMED 0.002 0.004 0.006 0.008 0.01 0.012 0.016 0.02
15% gel
H:0 1.1 23 34 4.6 57 6.9 9.2 115
30% acrylamide mix 25 5.0 7.5 10.0 12.5 15.0 20.0 250
Tris-Cl (1.5 M, pH 8.8) 1.3 25 kR 5.0 6.3 7.5 10.0 12.5
SDS (10%) 0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5
10% ammonium persulfate 0.05 0.1 0.15 0.2 0.25 0.3 04 0.5
TEMED 0.002 0.004 0.006 0.008 0.01 0.012 0016 0.02
%4 4 ~ Tris-glycine SDS-PAGE z_ & £ "} 4874 7% (stacking buffer) fz =
Volume (ml) of Components Required to Cast Gels of Indicated Volumes
Components Gel Volume= 1 ml 2 ml 3 ml 4 ml Sml 6 ml 8 ml 10 ml
H:0 0.68 1.4 2.1 27 34 4.1 55 6.8
30% acrylamide mix 0.17 0.33 0.5 0.67 0.83 1.0 1.3 1.7
Tris=-Cl (1.0 M, pH 6.8) 0.13 0.25 0.38 0.5 0.63 0.75 1.0 1.25
SDS (10%) 0.01 0.02 0.03 0.04 0.05 0.06 0.08 0.1
ammonium persulfate (10%) 0.01 0.02 0.03 0.04 0.05 0.06 0.08 0.1
TEMED 0.001 0.002 0.003 0.004 0.005 0.006 0.008 0.01
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SM13 SM13

3 hr Up regulated = 3 hr Down regulated

SM13 SM13

24 hr Up regulated 24 hr Down regulated

SM13 SM13

R24 hr Up regulated R24 hr Down regulated

“+4% 5~ 12 venn diagram 4 #7 SM13 ~ SM47 ~ IR64 ~ HY15 £2 TCN1 # iz 5 a2
T 71 DEGs
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