請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5478完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝長富 | |
| dc.contributor.author | Li-Wan Chnag | en |
| dc.contributor.author | 張勵婉 | zh_TW |
| dc.date.accessioned | 2021-05-15T18:00:06Z | - |
| dc.date.available | 2014-01-27 | |
| dc.date.available | 2021-05-15T18:00:06Z | - |
| dc.date.copyright | 2014-01-27 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-01-24 | |
| dc.identifier.citation | Ackerly DD, Donoghue, MJ (1998) Leaf size, sapling allometry, and Corner’s rules: phylogeny and correlated evolution in maples (Acer). American Naturalist 152,
767–791. Adámoli J, Sennhauser E, Acero JM, Rescia A (1990) Stress and disturbance: vegetation dynamics in the dry Chaco region of Argentina. J. Biogeogr. 17: 491-500. Allison D, Art W, Cunningham E, Teed R (2003) Forty-two years of succession following strip clearcut in a northern hardwoods forest in northwestern Massachusetts. For Ecol Manag 182:285–301. Aravena JC, Carmona M, Pérez CC, Armesto JJ (2002) Changes in tree species richness, stand structure and soil properties in a successional chronosequence of forest fragments in northern Chiloé Island, Chile. Revista Chilena de Historia Natural 75: 339–360. Ashton P S (1969) Speciation among tropical forest trees: some deductions in the light of recent evidence. Biological Journal of the Linnean Society 1: 155–196. Baldeck CA, Harms KE, Yavitt JB, John R, Turner BL, Valencia R, Navarrete H, Davies SJ, Chuyong GB, Kenfack D, Thomas DW, Madawala S, Gunatilleke N, Gunatilleke S, Bunyavejchewin S, Kiratiprayoon S, Yaacob A, Supardi MNM, 2. Dalling JW (2013) Soil resources and topography shape local tree community structure in tropicalforests. ProceedingsoftheRoyal Society B: BiologicalSciences 280: 20122532, doi: 10.1098/rspb.2012.253. Berendse F (1990) Organic matter accumulation and nitrogen mineralization during secondary succession in heathland ecosystems. J. Ecol. 78: 413-427. Beatty, SW (1986) The variety of soil micro sites created by tree falls. Can. J. Forest Res. 16: 539-548. Binkley D, Giardina C (1998) Why do tree species affect soils? The Warp and Woof of tree-soil interactions. Biogeochemistry 42:89-106. Blanchet G, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89(9):2623-2632. Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73(3):1045-1055. Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling 153:51-68. Borcard D, Gillet F, Legendre P (2011) Spatial Analysis of Ecological Data. In: Gentleman R, Parmigiani GG, Hornik K (eds.) Numerical Ecology with R. Springer, New York, pp 227-293. Bourgeron PS (1983) 'Spatial aspects of vegetation structure'. pp. 29–47. In: F.B. Golley (ed.). Ecosystems of the world: tropical rain forest ecosystems 14. Elsevier, Amsterdam. BBrandani A, Hartshorn GS, Orians GH (1988) Internal heterogeneity of gaps and species richness in Costa Rican tropical wet forest. J Trop Ecol 4:99-119. Brind’Amour A, Boisclair D, Legendre P, Borcard D (2005) Multiscale spatial distribution of a littoral fish community in relation to environmental variables. Limnol Oceanogr 50:465-479. Chang L-W, Hwong J-H, Chiu S-T, Wang H-H, Yang K-C, Chang H-Y, Hsieh C-F (2010) Species composition, size-class structure and diversity of the Lienhuachih forest dynamics plot in a subtropical evergreen broad-leaved forest in central Taiwan. Taiwan J. For Sci. 25(1):81-95. Chang L-W, Zelený D, Li C-F, Chiu S-T, Hsieh C.-F. (2013): Better environmental data may reverse conclusions about niche- and dispersal-based processes in community assembly. Ecology 94: 2145–2151. Chang H-M (1996) Studies on the soil seed bank and the regeneration of tree species in Fushan broad-leaved forest, northern Taiwan. National Taiwan University. Taipei. [In Chinese with English abstract] Chao W-C, Chao K-J, Song G-Z M, Hsieh C-F (2007) Species composition and structure of the lowland subtropical rainforest at Lanjenchi, Southern Taiwan. Taiwania 52:253–269. Chao W-C, Song G-Z M, Chao K-J, Liao CC, Fan SW, Wu SH, Hsieh TH, I-F. Sun, Kuo Y-L, Hsieh C-F (2010) Lowland rainforests in Taiwan and Lanyu at the northern border of Paleotropics under the influence of monsoon wind. Plant Ecol. 210: 1-17. Chase JM, Leibold MA (2003) Ecological niches. University of Chicago Press, Chicago, USA. Chen M-Y, Chen C-H, Lin S-K (2003) The composition of soil seed bank and seedlings in the earthquake landslide sites of Guandaushi forest ecosystem. Q J For Res 25(2):97-108. Chen M-Y, Chou W-C, Tsai J-L (2000) Studies on the gap regeneration at Guandaushi forest ecosystem. Q J For Res 22(1):23-32. Chen M-C, Ho H-C (2001) The effect of precipitation on the variation of soil water potential of slopes in Fushan Experimental Forest. Q. J. Chin. For. 34(1):49-61. [in Chinese with English abstrcat] Chust G, Chave J, Condit R, Aguilar S, Lao S, Perez R (2006) Determinants and spatial modeling of tree diversity in a tropical forest landscape in Panama. J Veg Sci 17:83-92. Chytry M, Tichy L (2003) Diagnostic, constant and dominant species of vegetation classes and alliances of the Czech Republic: a statistical revision. Folia Fac Sci Nat Univ Masaryk Brun Biol 108:1–231. Comita LS, Condit R, Hubbell SP (2007) Developmental changes in habitat associations of tropical trees. J Ecol 95:482–492. Condit R (1995) Research in large, long-term tropical forest plots. Trends in Ecology and Evolution 10:18–22. Condit R (1998) Tropical forest census plots: methods and results from Barro Colorado Island, Panama and a comparison with other plots. Springer, New York, 220 pp. Condit R, Hubbell SP, Lafrankie JV, Sukumar R, Manokaran N, Foster RBF, Ashton PS (1996) Species area and species-individual relationships for tropical trees: a comparison of three 50-ha plots. J Ecol 84:549-62. Condit R, Sukumar R, Hubbell S P, Foster R B (1998) Predicting population trends from size distributions: a direct test in a tropical tree community. American Naturalist 152: 495–509. Condit R, Hubbell SP, Foster RB (1995) Mortality rates of 205 neotropical tree and shrub species and the impact of a severe drought. Ecol Monogr 65:419–439. Côté L, Brown S, Paré D, Fyles J, Bauhus J (2000) Dynamics of carbon and nitrogen mineralization in relation to stand type stand age and soil texture in the boreal mixedwood. Soil Biol Biochem 32:1079-1090. Cottenie K. (2005) Integrating environmental and spatial processes in ecological community dynamics. Ecology Letters 8:1175–1182. Cressie NAC (1991) Statistics for Spatial Data. Revised Edition, Wiley, New York. 990 pp. Dalling JW, Muller-Landau HC, Wright SJ, Hubbell SP (2002) Role of dispersal in the recruitment limitation of Neotropical pioneer species. J Ecol 90:714–727. Dalling JW, Swaine MD, Garwood NC (1998) Dispersal patterns and seed bank dynamics of pioneer trees in moist tropical forest. Ecology 79:564-578. De Cáceres M, Legendre P, Valencia R, Cao M, Chang L-W, Chuyong G, Condit R, Hao Z, Hsieh C-F, Hubbell S, Kenfack D, Ma K, Mi X, Noor NS, Kassim AR, Ren H, Su S-H, Sun I-F, Thomas D, Ye W, He F (2012) The variation of tree beta diversity across a global network of forest plots. Global Ecology and Biogeography, 21:1191-1202. Denslow JS (1987) Tropical rainforest gaps and tree species diversity. Annu Rev Ecol Syst 18:431-451. Delissio LJ, Primack RB, Hall P, Lee HS (2002) A decade of canopytree seedling survival and growth in two Bornean rain forests: persistence and recovery from suppression. J. Trop. Ecol., 18, 645–658. Diniz-Filho JAF, Siqueira T, Padial AA, Rangel TF, Landeiro VL, Bini LM (2012) Spatial autocorrelation analysis allows disentangling the balance between neutral and niche processes in metacommunities. Oikos 121:201-210. Dölle M, Schmidt W (2009) Impact of tree species on nutrient and light availability: evidence from a permanent plot study of old-field succession. Plant Ecology 203: 273-287. Dray SP, Legendre P, Peres-Neto PR (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol Model 196:483-493. Dray S, R Pélissier, Couteron P, Fortin M-J, Legendre P, Peres-Neto PR, Bellier E, Bivand R, Blanchet FG, Cáceres MDe, Dufour A-B, Heegaard E, Jombart T, Munoz F, Oksanen J, Thioulouse J, Wagner HH. (2012) Community ecology in the age of multivariate multiscale spatial analysis. Ecological Monographs 82:257-275. Editorial Committee of the Flora of Taiwan (1993-2003) Flora of Taiwan 2nd Edition, Vol. 1-6. Taipei. Enoki T, Kawaaguch H, Iwatsubo G. (1997) Nutrient-uptake and nutrient-use efficiency of Pinus thunbergii Parl. along a topographical gradient of soil nutrient availability. Ecol Res 12:191–199. Enoki T (2003) Microtopography and distribution of canopy trees in a subtropical evergreen broad-leaved forest in the northern part of Okinawa Island, Japan. Ecol. Res. 18: 103-113. Fan S-W, Chao W-C, Hsieh C-F (2005) Woody floristic composition, size class distribution and spatial pattern of a subtropical lowland rainforest at Nanjen Lake, southernmost Taiwan. Taiwania 50:307-26. Fan S-W, Hsieh C-F (2010) Spatial Autocorrelation Patterns of Understory Plant Species in a Subtropical Rainforest at Lanjenchi, Southern Taiwan. Taiwania 55:160-171. Finzi AC, Canham CD, Breemen N Van (1998) Canopy tree-soil interactions within temperate forests: species effects on pH and cations. Ecological Applications8:447-454. Fisher RA, Corbet AS, Williams CB (1943) The relation between the number of species and the number of individuals in a random sample of an animal population. J Anim Ecol 12:42-58. Fisher RF, Binkley D (2000) Ecology and management of forest soils, 3rd edn. Wiley, New York. Flinn KM, Gouhier TC, Lechowicz MJ, Waterway MJ (2010) The role of dispersal in shaping plant community composition of wetlands within an old-growth forest. J Eco 98: 1292–1299. Foster JR (1988) Disturbance history, community organization and vegetation dynamics of old-growth Pisgah Forest, southwestern New Hampshire, U.S.A. J. Ecol. 76: 105-134. Gairola S, Sharma CM, Ghildiyal SK Suyal S (2012) Chemical properties of soils in relation to forest composition in moist temperate valley slopes of Garhwal Himalaya, India. The Environmentalist. 32 (4): 512-523. Gardner WH (1986) Water content. In: Klute A (ed) Methods of soil analysis, Part 1. 2nd. Agron. Monogr. 9. ASA and SSSA, Madison, WI. pp 493-544. Gee GW, Bauder JW (1986) Particle-size analysis: core method. Pages 383‒411in A.Klute, editor. Methods of soil analysis. Part 1. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, Wisconsin, USA. Gilbert B, Bennett JR (2010) Partitioning variation in ecological communities: do the numbers add up? Journal of Applied Ecology 47:1071-1082. Gilbert B, Lechowicz MJ (2004) Neutrality, niches, and dispersal in a temperate forest understory. Proceedings of the National Academy of Sciences 101:7654-7656. Gunatilleke CVS, Gunatilleke IAUN, Esufali S, Harms KE, Ashton PMS, Burslem DFRP, Ashton PS (2006) Species-habitat associations in a Sri Lankan dipterocarp forest. J Trop Ecol 22:371–384. Hack JT, Goodlet JC (1960) Geomorphology and forest ecology of a mountain region in the central Appalachians. United States Geological Survey Professional Paper No. 347, 66 pp. US Government Printing Office, Washington DC. Hara M, Hirata K, Oono K (1996a) Relationship between micro-landform and vegetation structure in an evergreen broad-leaved forest on Okinawa Island, S-W. Japan. Natural History Research 4: 27-35. Hara M, Hirata K, Fujihara M, Oono K (1996b) Vegetation structure in relation to micro-landform in an evergreen broad-leaved forest on Amami Ohshima Island, southwest Japan. Ecol. Res. 11: 325–337. Harmon, ME, Franklin JF (1989) Tree seedlings on logs in Picea–Tsuga forests of Oregon and Washington. Ecology 70: 48-59. Harms KE, Wright SJ, Calderon O, Hernandez A, Herre EA (2000) Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest. Nature 404:493–495. Harms KE, Condit R, Hubbell SP, Foster RB (2001) Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. Journal of Ecology 89:947‒959. Harper JL (1957) Biological Flora of the British Isles: Ranunculus acris L., Ranunculus repens L. and Ranunculus bulbosus L. J. Ecol. 45, 289-342. Harper JL (1958) Famous plants-8, The buttercup. New Biology (Ed. By M. L. Johnson, M. Abercrombie & G. E. Fogg) Vol. 26, pp. 30-46. Penguin, Harmondsworth. Harper JL, Sagar GR (1953) Some aspects of the ecology of buttercups in permanent grassland. Proc. 1st Br. Weed Control Conf., pp. 256-64. He F, Legendre P (2002) Species diversity patterns derived from species–area models. Ecology 83:1185–1198. Helmke PA, Sparks DL (1996) Exchangeable Potassium. In: Sparks DL, Page AL, Helmke PA, Loeppert RH (eds.) Methods of Soil Analysis, Part 3: Chemical Methods, No. 5 in Soil Science Society of American Book Series. Soil Sci. Soc. Am., Madison, WI, pp. 531-561. Henbo Y, Itaya A, Nishimura N, Yamamoto SI (2004) Long-term canopy dynamics in a large area of temperate old-growth beech (Fagus crenata) forest: analysis by aerial photographs and digital elevation models. J Ecol 92:945-953. Hsieh C-F, Chao W-C, Liao C-C, Yang KC, Hsieh T-H (1997) Floristic composition of the evergreen broad-leaved forests of Taiwan. Nat. Hist. Res. Special issue no. 4:1-16. Hill MO (1979) TWINSPAN—A FORTRAN program for arranging multivariate data in an ordered two-way data in an ordered two-way table by classification of the individuals and attributes. Cornell University, Ithaca, New York. Hill MO, Gauch HG (1980) Detrended correspondence analysis—An improved ordination technique. Vegetatio 42:47–58. Hirobe M, Tokuchi N, Iwatsubo G (1998) Spatial variability of soil nitrogen transformation patterns along a forest slope in a. Cryptomeria japonica D. Don plantation. Eur. J. Soil Biol. 34: 123-131. Holm S (1979) A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6:65-70. Hough AF (1932) Some diameter distributions in forest stands of northwestern Pennsylvania. J For 30:933-43. Hubbell SP, Foster RB, O’Brien ST, Harms KE, Condit R, Weschler B, Wright SJ, Loo de Lao S (1999) Light-gap disturbances, recruitment limitation, and tree diversity in a Neotropical forest. Science 283:554–557. Hubbell SP, Foster RB (1983) Diversity of canopy trees in a neotropical forest and implications for conservation. In: Sutton SL, Whitmore TC, Chadwick AC, editors. Tropical rain forest: ecology and management. Oxford, UK: Blackwell Scientific Publications. p 25-41. Hubbell SP, Foster RB (1986) Commonness and rarity in a neotropiacl forest: implications for tropical tree conservation. In: Soule M. editor Conservation Biology: Science of Scarcity and Diversity. Sinauer Press, Sunderland, UK, p 205-31. Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton, New Jersey, USA. Hurlbert SH (1971) The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577-86. Hwong J-L, Liaw S-C, Chen M-C, King H-B, Lu S-Y (2002) Review and analysis of forest hydrological researches in the Lienhuachi Experimental Forest. J Exp Nat Taiwan Univ 16(2):95-114. [in Chinese with English summary] Ishizaki N, OKitsu S (1988) Effects of soil erosion to forest structure in valley heads of hilly land: a study in the Kasumi-Kita Hills. Pedologist 32:127-137. [in Japanese with English abstract] Jones MM, Tuomisto H, Borcard D, Legendre P, Clark DB, Olivas PC (2008) Explaining variation in tropical plant community composition: influence of environmental and spatial data quality. Oecologia 155:593-604. Johnston MH (1992) Soil-vegeation realationship in a tabonuco forest community in the Luquillo Mountains of Puerto Rico J. Trop. Ecol. 8:253-263. Kamijo T, Kitayama K, Sugawara A, Urushimichi S, Sasai K (2002) Primary succession of the warm-temperate broad-leaved forest on a volcanic island, Miyake-jima Island, Japan. Folia Geobotanica, 37: 71-91. Kikuchi T (1981) Valley-head area vegetation in the subalpine coniferous forest zone in the Hakkoda Mountains. In: Ecological Studies on Abies mariesii Forest (ed. S. Iizumi) pp. 91-98. The Mount Hakkoda Botanical Laboratory, Tohoku University, Sendai. [in Japanese with English abstract] Kikuchi T, Miura O (1991) Differentiation in vegetation related to micro-scale landforms with special reference to the lower sideslope. Ecol. Rev. 22: 61-70. Kikuchi T, Miura O (1993) Vegetation patterns in relation to micro-scale landforms in hilly land regions. Vegetatio 106: 147-154. Kilgore BM, Taylor D (1979) Fire history of a Sequoia-mixed conifer forest. Ecology 60: 129-142. King H-B (1986) The classification of two forest soils in Lien-Hua-Chih experimental watershed: an attempt to use USDA comprehensive system of soil classification. Bull Taiwan For Res Inst New Ser 1(2):155-76. [in Chinese with English summary] Kira T (1991) Forest ecosystems of east and Southeast Asia in global perspective. Ecol Res 6:185-200. Kuo Y-L, Chen H-L, Yeh C-L (2011) Photosynthetic capacity and light environment of natural regenerated seedlings of broadleaf tree species in Taiwan. Collection of the theses of Forest resources conservation and use conference. Forest research Institute, Taipei, pp. 91-100. Laliberté E, Paquette A, Legendre P, Bouchard A (2009) Assessing the scale-specific importance of niches and other spatial processes on beta diversity: a case study from a temperate forest. Oecologia 159:377–388. Lee M-F (2006) Changes in the vegetation cover in relation to the 1996 strong Typhoon Herb at the Lienhuachi Experimental Forest in central Taiwan. M.S Thesis. National Changhua Univ of Education. Changhua, Taiwan. 103pp. [in Chinese with English abstract] Lee M-F, Lin T-C, Vadeboncoeur M, Hwong J-L (2008) Changes in the vegetation cover in relation to the 1996 strong Typhoon Herb at the Lienhuachi Experimental Forest in central Taiwan. For Ecol Manage 255(8-9):3297-306. Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271-280. Legendre P, Legendre L (2012) Numerical Ecology. Third English edition. Elsevier Science B.V., Amsterdam, The Netherlands. Legendre P, Borcard D, Peres-Neto P (2005) Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecological Monographs 75:435-459. Legendre P, Mi X, Ren H, Ma K, Yu M, Sun I-F, He F (2009) Partitioning beta diversity in a subtropical broadleaved forest of China. Ecology 90:663–674. Lin GJ, Stralberg D, Gong Gq, Huang ZL, Ye WH, Wu LF (2013) Separating the effects of environment and space on tree species distribution: From population to community. PLoS ONE 8(2): e56171. doi:10.1371/journal.pone.0056171. Lin Y-C, Chang L-W, Yang K-C, Wang H-H, Sun I-F (2011) Point patterns of tree distribution determined by habitat. Oecologia 165:175-184. Lin H-Y, Yang K-C, Hsieh T-H, Hsieh C-F (2005) Species composition and structure of a montane rainforest of Mt. Lopei in northern Taiwan. Taiwania 50:234-249. Losos EC, Leigh EG Jr (2004) Tropical forest diversity and dynamism: findings from a large-scale plot network. Chicago, IL: Univ of Chicago Press. 645 pp. Lu S-Y, Hwang L-S, Huang H-H (2008) Complication of meteorological records for the Lienhuachih station 1997-2007. Taipei, Taiwan: Taiwan Forestry Research Institute. 166 pp. [in Chinese with English summary]. Lu S-Y, Sun C-C, Tseng Y-H (2001) The legend of Lienhuachuh. Nat Conserv Q 35:28-42. [in Chinese]. Lu S-Y, Hwang L-S, Huang H-H (2010) Complication of meteorological records for the LiKuei station (1955-2009) and records for all stations of TFRI in 2009. Taiwan Forestry Research Institute, Taipei, Taiwan. 262 pp. [in Chinese with English abstract] Manabe T, Nishimura N, Miura M, Yamamoto S (2000) Population structure and spatial patterns for trees in a temperate old-growth evergreen broad-leaved forest in Japan. Plant Ecol 151:181-97. Masaki T, Suzuki W, Niiyama K, Iida S, Tanaka H, Nakashizuka T (1992) Community structure of a species-rich temperate forest, Ogawa forest reserve, central Japan. Vegetatio 98:97-111. McCarthy BC, Hammer CA, Kauffman GL, Cantino PD (1987) Vegetation patterns and structure of an old-growth forest in southeastern Ohio. Bull Torr Bot Club 114:33-45. McCune B, Mefford MJ (2006). PC-ORD. Multivariate Analysis of Ecological Data (Version 5). MjM Software Design, Oregon, USA. McCune B, Mefford M J (1999) PC-ORD. Multivariate Analysis of Ecological Data, Version 4. MjM Software Design, Gleneden Beach, OR, USA. 237pp. McLaren KP, McDonald MA, Hall JB, Healey JR (2005) Predicting species response to disturbance from size class distributions of adults and saplings in a Jamaican tropical dry forest. Plant Ecol 181:69-84. McLean EO (1982) Soil pH and lime requirement. In: Page AL et al (eds) Methods of soil analysis, Part 2. Chemical and microbioloigical properties. 2nd. Agron. Monogr. 9. ASA amd SSSA, Madison, WI, pp. 199-224. Miura O, Kikuchi T (1978) Preliminary investigation on vegetation and micro-landforms at valley head in the hills. In: Papers on Plant Ecology to the Memory of Dr Kuniji Yoshioka (ed. The Society for Publishing Papers on Plant Ecology to the Memory of Dr Kuniji Yoshiko) pp. 466-477. Tohoku Conversazione on Plant Ecology, Sendai. [in Japanese with English abstract] Mooney KA, Jones P, Agrawal AA (2008) Coexisting congeners: demography, competition, and interactions with cardenolides for two milkweed-feeding aphids. Oikos 117, 450–458. Nakashizuka T (1989) Role of uprooting in composition and dynamics of an old-growth forest in Japan. Ecology 70: 1273-1278. Nelson AJ, LE Sommers (1982) Total carbon, organic carbon and organic matter. pp. 539-579. In: Methods of Soil Analysis. Part 2. 2nd. ed. AL Page, RH Miller, DT Keeney (eds.), SSSA and ASA Press, Madison, WI, USA. Noguchi Y (1992) Vegetation asymmetry in Hawaii under the trade-wind regime. J.Veg. Sci. 3(2):223-30. Núñez-Farfán J, Dirzo R (1988) Within-gap spatial heterogeneity and seedling performance in a Mexican tropical forest. Oikos 51: 274-284. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2012) vegan: community ecology package R package version 2.0-3. http://cran.r-project.org/i. Oliveira-Filho AT, Ratter JA, Shepherd GJ (1990) Floristic composition and community structure of a central Brazilian gallery forest. Flora, 184: 103-117. Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614-2625. Plotkin J, Chave J, Ashton P (2002) Cluster analysis of spatial patterns in Malaysian tree species. Am Nat 160:629–644. Potts MD, Davies SJ, Bossert WH, Tan S, Supardi MNN (2004) Habitat heterogeneity and niche structure of trees in two tropical rain forests. Oecologia 139(3):446 - 53. R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2013) URL http://www.R-project.org. ISBN 3-900051-07-0. Rao CR (1964) The use and interpretation of principal component analysis in applied research. Sankhyaá, Series A 26:329-358. Ratter JA (1980) Notes on the vegetation of Fazenda Água Limpa (Brasilia–DF, Brasil). Royal Botanical Garden, Edinburgh. Richards PW (1952) The Tropical Rain Forest.Cambridge University Press, Cambridge. Ricklefs RE (1977) Environmental heterogeneity and plant species diversity: a hypothesis. Am Nat 111:376–381. Rosenzweig ML (1995) Species diversity in space and time. New York: Cambridge Univ Press. Sakai A, Ohsawa M (1993) Vegetation pattern and microtopography on a landslide scar of Mt Kiyosumi, central Japan. Ecol. Res. 8: 47- 56. Sakai A, Ohsawa M (1994) Topographical pattern of the forest vegetation on a river basin in a warmtemperate hilly region, central Japan. Ecol. Res. 9: 269-280. Sariyildiz T, Anderson JM, Kucuk M (2005) Effects of tree species and topography on soil chemistry, litter quality, and decomposition in Northeast Turkey. Soil Biol. Biochem. 37: 1695-1706. Sato T, Kominami Y, Saito S, Nijyama K, Manabe T, Tanouchi H, Noma N, Yamamoto S-I (1999) An introduction to the Aya research site, a long-term ecological research site, in a warm temperate evergreen broad-leaved forest ecosystem in southwestern Japan: research topics and design. Bull Kitakyushu Mus Nat Hist 18:157-80. Scatena FN, Moya S, Estrada C, Chinea JD (1996) The first five years in the reorganization of aboveground biomass and nutrient use following Hurricane Hugo in the Bisley Experimental Watersheds, Luquillo Experimental Forest, Puerto Rico. Biotropica 28: 424–441. Schulman L, Koivunen H, Ruokolainen K (2004) Spatio-ecological niche segregation of two sympatric species of clidemia (melastomataceae) inwestern amazonian non-flooded rainforests Folia Geobotanica 39:143-160. Schnitzer SA, Carson WP (2001) Treefall gaps and the maintenance of species diversity in a tropical forest. Ecology 82(4):913–919. Seidler TG, Plotkin JB (2006) Seed dispersal and spatial pattern in tropical trees. PLoS Biol 4:e344. Sedio BE, Wright SJ, Dick C W (2012) Trait evolution and the coexistence of a species swarm in the tropical forest understorey J Eco doi: 10.1111/j.1365-2745.2012.01993.x Shimada K (1994) Topographical distribution of five pioneer tree species and significance of their tree forms in natural forests on Mt Takao, central Japan. Japanese Journal of Ecology 44:293-304. [in Japanese with English abstract] Smith TW, Lundholm JT (2010) Variation partitioning as a tool to distinguish between niche and neutral processes. Ecography 33:648-655. Su H-J (1984) Studies on the climate and vegetation types of the natural forests in Taiwan (II): altitudinal vegetation zones in relation to temperature gradient. Q. Jour. Chin. For. 17(4):57-73. Su H-J (1985) Studies on the climate and vegetation types of the natural forests in Taiwan (III): a scheme of geographical climatic regions. Q. Jour. Chin. For. 18(3):33-44. Su H-J (1987) Studies on the multivariate analysis in vegetation ecology III: detrended correspondence analys is and related ordination techniques. Q J Chin For 20(3):45-68. [in Chinese with English summary]. Su S-H, Chang-Yang C-H, Lu C-L, Guan B-T (2010) Micro-topographic differentiation of tree species composition in a subtropical submontane rainforest in northeastern Taiwan. Taiwan J. For. Sci. 25(1):63-80. Su S-H, Chang-Yang C-H, Lu C-L, Tsui C-C, Lin T-T, Lin C-L, Chiou W-L, Kuan L-H, Chen Z-S, Hsieh C-F (2007) Fushan subtropical forest dynamics plot: tree species characteristics and distribution patterns. Taiwan Forestry Research Institute, Taipei. Taiwan. 272pp. Sun I-F, Hsieh C-F, Hubbell SP (1996) The structure and species composition of a subtropical monsoon forest in southern Taiwan on a steep wind-stress gradient. In: Tuner IM, Diong CH, Lim SSL, Ng PKL, editors. Biodiversity and the dynamics of ecosystems. DIWPA Series Vol. 1. Kyoto, Japan: Center of Ecological Research, Kyoto Univ. pp. 147-69. Tagawa H (1995) Distribution of lucidophyll oak-laurel forest formation in Asia and other areas. Tropics 5:1-40. Tamura T (1987) Landform-soil features of the humid temperate hills. Pedologist 31: 135-146. [in Japanese with English abstract] Tanaka H, Nakashizuka T (1997) Fifteen years of canopy dynamics analyzed by aerial photographs in a temperate deciduous forest, Japan. Ecology 78:612–620. Tanaka N (1985) Patchy structure of a temperate mixed forest and topography in the Chichibu mounrains, Japan. Japanese Journal of Ecology 35: 153-168 (in English). Tanouchi H, Yamamoto S (1995) Structure and regeneration of canopy species in an old-growth evergreen broad-leaved forest in Aya district, southwestern Japan. Vegetatio 117:51-60. ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for Windows users’ guide: Software for canonical community ordination, version 4.5. Microcomputer Power, Ithaca, New York, USA. Therneau TM, Atkinson B, Ripley B (2009) rpart: recursive portioning R package, version 3. 1. -45. http://cran. R-project.org/. Tubbs CH (1977) Age and structure of a northern hardwood selection forest, 1929-1976. J. For. 75: 22-24. Valencia R, Foster RB, Villa G, Condit R, Svenning JC, Hernandez C, Romoleroux K, Losos E, Magard E, Balslev H (2004) Tree species distributions and local habitat variation in the Amazon: large forest plot in eastern Ecuador. J Ecol 92:214–229. van Nieuwstadt MGL, Sheil D (2005) Drought, fire and tree survival in a Borneo rain forest, East Kalimantan, Indonesia. J Ecol 93:191–201. van Ulft LH (2004) Regeneration in natural and logged tropical rain forest: modelling seed dispersal and regeneration. Tekst. - Proefschrift Universiteit Utrecht. pp. 69-86. Vesterdal L, Schmidt IK, Callesen I, Nilsson LO, Gundersen P (2008) Carbon and nitrogen in forest floor and mineral soil under six common European tree species. Forest Ecology and Management 255: 35–48. Vitousek PM, Matson PA, Van Cleve K (1989) Nitrogen availability and nitrification during succession: Primary, secondary, and old-field seres. Plant Soil 115: 229–239. doi:10.1007/BF02202591. Wang H-H, Sun I-F, Chien C-T, Pan F-J, Kuo C-F, Yu M-H, Ku H-L, Wu S-H, Cheng Y-P, Chen S-Y, Kao Y-C (2004) Tree species composition and habitat types of a karst forest in kenting, southern Taiwan. Taiwan J For Sci 19(4):323-35. Wang H-H, Pan F-J, Liu C-K, Yu Y-H, Hung S-F (2000) Vegetation classification and ordination of a permanent plot in the Fushan Experimental Forest, northern Taiwan. Taiwan J. For. Sci. 15: 411-428. [In Chinese, with English abstract] Wiegand T, Gunatilleke S, Gunatilleke N (2007) Species associations in a heterogeneous Sri Lankan dipterocarp forest. Am Nat 170:E77–E95. Whitmore TC (1984) Tropical Rain Forest of the Far East, 2nd edn. Clarendon Press, Oxford. Yan E-R, Wang X-H, Guo M, Zhong Q, Zhou W, Li Y-F (2009) Temporal patterns of net soil N mineralization and nitrification through secondary succession in the subtropical forests of eastern China. Plant and Soil 320(1-2): 181-194. Yamamoto S, Nishimura N, Matsui K (1995) Natural disturbance and tree species coexistence in an old-growth beech-dwarf bamboo forest, southwestern Japan. J Veg Sci 6:875-86. Yamamoto S-I (2000) Forest gap dynamics and tree regeneration, J For Res 5: 223-229. Yang KC, Lin J-K, Hsieh C-F, Huang C-L, Chang Y-M, Kuan L-H, Su J-F, Chiu S-T (2008) Vegetation pattern and woody species composition of a broad-leaved forest at the upstream basin of Nantzuhsienhsi in mid-southern Taiwan. Taiwania 53(4):325-37. Yuan Zq, Gazolc A, Wang XG, Lin F, Ye J, Bai XJ, Lia XJ, Li BH, Hao ZQ (2011) Scale specific determinants of tree diversity in an old growth temperate forest in ChinaBasic and Applied Ecology 12: 488–495. Zak DR, Hairston A, Grigal DF (1991) Topographic influences on nitrogen cycling within an upland pin oak ecosystem. Forest Sci. 37: 45-53. Zhao D, Borders B, Wilson M, Rathbun SL (2006) Modeling neighborhood effects on the growth and survival of individual trees in a natural temperate species-rich forest Eco Model 196: 90-102. Zhong Z, Makeschin F (2004) Comparison of soil nitrogen dynamics under beech, Norway spruce and Scots pine in Central Germany. Europ. J. For. Res. 123: 29-37. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5478 | - |
| dc.description.abstract | 群聚生態學家常探討為何在熱帶森林中樹木多樣性如此高,以及不同物種在森林裡如何共存的問題。影響森林中物種在空間中的分布及共存,主要受棲位過程以及散佈過程的影響。近年來史密森熱帶森林研究中心在全世界設立了許多大型森林動態樣區,都不似台灣為一個亞熱帶多高山的島嶼,地形變化劇烈,且每年遭受颱風的侵襲。因此於2008年根據史密森熱帶森林研究中心森林動態樣區設立的方式,在台灣中部蓮華池試驗林建立了一座25公頃的森林動態樣區,除對於樣區內所有的樹木皆進行精確的測量及標記位置外,更收集了樣區內的地形、土壤及以干擾等環境因子資料,本研究的目的為探討棲位過程及散布過程如何影響台灣亞熱帶森林木本植物之多樣性以及共存;是否與取樣地形變化平緩且干擾較少的熱帶雨林研究所得到結果相似?
研究結果顯示,蓮華池森林動態樣區是一個以樟科和殼斗科為優勢的楠櫧森林。分析各種類的徑級結構,顯示大部份的物種以小徑级的幼樹為主,表示此森林更新狀況良好。以alpha多樣性而言,與台灣其他低海拔動態樣區比較,蓮華池動態樣區為最為豐富,但較世界上其他熱帶的森林動態樣區低。 以植物社會而言,蓮華池森林可以區分為四個植物社會類型:南投石櫟-茜草樹型,主要分布於山頂陵線,海拔最高、植株密度最大;白匏子-黃杞型,分布於中上坡,植株密度、胸高斷面積次之;山紅柿-厚殼桂型,主要分布在中下坡、溪谷,植株密度較少;以及大葉楠-山龍眼型,分布於樣區西側溪谷附近,植株密度及胸高斷面積皆為最低。四型植物社會的分化及分布皆受到微地形梯度的變化所影響。 此外,比較兩個生態過程對於影響物種組成在空間中的分布時,當環境因子僅有地形因子時,散布過程為主要的影響因素,但如果加入土壤的因子的作用時,棲位過程較散布過程更顯得重要。除了地形以及土壤因子外,另在環境因子中又加入了干擾因子,比較兩個生態過程,對於影響先驅以及非先驅幼樹組成在空間中的分布,棲位過程仍為主要的影響。然而,比較散布過程的作用,主要對於非先驅幼樹在空間上的分布影響大於先驅的幼樹。 本研究同時說明了地形因子主要影響非先驅幼樹的分布,干擾因子則影響先驅幼樹的分布,土壤因子雖然對於森林中全部物種的分布,以及先驅及非先驅的幼樹分布都相當重要,但由於植物、地形以及干擾因子都會反應於土壤的物理或化學成分之中,故對於利用土壤因子解釋物種的分布,不能過度放大其重要性。再分解多尺度的純空間變量後顯示,地形因子表現解釋反應在大尺度的空間變量,土壤及干擾因子則為增加中尺度及小尺度空間變量的重要性。總體而言,在地形變化劇烈且多干擾的蓮華池亞熱帶森林中,棲位過程主要維持了蓮華池森林樹木的多樣性與共存,並影響著植物社會的分化。 | zh_TW |
| dc.description.abstract | Why tree diversity is so high and what drives coexistence of species in a tropical forest is the central question that community ecologists concern. Niche- and dispersal-based processes are two main processes which affect distribution pattern and coexistence of trees in a forest. Recently, forest dynamics plots (FDP) established by the Smithsonian Institution Center for Tropical Forest Science (CTFS). However, none of the above is the same as in Taiwan, a subtropical and mountainous island with rough terrain and frequent disturbance. Therefore, in 2008, I used the standard protocol as the Smithsonian CTFS’s to establish a 25-ha FDP in the Lienhuachih Experimental Forest (23o54’49”N, 120o52’43”E) in Central Taiwan. Expect precise stem mapping and topography measurement, I also collected soil and disturbance data to assess how niche- and dispersal-based processes affect coexistence of species and diversity of a subtropical forest and whether these were the same as the tropical FDPs with relative flat terrains and little disturbance.
My results show the Lienhuachih FDP is dominated by Fagaceae and Lauraceae and which is characteristic of the Machilus-Castanopsis forest zone of Taiwan. The size-class structure of trees show most tree species have plenty saplings, which display good recruitment in the forest. Fisher’s alpha diversity of the Lienhuachih FDP is the highest among low-elevation FDPs in Taiwan, but lower than which of other FDPs in tropical plots. On the other hand, the Lienhuachih forest could be divided to four types, these are Pasania nantoensis - Randia cochinchinensis type locates on the ridge and the highest elevation was with the highest stem density, Mallotus paniculatus - Engelhardtia roxburghiana type locates on the upper slope was with the middle stem density and basal area, Diospyros morrisiana - Cryptocarya chinensis type locates on the lower slope and stream side was with lower stem density and Machilus japonica var. kusanoi - Helicia formosana type locates on west stream side was with the lowest stem density and basal area. All four plant communities and species composition varied across micro-topographic gradients. In addition, both niche process and dispersal process work together to assemble the Lienhuachih tree communities. When comparing above two processes affect community assembly, if only topography is included, dispersal-based processes prevail. But if including soil variables along with topography variables into variation partitioning, the result reverses. Furthermore, including disturbance variables with topography and soil variables, niche-based processes still prevail for both pioneer and non-pioneer saplings. However, dispersal limitation is also an important process influencing the spatial distribution of species diversity for both functional saplings, especially for the non-pioneer saplings. My study also demonstrates that topography affects distribution of non-pioneer saplings, whereas disturbance affects distribution of pioneer saplings. Although soil is an important factor to explain distribution of both pioneer and non-pioneer saplings, it is also evident that plant species, geomorphic processes, and disturbance have different effects on the physical and chemical properties of soils. Soil and disturbance effects contribute to meso- and fine-scale spatial variations for distribution of species, whereas topographic effects contribute to broad-scale spatial variations for distribution of species. To conclude, in a rough terrain and highly disturbance area, niche-based process is the main ecological process to maintain the coexistence and diversity, and which also affect vegetation classification in the Lienhuachih subtropical forest. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-15T18:00:06Z (GMT). No. of bitstreams: 1 ntu-103-D97b44003-1.pdf: 3993853 bytes, checksum: 12fcc96db6695f6d3a34c526c1fc1205 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書..................................................................................................... i
摘要............................................................................................................................. ii ABSTRACT………………………………………………………………………… iv CHAPTERS 1. GENERAL INTRODUCTION............................................................................... 1 2. SPECIES COMPOSITION, SIZE-CLASS STRUCTURE, AND DIVERSITY OF THE LIENHUACHIH FOREST DYNAMICS PLOT IN A SUBTROPICAL EVERGREEN BROAD-LEAVED FOREST IN CENTRAL TAIWAN.................... 5 3. CHANGES OF PLANT COMMUNITIES CLASSIFICATION AND SPECIES COMPOSITION ALONG THE MICRO-TOPOGRAPHY AT THE LIENHUACHIH FOREST DYNAMICS PLOT IN THE CENTRAL TAIWAIN…. 30 4. BETTER ENVIRONMENTAL DATA MAY REVERSE CONCLUSIONS ABOUT NICHE- AND DISPERSAL-BASED PROCESSES IN COMMUNITY ASSEMBLY…............................................................................................................ 56 5. CONTRASTING SPATIAL DISTRIBUTION OF SPECIES DIVERSITY OF PIONEER VS. NON-PIONEER SAPLINGS IN A TAIWANESE FOREST: A MULTIPLE SCALE APPROACH.............................................................................. 73 6. SUMMARY AND CONCLUSIONS...................................................................... 96 LITERATURE CITED................................................................................................ 100 APPENDICIES........................................................................................................... 110 | |
| dc.language.iso | en | |
| dc.title | 臺灣中部蓮華池亞熱帶森林木本植物多樣性與共存之研究 | zh_TW |
| dc.title | Diversity and Coexistence of Woody Plants in a Subtropical Forest at Lienhuachih of Central Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 邱少婷 | |
| dc.contributor.oralexamcommittee | 郭耀綸,陳子英,林宜靜 | |
| dc.subject.keyword | 多樣性,共存,棲位過程,散布過程,蓮華池亞熱帶森林,地形,土壤,干擾, | zh_TW |
| dc.subject.keyword | diversity,coexistence,niche- and dispersal-based processes,the subtropical Lienhuachih forest,topography,soil,disturbance, | en |
| dc.relation.page | 117 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2014-01-24 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生態學與演化生物學研究所 | zh_TW |
| 顯示於系所單位: | 生態學與演化生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf | 3.9 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
