請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54562
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 韋文誠(Wen-Chen Wei) | |
dc.contributor.author | Chih-Shiun Chou | en |
dc.contributor.author | 周志勳 | zh_TW |
dc.date.accessioned | 2021-06-16T03:04:31Z | - |
dc.date.available | 2015-07-20 | |
dc.date.copyright | 2015-07-20 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-06-29 | |
dc.identifier.citation | [1] Fuel Cells, Engines and hydrogen, An Exergy Approach, by F. J. Barclay, John Wily & Sons, Ltd., (2006) USA.
[2] S. P. Jiang, S. H. Chan, “A review of anode materials development in solid oxide fuel cells,” J. Mat. Sci., 39 (2004) 4405-4439. [3] J. H. Koh, Y. S. Yoo, J. W. Park, H. C. Lim, “Carbon deposition and cell performance of Ni-YSZ anode support SOFC with methane fuel,” Solid State Ionics, 149 (2002) 157-166. [4] R. J. Gorte, S. Park, J. M. Vohs, C. Wang, “Anodes for direct oxidation of dry hydrocarbons in a solid-oxide fuel cell,” Adv. Mat., 12 (2000). [5] J. Laurencin, G. Delette, O. Sicardy, S. Rosini, F. L. Joud, “Impact of ‘redox’ cycles on performances of solid oxide fuel cells: Case of the electrolyte supported cells,” J. Power Sources, 195 (2010) 2747-2753. [6] H. Yahiro, K. Eguchi, H. Arai, “Electrical properties and reducibilities of ceria-rare earth oxide systems and their application to solid oxide fuel cell,” Solid State Ionics, 36 (1989) 71-75. [7] Fundaments and Technology of Solid Oxide Fuel Cells, by W. C. J. Wei, Kao-Li Publisher, (2013) Taiwan. [8] H. Yoshida, T. Inagaki, “Effects of additives on the sintering properties of samaria-doped ceria,” J. Alloys and Compounds, 408-412 (2006) 632-636. [9] X. Zhang, D. P. Cyrille, S. Yick, M. Robertson, O. Kesler, R. Maric, D. Ghosh, “A study on sintering aids for Sm0.2Ce0.8O1.9 electrolyte,” J. Power Sources, 162 (2006) 480-485. [10] C. Lu, W. L. Worrell, R. J. Gorte, J. M. Vohs, “SOFCs for direct oxidation of hydrocarbon fuels with samaria-doped ceria electrolyte,” J. Electrochemical Soc., 150 (2003) 354-358. [11] Extrusion, by M. Bauser, G. Sauer, K. Siegert, ASM international publisher (2006). [12] L. D. Pari, W. Z. Misiolek, “Numerical modeling of copper tube extrusion: process and eccentricity analysis,” J. Manufacturing Sci. Eng., 134 (2012). [13] M. P. Miles, J. L. Siles, R. H. Wagoner, and K. Narasimhan, “A better sheet formability test,” Metallurgical Transactions, 24A (1993) 1143-1151. [14] L. S. Selwyn, D. A. Rennie-Bisaillion, N. E. Binnie, “Metal corrosion rates in aqueous treatments for waterlogged wood-metal composites,” Studies In Conservation, 38 (1993) 180-197. [15] C. S. Cetinarslan, “Effect of cold plastic deformation on electrical conductivity of various materials,” Materials and Design, 30 (2009) 671-673. [16] J. N. Keuler, L. Lorenzen, S. Miachon, “The dehydrogenation of 2-butanol over copper-based catalysts: optimizing catalyst composition and determining kinetic parameters,” Applied Catalysis A, 218 (2001) 171-180. [17] F. E. Ford, D. D. Perlmutter, “The kinetics of the brass-catalysed dehydrogenation of sec-butyl alcohol,” Chemical Engineering Science, 19 (1964) 371-378. [18] J. P. Breen, J. R. H. Ross, “Methanol reforming for fuel-cell applications: development of zirconia-containing Cu-Zn-Al catalysts,” Catalysis Today, 51 (1999) 521-533 [19] Chapter 9 in Foundations of Materials Science and Engineering, by W. F. Smith, J. Hashemi, The McGraw-Hill Companies, Inc., USA (2007). [20] Total Materia., http://www.keytometals.com/article69.htm. [21] T. K. G. Namboodhiri, R. S. Chaudhary, B. Prakash, M. K. Agrawal, “The dezincification of brasses in concentrated ammonia,” Corrosion Science, 22 (1982) 1037-1047. [22] L. Wang, D. Y. Li, “Mechanical, electrochemical and tribological properties of nanocrystalline surface of brass produced by sandblasting and annealing,” Surface and Coatings Technology, 167 (2003) 188-196. [23] 蕭勝元,金屬之加工軟化與退火硬化,大同大學碩士論文,(2007) [24] 李欣怡,黃銅退火雙晶與高碳麻田散鐵相變雙晶之奈米顯微組織研究,國立台灣大學博士論文,(2010) [25] 張以澄,黃銅退火雙晶與機械雙晶之顯微組織研究,國立台灣大學碩士論文,(2012) [26] H. Turhan, “Adhesive wear resistance of Cu-Sn-Zn-Pb bronze with additions of Fe, Mn, and P,” Materials Letters, 59 (2005) 1463-1469. [27] L. Robbiola, J. M. Blengino, C. Fiaud, “Morphology and mechanisms of formation of natural patinas on archaeological Cu-Sn alloys,” Corrosion Science, 40 (1998) 2083-2111. [28] J. B. Singh, W. Cai, P. Bellon, “Dry sliding of Cu-15 wt%Ni-8 wt%Sn bronze: wear behavior and microstructures,” Wear, 263 (2007) 830-841. [29] P. Kratochvil, J. Mencl, J. Pesicka, S. N. Komnik, “The structure and low temperature strength of the age hardened Cu-Ni-Sn alloys,” Acta Metall., 32 (1984) 1493-1497. [30] R. F. North, M. J. Pryor, “The influence of corrosion product structure on the corrosion rate of Cu-Ni alloys,” Corrosion Science, 10 (1970) 297-311. [31] H. Kim, C. Ku, W. L. Worrell, J. M. vohs, R. J. Gorte, “Cu-Ni cermet anodes for direct oxidation of methane in solid-oxide fuel cells,” J. Electrochemical Society, 149 (2002) 247-250. [32] S. McIntosh, J. M. Vohs, R. J. Gorte, “Effect of precious-metal dopants on SOFC anodes for direct utilization of hydrocarbons,” Electrochem. Solid-State Lett., 6 (2003) 240-243. [33] C. N. Olga, R. J. Gorte, J. M. Vohs, “Comparison of the performance of Cu-CeO2-YSZ and Ni-YSZ composite SOFC anodes with H2, CO, and syngas,” J. Power Sources, 141 (2005) 241-249. [34] Y. Matsuzaki, I. Yasuda, “The poisoning effect of sulfur-containing impurity gas on a SOFC anode: Part I. Dependence on temperature, time, and impurity concentration,” Solid state ionics, 132 (2000) 261-269. [35] H. He, R. J. Gorte, J. M. Vohs, “Highly sulfur tolerant Cu-Ceria anode for SOFCs,” Electrochemical and Solid-State Letters, 8 (2005) 279-280. [36] H. Inaba, H. Tagawa, “Ceria-based solid electrolytes,” Solid State Ionics, 83 (1996) 1-16. [37] Z. Shao, S. M. Haile, “A high-performance cathode for the next generation of solid-oxide fuel cells,” Nature, 431 (2004) 170-173. [38] S. Hamakawa, T. Hayakawa, A. P. E. York, T. Tsunoda, Y. S. Yoon, K. Suzuki, M. Shimizu, K. Takehira, “Selective oxidation of propene using an electrochemical membrane reactor with CeO2-based solid electrolyte,” J. Electrochem. Soc., 143 (1996) 1264-1268. [39] H. Yoshida, K. Miura, J. Fujita, T. Inagaki, “Effect of Gallia addition on the sintering behavior of samaria-doped ceria,” J. Am. Ceram. Soc., 82 (1999) 219-221. [40] R. Peng, C. Xia, Q. Fu, G. Meng, D. Peng, “Sintering and electrical properties of (CeO2)0.8(Sm2O3)0.1 powders prepared by glycine-nitrate process,” Materials Letters, 56 (2002) 1043-1047. [41] S. Park, J. M. Vohs, R. J. Horte, “Direct oxidation of hydrocarbons in a solid-oxide fuel cell,” Nature, 404 (2000) 265-267. [42] S, Jung, C. Lu, H. He, K. Ahn, R. J. Gorte, J. M. Vohs, “Influence of composition and Cu impregnation method on the performance of Cu/CeO2/YSZ SOFC anodes,” J. Power Source, 154 (2006) 42-50. [43] X. F. Ye, B. Huang, S. R. Wang, Z. R. Wang, L. Xiong, T. L. Wen, “Preparation and performance of a Cu-CeO2-ScSZ composite anode for SOFCs running on ethanol fuel,” J. Power Source, 164 (2007) 203-209. [44] M. A. Buccheri, A. Singh, J. M. Hill, “Anode- versus electrolyte-supported Ni-YSZ/YSZ/Pt SOFCs: effect of cell design on OCV, performance and carbon formation for the direct utilization of dry methane,” J. Power Source, 196 (2011) 968-976. [45] R. Raza, X. Wamg, Y. Ma, X. Liu, B. Zhu, “Improved ceria-carbonate composite electrolytes,” J. Hydrogen Energy, 35 (2010) 2684-2688. [46] X. Wang, Y. Ma, R. Raza, M. Muhammed, B. Zhu, “Novel core-shell SDC/amorphous Na2CO3 nanocomposite electrolyte for low-temperature SOFCs,” Electrochemistry Communications, 10 (2008) 1617-1620. [47] R. Raza, X. Wang, Y. Ma, B. Zhu, “A nanostructure anode (Cu0.2Zn0.8) for low-temperature solid oxide fuel cell at 400-600 oC,” J. Power Source, 195 (2010) 8067-8070. [48] Z. Gao, Z. Mao, C. Wang, Z. Liu, “Development of trimetallic Ni-Cu-Zn anode for low temperature solid oxide fuel cells with composite electrolyte,” J. Hydrogen Energy, 35 (2010) 2897-2904. [49] C. Lu, W. L. Worrell, J. M. Vohs, R. J. Gorte, “A comparison of Cu-ceria-SDC and Au-ceria-SDC composites for SOFC Anodes,” J. Electrochemical Society, 150 (2003) 1357-1359. [50] S. I. Lee, K. Ahn, J. M. Vohs, R. J. Gorte, “Cu-Co bimetallic anodes for direct utilization of methane in SOFCs,” Electrochemical and Solid-State Letters, 8 (2005) 48-51. [51] S. I. Lee, J. M. Vohs, R. J. Gorte, “A study of SOFC anodes based on Cu-Ni and Cu-Co bimetallics in CeO2-YSZ,” J. Electrochemical Society, 151 (2004) 1319-1323. [52] X. C. Lu, J. H. Zhu, “Cu(Pd)-impregnated La0.75Sr0.25Cr0.5Mn0.5O3- | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54562 | - |
dc.description.abstract | 本研究使用銅基材料製作固態燃料電池之陽極,進行以下的研究開發工作。測試銅與銅鋅合金之基本性質,如導電性、熱膨脹係數、硬度等特性,並對此金屬之抗氧化性做深入探討,測試並比較銅與鎳金屬、鈦六鋁四釩合金在不同測試條件下之氧化行為,最後用表面氧化層之微結構與熱重分析的氧化結果相互驗證。本研究亦製備摻釤及鈷之氧化鈰(Co-SDC)電解質,並提出合成與燒結SDC粉末的方法,利用銅的高導電性和防止積碳的特性,與SDC良好的催化性和離子導電性,使此電池能在750 oC達到112 mW cm-2的最高電功率輸出。此外有鑒於銅鋅合金相較於純銅有較低的熔點和成形性,非常適合做為3D列印的金屬胚料,因此本研究亦設計與開發一熱熔擠(ME)裝置來擠製銅鋅合金,此裝置能達到1100 oC,且有優異的隔熱特性,當擠出嘴為1000 oC時,此裝置外部僅為51 oC。 | zh_TW |
dc.description.abstract | This study used Cu-based materials as an anode of solid oxide fuel cells (SOFCs) and conducted the following R&D works. Properties of Cu and Cu-Zn alloy were investigated, including electrical conductivity, coefficient of thermal expansion (CTE), hardness and oxidation behavior. The oxidation-resistance of Cu, Ni and Ti-6Al-4V was investigated and compared. Moreover, the microstructure of the oxide layers was observed to verify the results of TGA test. This study also developed cobalt-doped SDC cermet as an electrolyte for intermediate temperature (IT)-SOFC. The Cu-based electrode provided good electronic conductivity and prevented carbon deposition. The SDC was used as catalyst and ionic conductor. The methods to synthesize SDC and sinter a dense SDC electrolyte were also provided in this study. Maximum power density of the Cu-based SOFC was 112 mW cm-2 at 750 oC. On the other hand, due to a low melting point and good formability of Cu-Zn alloy, it was suitably applied on 3D printing (3DP) technique. As a result, a melt-extrusion (ME) module was designed to print Cu-Zn alloy. The ME module could reach 1100 oC to extrude Cu-Zn alloy. Besides, the heat insulation of the module was excellent, which was 51 oC outside the module while the temperature in the nozzle was 1000 oC. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T03:04:31Z (GMT). No. of bitstreams: 1 ntu-104-R02527004-1.pdf: 7906494 bytes, checksum: 723cefaf5e971ff4f1e7d6365bd405c7 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 摘要-I
Abstract-II List of Figures-VII List of Tables-XII Abbreviations-XIII Chapter 1 Introduction-1 Chapter 2 Literature review-3 2.1 Introduction of Cu-Zn Alloy-3 2.1.1 Hardness of Cu-Zn Alloy-4 2.1.2 Other Cu-Based Alloys-5 2.2 SOFC with Cu-Based Anode-6 2.2.1 Sintering of SDC Electrolyte-8 2.2.2 Cu-Based Anode for SOFC-9 2.3 Advantages of Metallic 3D Printing-11 2.3.1 Introduction of Different 3D Printing Processes-11 2.3.2 Metal Materials for 3D Printing-13 Chapter 3 Experimental Procedure-24 3.1 Materials-24 3.2 SDC Powder Synthesis-24 3.3 Preparation of Anode Slurry-25 3.4 SOFC Assembly-26 3.5 Assembly of Melt-Extrusion Module-26 3.5.1 Assembly of Barrel-26 3.5.2 Preparation of Castable-27 3.6 Property Characterization-28 3.6.1 Sedimentation Test-28 3.6.2 Particle Size Measurement-29 3.6.3 SEM Analysis-29 3.6.4 Density Measurement-30 3.6.5 Conductivity Measurement-30 3.6.6 Thermal Expansion Analysis-31 3.6.7 XRD Analysis-32 3.6.8 Metallographic Study of Cu-Zn Alloy-32 3.6.9 Test of Oxidation-Resistance-33 3.6.10 Cell Test-35 3.6.11 Thermal Distribution Measurement-36 Chapter 4 Results and Discussion-44 4.1 Properties of Cu-Zn Alloy-44 4.1.1 Electric Property of Cu-Zn Alloy-44 4.1.2 CTE of Cu-Zn Alloy-45 4.1.3 Stability of Cu-Zn Alloy with Electrolyte Oxide-46 4.1.4 Annealing Microstructure and Hardness of Cu-Zn Alloy-47 4.2 Oxidation Kinetics of Cu-Zn Alloy and Other Metals-60 4.2.1 Mass Change during Oxidation Process-60 4.2.2 Activation Energy for Oxidation-61 4.2.3 Oxidation of Cu-Zn Alloy in Protect Atmosphere-63 4.2.4 Microstructure of Oxide Layer-65 4.3 Assembly and Properties of SOFC-81 4.3.1 Solid-State Reaction of SDC Powder-81 4.3.2 Behavior of Sintered SDC Electrolyte-83 4.3.3 Properties of CuO-SDC Slurry and Anode-84 4.3.4 Cell Test and Microstructure-85 4.3.5 Cell Test with Hydrocarbon Fuel-86 4.4 High-Temperature Melt-Extrusion Module-102 4.4.1 Assembly of Melt-Extrusion Module-102 4.4.2 Performance of Heater-103 4.4.3 Module Test-105 (1) Temperature Distribution-105 (2) Extrusion of Cu-Zn Alloy-106 (3) Extrusion Greater than 1100 oC-107 Chapter 5 Conclusions-118 Appendix-120 Reference-124 | |
dc.language.iso | en | |
dc.title | 銅基材料於固態燃料電池之應用與熱熔擠組件開發 | zh_TW |
dc.title | Application of Cu-Based Material on Solid Oxide Fuel Cell (SOFC) and Development of Melt-Extrusion (ME) Module | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃坤祥(Kuen-Shyang Hwang),王安邦(An-Bang Wang),洪逸明(I-Ming Hung) | |
dc.subject.keyword | 銅,黃銅,氧化動力學,陽極,中溫型固態燃料電池,熱熔擠裝置, | zh_TW |
dc.subject.keyword | Cu,brass,oxidation kinetics,anode,IT-SOFC,melt-extrusion (ME), | en |
dc.relation.page | 134 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-06-30 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 7.72 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。