Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55306
Title: 引入辯論圖結構之說服力預測
Incorporating Argument Structure for Persuasiveness Prediction
Authors: Kuo-Yu Huang
黃國祐
Advisor: 陳信希(HSIN-HSI CHEN)
Keyword: 自然語言處理,辯論探勘,說服力預測,
Natural Language Processing,Argument Mining,Persuasiveness Prediction,
Publication Year : 2020
Degree: 碩士
Abstract: 辯論圖架構闡明了主張與前提之間的關係。 但是,以前在其他辯論探勘中的研究並未在其模型中考慮這種關係。本論文提出了一種稱為異構辯論注意力網絡的神經網路。此模型透過使用圖神經網絡模型來學習辯論圖結構,已達成對一場辯論中論點與論點之間的關係更好的理解。藉由同時訓練說服力預測和立場預測並搭配兩階段抽樣訓練資料的方式,我們的模型在ChangeMyView(CMV)數據集中的說服力任務上實現了最好的結果。實驗結果表明,我們的圖架構使我們的模型能夠有效地匯集跨多個段落的信息、我們的立場分析任務使得我們的模型可以分辨不同回復的立場和我們的兩階段抽樣可以幫助我們的模型學到更好的特徵。
幫助我們的模型在說服力預測上做得更好。
Argument structure elaborates the relationship among claims and premises. However, previous works in argument mining do not consider this relationship in their architectures. To take argument structure information into account, this thesis proposes an approach to persuasiveness prediction with a novel graph-based neural network model, called heterogeneous argument attention network HARGAN.By jointly training on the persuasiveness and stance of the replies, our model achieves the state-of-the-art performance on the ChangeMyView (CMV) dataset for the persuasiveness prediction task. Experimental results show that the graph setting enables our model to aggregate information cross multiple paragraphs effectively. In the meanwhile, our stance prediction auxiliary task enable our model to recognizing the stance for each reply, and can help our model performs better on the persuasiveness prediction.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55306
DOI: 10.6342/NTU202002107
Fulltext Rights: 有償授權
Appears in Collections:資訊網路與多媒體研究所

Files in This Item:
File SizeFormat 
U0001-3007202015401200.pdf
  Restricted Access
1.62 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved