Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55189
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳敏璋(Miin-Jang Chen)
dc.contributor.authorYen-Hui Leeen
dc.contributor.author李彥輝zh_TW
dc.date.accessioned2021-06-16T03:50:37Z-
dc.date.available2020-03-13
dc.date.copyright2015-03-13
dc.date.issued2014
dc.date.submitted2015-01-21
dc.identifier.citation[1] P. R. Chalker, S. Romani, P. A. Marshall, M. J. Rosseinsky, S. Rushworth, and P. A. Williams, 'Liquid injection atomic layer deposition of silver nanoparticles,' Nanotechnology, vol. 21, p. 405602, Oct 8 2010.
[2] S. M. George, A. W. Ott, and J. W. Klaus, 'Surface chemistry for atomic layer growth,' Journal of Physical Chemistry, vol. 100, pp. 13121-13131, Aug 1 1996.
[3] M. Leskela and M. Ritala, 'Atomic layer deposition (ALD): from precursors to thin film structures,' Thin Solid Films, vol. 409, pp. 138-146, Apr 22 2002.
[4] R. L. Puurunen, 'Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process,' Journal of Applied Physics, vol. 97,pp. 121301, Jun 15 2005.
[5] D. C. Tommi Kaariainen, Marja-Leena Kaariainen, and Arthur Sherman, Atomic Layer Deposition Principles, Characteristics, and Nanotechnology Applications, 2013.
[6] A. M. M. Jani, D. Losic, and N. H. Voelcker, 'Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications,' Progress in Materials Science, vol. 58, pp. 636-704, Jun 2013.
[7] C. W. Liang, T. C. Luo, M. S. Feng, H. C. Cheng, and D. Su, 'Characterization of anodic aluminum oxide film and its application to amorphous silicon thin film transistors,' Materials Chemistry and Physics, vol. 43, pp. 166-172, Feb 1996.
[8] G. E. J. Poinern, N. Ali, and D. Fawcett, 'Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development,' Materials, vol. 4, pp. 487-526, Mar 2011.
[9] H. Wang and Z. Q. Zou, 'Self-organized growth of Mn nanocluster arrays on Si(111)-(7x7) surfaces,' Applied Physics Letters, vol. 88, Mar 6 2006.
[10] Y. Lei, W. P. Cai, and G. Wilde, 'Highly ordered nanostructures with tunable size, shape and properties: A new way to surface nano-patterning using ultra-thin alumina masks,' Progress in Materials Science, vol. 52, pp. 465-539, May 2007.
[11] F. Keller, M. S. Hunter, and D. L. Robinson, 'Structural Features of Oxide Coatings on Aluminium,' Journal of the Electrochemical Society, vol. 100, pp. 411-419, 1953.
[12] Osullivan.Jp and G. C. Wood, 'Morphology and Mechanism of Formation of Porous Anodic Films on Aluminium,' Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, vol. 317, pp. 511-543, 1970.
[13] H. Masuda and K. Fukuda, 'Ordered Metal Nanohole Arrays Made by a 2-Step Replication of Honeycomb Structures of Anodic Alumina,' Science, vol. 268, pp. 1466-1468, Jun 9 1995.
[14] F. Y. Li, L. Zhang, and R. M. Metzger, 'On the growth of highly ordered pores in anodized aluminum oxide,' Chemistry of Materials, vol. 10, pp. 2470-2480, Sep 1998.
[15] O. Jessensky, F. Muller, and U. Gosele, 'Self-organized formation of hexagonal pore structures in anodic alumina,' Journal of the Electrochemical Society, vol. 145, pp. 3735-3740, Nov 1998.
[16] A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, 'Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina,' Journal of Applied Physics, vol. 84, pp. 6023-6026, Dec 1 1998.
[17] M. S. Hunter and P. Fowle, 'Factors Affecting the Formation of Anodic Oxide Coatings,' Journal of the Electrochemical Society, vol. 101, pp. 514-519, 1954.
[18] P. N. J.S.L. Leach, 'Mechanical effects during the growth of anodic films,' Corrosion Science, vol. 9, pp. 225–244, 1969.
[19] T. P. Hoar and N. F. Mott, 'A Mechanism for the Formation of Porous Anodic Oxide Films on Aluminium,' Journal of Physics and Chemistry of Solids, vol. 9, pp. 97-99, 1959.
[20] H. Masuda and M. Satoh, 'Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask,' Japanese Journal of Applied Physics Part 2-Letters, vol. 35, pp. L126-L129, Jan 15 1996.
[21] J. C. Hulteen and C. R. Martin, 'A general template-based method for the preparation of nanomaterials,' Journal of Materials Chemistry, vol. 7, pp. 1075-1087, Jul 1997.
[22] C. R. Martin, 'Membrane-based synthesis of nanomaterials,' Chemistry of Materials, vol. 8, pp. 1739-1746, Aug 1996.
[23] H. Masuda, F. Hasegwa, and S. Ono, 'Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution,' Journal of the Electrochemical Society, vol. 144, pp. L127-L130, May 1997.
[24] D. J. Barber and I. C. Freestone, 'An Investigation of the Origin of the Color of the Lycurgus Cup by Analytical Transmission Electron-Microscopy,' Archaeometry, vol. 32, pp. 33-45, Feb 1990.
[25] I. Freestone, N. Meeks, M. Sax, and C. Higgitt, 'The Lycurgus Cup - A Roman nanotechnology,' Gold Bulletin, vol. 40, pp. 270-277, 2007.
[26] U. Leonhardt, 'Optical metamaterials - Invisibility cup,' Nature Photonics, vol. 1, pp. 207-208, Apr 2007.
[27] M. Faraday, 'The Bakerian Lecture: Experimental Relations of Gold (and Other Metals) to Light,' Philosophical Transactions of the Royal Society of London, pp. 145-181, 1857.
[28] G. Mie, 'Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions.,' Annalen Der Physik, vol. 25, pp. 377-445, Mar 1908.
[29] S. M. Nie and S. R. Emery, 'Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,' Science, vol. 275, pp. 1102-1106, Feb 21 1997.
[30] L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. N. Xia, 'Localized surface plasmon resonance spectroscopy of single silver nanocubes,' Nano Letters, vol. 5, pp. 2034-2038, Oct 2005.
[31] K. A. Willets and R. P. Van Duyne, 'Localized surface plasmon resonance spectroscopy and sensing,' Annual Review of Physical Chemistry, vol. 58, pp. 267-297, 2007.
[32] S. Underwood and P. Mulvaney, 'Effect of the Solution Refractive-Index on the Color of Gold Colloids,' Langmuir, vol. 10, pp. 3427-3430, Oct 1994.
[33] M. A. Garcia, 'Surface plasmons in metallic nanoparticles: fundamentals and applications,' Journal of Physics D-Applied Physics, vol. 44, pp.283001, Jul 20 2011.
[34] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, 'The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,' Journal of Physical Chemistry B, vol. 107, pp. 668-677, Jan 23 2003.
[35] B. R. Cooper, Ehrenrei.H, and H. R. Philipp, 'Optical Properties of Noble Metals .2.,' Physical Review, vol. 138, pp. A494-&, 1965.
[36] G. W. B. Matthew Pelton, Introduction to Metal-Nanoparticle Plasmonics, 2013.
[37] P. Englebienne, 'Use of colloidal gold surface plasmon resonance peak shift to infer affinity constants from the interactions between protein antigens and antibodies specific for single or multiple epitopes,' Analyst, vol. 123, pp. 1599-1603, Jul 1998.
[38] M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, 'Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,' Journal of the American Chemical Society, vol. 123, pp. 1471-1482, Feb 21 2001.
[39] A. D. McFarland and R. P. Van Duyne, 'Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,' Nano Letters, vol. 3, pp. 1057-1062, Aug 2003.
[40] M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, et al., 'Gold nanostructures: engineering their plasmonic properties for biomedical applications,' Chemical Society Reviews, vol. 35, pp. 1084-1094, 2006.
[41] A. J. Haes, S. L. Zou, G. C. Schatz, and R. P. Van Duyne, 'A nanoscale optical biosensor: The long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,' Journal of Physical Chemistry B, vol. 108, pp. 109-116, Jan 8 2004.
[42] X. Y. Zhang, E. M. Hicks, J. Zhao, G. C. Schatz, and R. P. Van Duyne, 'Electrochemical tuning of silver nanoparticles fabricated by nanosphere lithography,' Nano Letters, vol. 5, pp. 1503-1507, Jul 2005.
[43] T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Hook, D. S. Sutherland, and M. Kall, 'Plasmonic sensing characteristics of single nanometric holes,' Nano Letters, vol. 5, pp. 2335-2339, Nov 2005.
[44] A. Dahlin, M. Zach, T. Rindzevicius, M. Kall, D. S. Sutherland, and F. Hook, 'Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events,' Journal of the American Chemical Society, vol. 127, pp. 5043-5048, Apr 13 2005.
[45] D. Gao, W. Chen, A. Mulchandani, and J. S. Schultz, 'Detection of tumor markers based on extinction spectra of visible light passing through gold nanoholes,' Applied Physics Letters, vol. 90, Feb 12 2007.
[46] A. B. Dahlin, J. O. Tegenfeldt, and F. Hook, 'Improving the instrumental resolution of sensors based on localized surface plasmon resonance,' Analytical Chemistry, vol. 78, pp. 4416-4423, Jul 1 2006.
[47] E. M. Purcell, 'Spontaneous Emission Probabilities at Radio Frequencies,' Physical Review, vol. 69, pp. 681-681, 1946.
[48] R. Loudon, The quantum theory of light.: Clarendon Press: Oxford, 1973.
[49] G. Sun and J. B. Khurgin, 'Origin of giant difference between fluorescence, resonance, and nonresonance Raman scattering enhancement by surface plasmons,' Physical Review A, vol. 85,pp.063410, Jun 19 2012.
[50] V. Giannini, A. I. Fernandez-Dominguez, S. C. Heck, and S. A. Maier, 'Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters,' Chemical Reviews, vol. 111, pp. 3888-3912, Jun 2011.
[51] S. Hayashi and T. Okamoto, 'Plasmonics: visit the past to know the future,' Journal of Physics D-Applied Physics, vol. 45,pp. 433001, Oct 31 2012.
[52] Y. H. Lanyon, G. De Marzi, Y. E. Watson, A. J. Quinn, J. P. Gleeson, G. Redmond, et al., 'Fabrication of nanopore array electrodes by focused ion beam milling,' Analytical Chemistry, vol. 79, pp. 3048-3055, Apr 15 2007.
[53] W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, 'A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,' Nanotechnology, vol. 18, Dec 5 2007.
[54] T. Gao, G. M. Meng, and L. D. Zhang, 'Blue luminescence in porous anodic alumina films: the role of the oxalic impurities,' Journal of Physics-Condensed Matter, vol. 15, pp. 2071-2079, Apr 2 2003.
[55] J. H. Chen, C. P. Huang, C. G. Chao, and T. M. Chen, 'The investigation of photoluminescence centers in porous alumina membranes,' Applied Physics a-Materials Science & Processing, vol. 84, pp. 297-300, Aug 2006.
[56] G. S. Huang, X. L. Wu, Y. F. Mei, X. F. Shao, and G. G. Siu, 'Strong blue emission from anodic alumina membranes with ordered nanopore array,' Journal of Applied Physics, vol. 93, pp. 582-585, Jan 1 2003.
[57] K. Kneipp, H. Kneipp, V. B. Kartha, R. Manoharan, G. Deinum, I. Itzkan, et al., 'Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS),' Physical Review E, vol. 57, pp. R6281-R6284, Jun 1998.
[58] K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, et al., 'Single molecule detection using surface-enhanced Raman scattering (SERS),' Physical Review Letters, vol. 78, pp. 1667-1670, Mar 3 1997.
[59] D. I. Enache, J. K. Edwards, P. Landon, B. Solsona-Espriu, A. F. Carley, A. A. Herzing, et al., 'Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts,' Science, vol. 311, pp. 362-365, Jan 20 2006.
[60] H. Yamashita, H. Nishiguchi, N. Kamada, M. Anpo, Y. Teraoka, H. Hatano, et al., 'Photocatalytic Reduction of Co2 with H2o on Tio2 and Cu/Tio2 Catalysts,' Research on Chemical Intermediates, vol. 20, pp. 815-823, 1994.
[61] S. D. Mo and W. Y. Ching, 'Electronic and Optical-Properties of 3 Phases of Titanium-Dioxide - Rutile, Anatase, and Brookite,' Physical Review B, vol. 51, pp. 13023-13032, May 15 1995.
[62] T. Ohsaka, F. Izumi, and Y. Fujiki, 'Raman-Spectrum of Anatase, Tio2,' Journal of Raman Spectroscopy, vol. 7, pp. 321-324, 1978.
[63] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, et al., 'A comprehensive review of ZnO materials and devices,' Journal of Applied Physics, vol. 98,pp.041301, Aug 15 2005.
[64] B. X. Lin, Z. X. Fu, and Y. B. Jia, 'Green luminescent center in undoped zinc oxide films deposited on silicon substrates,' Applied Physics Letters, vol. 79, pp. 943-945, Aug 13 2001.
[65] A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, 'First-principles study of native point defects in ZnO,' Physical Review B, vol. 61, pp. 15019-15027, Jun 1 2000.
[66] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, 'Mechanisms behind green photoluminescence in ZnO phosphor powders,' Journal of Applied Physics, vol. 79, pp. 7983-7990, May 15 1996.
[67] P. Anger, P. Bharadwaj, and L. Novotny, 'Enhancement and quenching of single-molecule fluorescence,' Physical Review Letters, vol. 96, Mar 24 2006.
[68] J. B. Khurgin and G. Sun, 'Enhancement of optical properties of nanoscaled objects by metal nanoparticles,' Journal of the Optical Society of America B-Optical Physics, vol. 26, pp. B83-B95, Dec 2009.
[69] C. T. Ko, Y. Y. Han, C. H. Chen, J. Shieh, and M. J. Chen, 'Enormous Plasmonic Enhancement and Suppressed Quenching of Luminescence from Nanoscale ZnO Films by Uniformly Dispersed Atomic-Layer-Deposited Platinum with Optimized Spacer Thickness,' Journal of Physical Chemistry C, vol. 117, pp. 26204-26212, Dec 12 2013.
[70] G. Sun, J. B. Khurgin, and C. C. Yang, 'Impact of high-order surface plasmon modes of metal nanoparticles on enhancement of optical emission,' Applied Physics Letters, vol. 95, Oct 26 2009.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55189-
dc.description.abstract原子層沉積技術是一種能夠精準控制材料成長厚度和成分的技術,而陽極氧化鋁能夠大面積且低成本的製造出緊密六角排列的奈米孔洞結構,也可透過控制陽極處理電壓或溫度控制孔洞的直徑和分布,結合這兩者的優點將非常適合用以製作表面電漿子增強型拉曼和螢光基板,本研究將研究溫度和陽極處理電壓對陽極氧化鋁孔洞大小和分布的影響,並使用原子層沉積技術成長的氧化鋁縮小孔洞,探討奈米孔洞大小對表面電漿子增強型拉曼和螢光的影響為何。
本研究先熱蒸鍍金屬銀在陽極氧化鋁奈米孔洞上,做出表面電漿子增強型拉曼基板,並使用原子層沉積技術精準控制二氧化鈦極薄膜的厚度,測量出2nm二氧化鈦極薄膜的拉曼訊號;接著使用原子層沉積技術成長不同厚度(25cycles、50cycles、100cycles)的氧化鋁以縮小孔洞,之後做成表面電漿子增強型拉曼基板並測量二氧化鈦拉曼訊號,發現成長50cycles氧化鋁的基板具有最強的增強效果。本研究也延續上述的結構,將待測物改為氧化鋅並測量其光致發光訊號,同樣發現縮小50cycles氧化鋁之基板具有最強的光致發光訊號。
zh_TW
dc.description.abstractAtomic layer deposition (ALD) is an excellent deposition technique that controls the film’s thickness in the monolayer precision. Hexgonal pore arrays can be produced by anodic aluminum oxide(AAO) in a long range area and with an inexpensive electrochemical anodization process. Combining the two techniques above, one can fabricate the substrates for surface-enhanced raman scattering(SERS) and surface-enhanced luminescence(SEL). In this research, how the anodization voltage and temperature affect the pore size and distribution is discussed. We also study the relationship between the pore size and the intensity of SERS and SEL.
In this research, we evaporate 40nm Ag onto AAO as a SERS substrate and use ALD to deposit TiO2 ultrathin film. The detection of 2nm TiO2 raman scattering is achieved. In order to investigate the relationship between the pore size and the SERS intensity, we use ALD to deposit Al2O3 (25cycles、50cycles、100cycles) and reduce the pore size. The greatest enhancement of raman scattering signal is found with 50cycles deposition of Al2O3. Following with the structure above, we substitute TiO2 with ZnO and measure the photoluminescence spectrum. The greatest enhancement of photoluminescence is also with 50cycles Al2O3.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:50:37Z (GMT). No. of bitstreams: 1
ntu-103-R01527041-1.pdf: 14719832 bytes, checksum: 00052454a973807e4ecd63f097c5a756 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vii
表目錄 xi
第一章 簡介 1
1.1 研究動機 1
1.2 章節簡介 2
1.3 原子層沉積技術 2
1.4 陽極氧化鋁 5
1.4.1 簡介 5
1.4.2 陽極氧化鋁成長機制 7
1.4.3 兩步驟陽極氧化鋁 12
1.5 局域性表面電漿子 15
1.5.1 簡介 15
1.5.2 表面電漿子共振波長與介電常數的關係 17
1.5.3 消光截面 19
1.5.4 不同奈米結構對局域性表面電漿子的影響 22
1.5.5 費米黃金定則與柏賽爾效應 24
1.5.6 局域性表面電漿耦合 26
第二章 陽極氧化鋁製程 27
2.1 簡介 27
2.2 實驗裝置和步驟 28
2.2.1 單步驟陽極氧化鋁製備流程 28
2.2.2 兩步驟陽極氧化鋁製備流程 29
2.3 實驗結果與討論 30
2.3.1 單步驟陽極氧化鋁在5oC下改變電壓之SEM影像分析 30
2.3.2 單步驟陽極氧化鋁在25oC下改變電壓之SEM影像分析 34
2.3.3 兩步驟陽極氧化鋁在25oC下改變電壓之SEM影像分析 38
2.3.4 可見光紫外光分光光譜和光致發光光譜分析 44
2.4 結論 45
第三章 以表面電漿子增強型拉曼散射光譜偵測二氧化鈦之極薄膜 46
3.1 簡介 46
3.2 實驗結構和步驟 47
3.3 實驗結果與討論 49
3.3.1 G0-2T與G0-5T之拉曼散射光譜分析 49
3.3.2 陽極氧化鋁蒸鍍40奈米銀之遮光和SEM影像分析 50
3.3.3 A0-2T與A0-5T之拉曼光譜、UV-Vis光譜和SEM影像分析 52
3.3.4 ALD成長不同厚度Al2O3並熱蒸鍍40奈米銀之SEM影像分析 57
3.3.5 孔洞大小對拉曼散射強度之影響 62
3.4 結論 69
第四章 氧化鋅極薄膜之表面電漿子增強型螢光光譜研究 70
4.1 簡介 70
4.2 實驗結構和步驟 70
4.3 實驗結果與討論 72
4.3.1 光致發光光譜、UV-Vis光譜和SEM影像分析 72
4.3.2 SEM影像和EDX分析 76
4.4 結論 79
第五章 總結 80
參考文獻 82
dc.language.isozh-TW
dc.subject局域性表面電漿子共振zh_TW
dc.subject二氧化鈦zh_TW
dc.subject表面電漿子增強型螢光zh_TW
dc.subject表面電漿子增強型拉曼散射zh_TW
dc.subject陽極氧化鋁zh_TW
dc.subject原子層沉積技術zh_TW
dc.subject氧化鋅zh_TW
dc.subjectSurface enhanced luminescence (SEL)en
dc.subjectAnodic aluminum oxideen
dc.subjectLocalized surface plasmon resonanceen
dc.subjectTiO2en
dc.subjectZnOen
dc.subjectSurface enhanced raman scattering (SERS)en
dc.subjectAtomic layer depositionen
dc.title使用陽極氧化鋁基板探討表面電漿子增強型拉曼及螢光光譜zh_TW
dc.titlePlasmonic Enhancement of Raman Scattering and Photoluminescence on Anodic Aluminum Oxide Templateen
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree碩士
dc.contributor.oralexamcommittee謝宗霖(Tzong-Lin Jay Shieh),陳良益(Liang-Yih Chen),陳景翔(Ching-Hsiang Chen)
dc.subject.keyword原子層沉積技術,陽極氧化鋁,局域性表面電漿子共振,二氧化鈦,氧化鋅,表面電漿子增強型拉曼散射,表面電漿子增強型螢光,zh_TW
dc.subject.keywordAtomic layer deposition,Anodic aluminum oxide,Localized surface plasmon resonance,TiO2,ZnO,Surface enhanced raman scattering (SERS),Surface enhanced luminescence (SEL),en
dc.relation.page88
dc.rights.note有償授權
dc.date.accepted2015-01-21
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
14.37 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved