Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54425
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳錫侃
dc.contributor.authorHsin-Kai Wangen
dc.contributor.author王昕愷zh_TW
dc.date.accessioned2021-06-16T02:56:10Z-
dc.date.available2025-07-01
dc.date.copyright2015-07-20
dc.date.issued2015
dc.date.submitted2015-07-08
dc.identifier.citation[1] Y. Furuya, M. Matsumoto, H. Kimura, K. Aoki, T. Masumoto, Mater. Trans. JIM, 31 (1990) 504-508.
[2] T.H. Nam, T. Saburi, K. Shimizu, Mater. Trans. JIM, 31 (1990) 959-967.
[3] W. Tang, R. Sandstrom, Z.G. Wei, S. Miyazaki, Metall. Mater. Trans. A, 31 (2000) 2423-2430.
[4] R.H. Bricknell, K.N. Melton, Metall. Trans. A, 11 (1980) 1541-1546.
[5] Y.C. Lo, S.K. Wu, H.E. Horng, Acta Metall. Et Mater., 41 (1993) 747-759.
[6] T.H. Nam, J.H. Lee, K.W. Kim, H.J. Ahn, Y.W. Kim, J. Mater. Sci., 40 (2005) 4925-4927.
[7] J.H. Lee, T.H. Nam, H.J. Ahn, Y.W. Kim, Mater. Sci. Eng. A, 438 (2006) 691-694.
[8] T.H. Nam, J.H. Lee, J.M. Nam, K.W. Kim, G.B. Cho, Y.W. Kim, Mater. Sci. Eng. A, 483-84 (2008) 460-463.
[9] H. Rosner, P. Schlossmacher, A.V. Shelyakov, A.M. Glezer, Scripta Mater., 43 (2000) 871-876.
[10] H. Rosner, P. Schlossmacher, A.V. Shelyakov, A.M. Glezer, Acta Mater., 49 (2001) 3645-3645.
[11] P. Schlossmacher, N. Boucharat, H. Rosner, G. Wilde, A.V. Shelyakov, J. Phys. IV, 112 (2003) 731-734.
[12] Y. Liu, Mater. Sci. Eng. A, 369 (2004) 314-316.
[13] R. Santamarta, D. Schryvers, Mater. Sci. Eng. A, 378 (2004) 143-147.
[14] R. Santamarta, D. Schryvers, Scripta Mater., 50 (2004) 1423-1427.
[15] R. Santamarta, D. Schryvers, Intermetallics, 12 (2004) 341-348.
[16] G.P. Cheng, Z.L. Xie, J. Alloys Compd., 396 (2005) 128-132.
[17] A.V. Shelyakov, N.N. Sitnikov, A.P. Menushenkov, A.A. Korneev, R.N. Rizakhanov, N.A. Sokolova, J. Alloys Compd, 577 (2013) S251-S254.
[18] L.C. Chang, T.A. Read, Trans. Am. Inst. Min. Metall. Eng., 191 (1951) 47-52.
[19] M.W. Burkart, T.A. Read, Trans. Am. Inst. Min. Metall. Eng., 197 (1953) 1516-1524.
[20] E. Hornbogen, G. Wassermann, Z. Metallkd., 47 (1956) 427-433.
[21] H.C. Lin, Dep. of Mater. Sci. and Eng., National Taiwan University, Taiwan, 1992, pp. 18.
[22] W.J. Buehler, R.C. Wiley, J.V. Gilfrich, J. Appl. Phys., 34 (1963) 1475-1477.
[23] H. Kessler, W. Pitsch, Acta Metall. Mater., 15 (1967) 401-405.
[24] T. Tadaki, K. Otsuka, K. Shimizu, Annu. Rev. Mater. Sci., 18 (1988) 25-45.
[25] J. Ortin, A. Planes, Acta Metall. Mater., 36 (1988) 1873-1889.
[26] H.C. Tong, C.M. Wayman, Acta Metall. Mater., 22 (1974) 887-896.
[27] J.W. Christian, The Theory of Transformations in Metals and Alloys, Pergamon Press, Oxford, 1965.
[28] D.P. Dunne, C.M. Wayman, Metall. Trans., 4 (1973) 147-152.
[29] K. Otsuka, K. Shimizu, Shape Memory Effects in Alloys, Plenum Press, New York, 1975.
[30] K. Otsuka, C.M. Wayman, Shape Memory Materials, Cambridge University Press, Cambridge, 1998.
[31] C.M. Wayman, MRS Bulletin, 18 (1993) 49-56.
[32] M. Nishida, T. Honma, Scripta Metall. Mater., 18 (1984) 1299-1302.
[33] M. Nishida, T. Honma, Scripta Metall. Mater., 18 (1984) 1293-1298.
[34] M. Nishida, C.M. Wayman, T. Honma, Scripta Metall. Mater., 18 (1984) 1389-1394.
[35] K. Otsuka, K. Shimizu, Int. Metals Rev., 31 (1986) 93-114.
[36] K. Otsuka, K. Shimizu, Metals Forum, 4 (1981) 142-152.
[37] K. Otsuka, C.M. Wayman, P. Feltham (Ed.) in: Reviews on the Deformation Behavior of Materials, Freund Publ. House Ltd., Tel Aviv, Israel, 2 (1977) pp. 81-172.
[38] K. Otsuka, K. Shimizu, Proc. Int. Conf. on Solid to Solid Phase Transformations at Pittsburg, Pennsylvania, U.S.A. (1981) 1267-1286.
[39] J. Beyer, M. Chandrasekaran, Proc. 75th Mtg. of the AGARD Struc. and Mater. Panel, Lindau, Germany, 13 (1992) 1-7
[40] K. Otsuka, X.B. Ren, Intermetallics, 7 (1999) 511-528.
[41] C.M. Jackson, H.J. Wagner, R.J. Wasilewski, Tech. Rep. NASA SP-5110, (1972).
[42] K. Otsuka, T. Sawamura, K. Shimizu, Phys. Stat. Sol. A, 5 (1971) 457-470.
[43] O. Matsumoto, S. Miyazaki, K. Otsuka, H. Tamura, Acta Metall. Mater., 35 (1987) 2137-2144.
[44] K.M. Knowles, D.A. Smith, Acta Metall. Mater., 29 (1981) 101-110.
[45] T. Onda, Y. Bando, T. Ohba, K. Otsuka, Mater. Trans. JIM, 33 (1992) 354-359.
[46] M. Nishida, N. Ohgi, I. I, A. Chiba, K. Yamauchi, Acta Metall. Et Mater., 43 (1995) 1219-1227.
[47] D. Bradley, J. Acoust. Soc. Am., 37 (1965) 700-702.
[48] D.P. Dautovich, G.R. Purdy, Canadian Metall. Quart., 4 (1965) 129-143.
[49] C.M. Wayman, K. Shimizu, I. Cornelis, Scripta Metall. Mater., 6 (1972) 115-122.
[50] H.C. Ling, R. Kaplow, Metall. Trans. A, 11 (1980) 77-83.
[51] F.E. Wang, B.F. Desavage, W.J. Buehler, W.R. Hosler, J. Appl. Phys., 39 (1968) 2166-2175.
[52] G.D. Sandrock, A.J. Perkins, R.F. Hehemann, Metall. Trans., 2 (1971) 2769-2781.
[53] O. Mercier, K.N. Melton, Y. Depreville, Acta Metall. Mater., 27 (1979) 1467-1475.
[54] E. Goo, R. Sinclair, Acta Metall. Mater., 33 (1985) 1717-1723.
[55] J.E. Hanlon, S.R. Butler, R.J. Wasilews, Trans. Metall. Soc. AIME, 239 (1967) 1323-1327.
[56] K.H. Eckelmeyer, Scripta Metall. Mater., 10 (1976) 667-672.
[57] C.M. Hwang, M. Meichle, M.B. Salamon, C.M. Wayman, Philos. Mag. A, 47 (1983) 31-62.
[58] M. Nishida, C.M. Wayman, A. Chiba, Metallography, 21 (1988) 275-291.
[59] T. Saburi, T. Tatsumi, S. Nenno, J. Phys. Colloques, 43 (1982) 261-266.
[60] G. Airoldi, G. Bellini, C. Difrancesco, J. Phys. F Met. Phys., 14 (1984) 1983-1987.
[61] S. Miyazaki, Y. Igo, K. Otsuka, Acta Metall. Mater., 34 (1986) 2045-2051.
[62] T. Tadaki, Y. Nakata, K. Shimizu, Trans. Jpn. Inst. Met., 28 (1987) 883-890.
[63] S.K. Wu, H.C. Lin, Scripta Metall. Et Mater., 25 (1991) 1529-1532.
[64] L. Bataillard, R. Gotthardt, J. Phys. IV, 5 (1995) 647-652.
[65] L. Bataillard, J.E. Bidaux, R. Gotthard, Philos. Mag. A, 78 (1998) 327-344.
[66] M.C. Carroll, C. Somsen, G. Eggeler, Scripta Mater., 50 (2004) 187-192.
[67] J.K. Allafi, X. Ren, G. Eggeler, Acta Mater., 50 (2002) 793-803.
[68] J. Khalil-Allafi, A. Dlouhy, G. Eggeler, Acta Mater., 50 (2002) 4255-4274.
[69] A. Dlouhy, J. Khalil-Allafi, G. Eggeler, Philos. Mag., 83 (2003) 339-363.
[70] S.H. Chang, S.K. Wu, G.H. Chang, Scripta Mater., 52 (2005) 1341-1346.
[71] K.N. Melton, O. Mercier, Scripta Metall. Mater., 12 (1978) 5-9.
[72] K.N. Melton, O. Mercier, Metall. Trans. A, 9 (1978) 1487-1488.
[73] R.H. Bricknell, K.N. Melton, O. Mercier, Metall. Trans. A, 10 (1979) 693-697.
[74] O. Mercier, K.N. Melton, Metall. Trans. A, 10 (1979) 387-389.
[75] T. Tadaki, C.M. Wayman, Metallography, 15 (1982) 233-245.
[76] T. Tadaki, C.M. Wayman, Metallography, 15 (1982) 247-258.
[77] T. Saburi, T. Komatsu, S. Nenno, Y. Watanabe, J. Less-Common Met., 118 (1986) 217-226.
[78] T. Saburi, T. Takagaki, S. Nenno, K. Koshino, Proc. MRS Int. Mtg. on Adv. Mats., 9 (1989) 147-152.
[79] T. Saburi, Y. Watanabe, S. Nenno, ISIJ Int., 29 (1989) 405-411.
[80] T.H. Nam, T. Saburi, Y. Kawamura, K. Shimizu, Mater. Trans. JIM, 31 (1990) 262-269.
[81] T.H. Nam, T. Saburi, Y. Nakata, K. Shimizu, Mater. Trans. JIM, 31 (1990) 1050-1056.
[82] T.H. Nam, T. Saburi, K. Shimizu, Mater. Trans. JIM, 32 (1991) 814-820.
[83] B.S. Murty, S. Ranganathan, M.M. Rao, Mater. Sci. Eng. A, 149 (1992) 231-240.
[84] L. Chang, D.S. Grummon, Scripta Metall. Et Mater., 25 (1991) 2079-2084.
[85] Y. Watanabe, T. Saburi, Y. Nakagawa, S. Nenno, J. Jpn. Inst. Met., 54 (1990) 861-869.
[86] Z.L. Xie, J. VanHumbeeck, Y. Liu, L. Delaey, Scripta Mater., 37 (1997) 363-371.
[87] Y. Furuya, M. Matsumoto, H.S. Kimura, T. Masumoto, Matet. Sci. Eng. A, 147 (1991) L7-L12.
[88] V. Saravanan, A. Khantachawana, S. Miyazaki, Mater. Trans., 45 (2004) 208-213.
[89] Y.W. Kim, T.H. Nam, Scripta Mater., 51 (2004) 653-657.
[90] A. Inoue, K. Hashimoto, Amorphous and Nanocrystalline Materials, Springer, 2001.
[91] W. Klement, R.H. Willens, P. Duwez, Nature, 187 (1960) 869-870.
[92] J.E. Flinn, Rapid Solidification Technology for Reduced Consumption of Strategic Materials, Noyes Publications, 1985.
[93] A.G. Gillen, B. Cantor, Acta Metall. Mater., 33 (1985) 1813.
[94] R. Nagarajan, K. Chattopadhyay, Acta Metall. Et Mater., 42 (1994) 947-958.
[95] H. Xing, H.Y. Kim, S. Miyazaki, Mater. Sci. Forum, 561-565 (2007) 1481-1484.
[96] P. Donner, S. Eucken, Mater. Sci. Forum, 56-58 (1991) 723-728.
[97] D. Tabor, The Hardness of Metals, Oxford University Press, 2000.
[98] W.C. Oliver, G.M. Pharr, J. Mater. Res., 7 (1992) 1564-1583.
[99] G.M. Pharr, W.C. Oliver, MRS Bulletin, 17 (1992) 28-33.
[100] M.F. Doerner, W.D. Nix, J. Mater. Res., 1 (1986) 601-609.
[101] W.D. Nix, Metall. Trans. A, 20 (1989) 2217-2245.
[102] J.W. Harding, I.N. Sneddon, Proc. Camb. Philos. Soc., 41 (1945) 16-26.
[103] I.N. Sneddon, Int. J. Eng. Sci., 3 (1965) 47-57.
[104] J.L. Loubet, J.M. Georges, O. Marchesini, G. Meille, J. Tribol.-Trans. ASME, 106 (1984) 43-48.
[105] R.B. King, T.C. Osullivan, Int. J. Solids Struc., 23 (1987) 581-597.
[106] P.E. Wierenga, A.J.J. Franken, J. Appl. Phys., 55 (1984) 4244-4247.
[107] J.Y. Kim, S.K. Kang, J.J. Lee, J.I. Jang, Y.H. Lee, D. Kwon, Acta Mater., 55 (2007) 3555-3562.
[108] J.Y. Kim, J.J. Lee, Y.H. Lee, J.I. Jang, D. Kwon, J. Mater. Res., 21 (2006) 2975-2978.
[109] X.G. Ma, K. Komvopoulos, Appl. Phys. Lett., 83 (2003) 3773-3775.
[110] X.G. Ma, K. Komvopoulos, Appl. Phys. Lett., 84 (2004) 4274-4276.
[111] K. Komvopoulos, X.G. Ma, Appl. Phys. Lett., 87 (2005).
[112] X.G. Ma, K. Komvopoulos, J. Mater. Res., 20 (2005) 1808-1813.
[113] A.J.M. Wood, T.W. Clyne, Acta Mater, 54 (2006) 5607-5615.
[114] A.J.M. Wood, S. Sanjabi, Y.Q. Fu, Z.H. Barber, T.W. Clyne, Surf. Coat. Tech., 202 (2008) 3115-3120.
[115] H. Zheng, J.C. Rao, J. Pfetzing, J. Frenzel, C. Somsen, G. Eggeler, Scripta Mater., 58 (2008) 743-746.
[116] J. Pfetzing, A. Schaefer, C. Somsen, M.F.X. Wagner, Int. J. Mater. Res., 100 (2009) 936-942.
[117] H.X. Zheng, J. Pfetzing, J. Frenzel, G. Eggeler, Int. J. Mater. Res., 100 (2009) 594-602.
[118] J. Pfetzing, M.F.-X. Wagner, T. Simon, A. Schaefer, C. Somsen, G. Eggeler, DOI: 10.1051/esomat/200906027, (2009).
[119] J. Eckert, L. Schultz, K. Urban, J. Non-Cryst. Solids, 127 (1991) 90-96.
[120] K.H.J. Buschow, J. Phys. F Met. Phys., 13 (1983) 563-571.
[121] C.Y. Lai, Departrment of Materials Science and Engineering, National Taiwan University, Taiwan, 2013, pp. 66.
[122] S.H. Chang, S.K. Wu, H. Kimura, Intermetallics, 15 (2007) 233-240.
[123] J.Z. Chen, S.K. Wu, Thin Solid Films, 339 (1999) 194-199.
[124] J.Z. Chen, S.K. Wu, J. Non-Cryst. Solids, 288 (2001) 159-165.
[125] H.E. Kissinger, Anal. Chem., 29 (1957) 1702-1706.
[126] P.Y. Hsu, J.M. Ting, Thin Solid Films, 420 (2002) 524-529.
[127] H.S. Chen, B.K. Park, Acta Metall. Mater., 21 (1973) 395-400.
[128] H.S. Chen, Acta Metall. Mater., 22 (1974) 897-900.
[129] A.R. Miedema, Philips Tech. Rev., 36 (1976) 217-231.
[130] A.W. Weeber, H. Bakker, Physica B, 153 (1988) 93-135.
[131] D.V. Louzguine, A. Inoue, J. Mater. Sci., 35 (2000) 4159-4164.
[132] Y.X. Tong, Y. Liu, Z.L. Xie, M. Zarinejad, Acta Mater., 56 (2008) 1721-1732.
[133] R. Schmidt, M. Schlereth, H. Wipf, W. Assmus, M. Mullner, J. Phys.-Condens. Mat., 1 (1989) 2473-2482.
[134] A. Khantachawana, H. Mizubayashi, S. Miyazaki, Mater. Trans., 45 (2004) 214-218.
[135] V. Saravanan, A. Khantachawana, S. Miyazaki, Mater. Trans., 45 (2004) 208-213.
[136] C.H. Chen, H.K. Wang, S.K. Wu, Intermetallics, 64 (2015) 78-85.
[137] A. Ishida, M. Sato, K. Ogawa, Mater. Sci. Eng. A, 481 (2008) 91-94.
[138] A. Ishida, M. Sato, K. Ogawa, Philos. Mag., 88 (2008) 2427-2438.
[139] K.N. Lin, Departrment of Materials Science and Engineering, National Taiwan University, Taiwan, 2005, pp. 110.
[140] C.A. Schuh, T.G. Nieh, Acta Mater., 51 (2003) 87-99.
[141] A.L. Greer, Y.Q. Cheng, E. Ma, Mater. Sci. Eng. R, 74 (2013) 71-132.
[142] C.H. Chen, S.Y. Cheng, S.K. Wu, Intermetallics, 36 (2013) 109-117.
[143] C.H. Chen, S.K. Wu, Mater. Sci. Eng. A, 593 (2014) 85-91.
[144] H. Rosner, A.V. Shelyakov, A.M. Glezer, K. Feit, P. Schlossmacher, Mater. Sci. Eng. A, 273 (1999) 733-737.
[145] A.L. Greer, Mater. Sci. Eng. A, 304 (2001) 68-72.
[146] U. Ramamurty, S. Jana, Y. Kawamura, K. Chattopadhyay, Acta Mater., 53 (2005) 705-717.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54425-
dc.description.abstract本研究利用快速凝固製程(RSP)製備Ti50Ni25Cu25合金箔帶(ribbon),並針對其退火後之麻田散體變態、顯微結構、超彈性等進行探討。本研究所使用之4000rpm Ti50Ni25Cu25合金箔帶幾乎為完全非晶質的,其wavenumber (Qp)、結晶起始溫度(Tx)以及結晶活化能(Ea)皆較Ti-Ni二元合金箔帶、薄膜及Ti50Ni40Cu10合金箔帶低,可知非晶質合金箔帶的熱穩定性隨箔帶中Cu含量增加而降低。非晶質之Ti50Ni25Cu25箔帶分別經過高於結晶溫度的500℃以及低於結晶溫度的435℃退火後,皆產生B2↔B19一階相變態,惟在435℃退火之試片需要更長之退火時間方能結晶。透過XRD檢視退火結晶化後箔帶之相組成,可發現箔帶接觸面以及自由面具有不同的織構,織構形成的原因為RSP過程中,熔融金屬接觸銅輪焠冷時之熱流方向影響所致;並可透過SEM於箔帶與銅輪接觸面發現一層具優選方位之晶粒。EBSD結果顯示,退火時間對晶粒大小之影響相當小,不論是在結晶溫度以上或以下退火之箔帶皆具有細小、等軸且均勻的組織。由奈米壓痕硬度試驗以及超彈性之研究可歸納出兩點影響超彈性行為之主要因素:一為變態潛熱,即ΔH值;另一為析出物之量以及析出形貌。變態潛熱隨退火時間增加,即結晶化程度增加而上升,使得硬度下降、可回復之變形量增加;但亦會因析出物析出,即可變態之材料體積減少而下降,使得硬度上升、可回復之變形量減少。而材料之析出行為則隨退火溫度之不同而有相當大之差異,在高於結晶溫度退火之箔帶,析出物成長較快,整合性很快喪失,因此使箔帶脆化,可回復之變形量減少;低於結晶溫度退火之箔帶,析出物則可保有其整合性較長時間,其特殊之胞格狀結構,雖能增加箔帶硬度但也使箔帶嚴重脆化。本研究之箔帶試片,其最佳之超彈性可回復應變量可大於80%,顯示經過適當之退火處理之Ti50Ni25Cu25形狀記憶合金箔帶具有相當良好之超彈性。zh_TW
dc.description.abstractTi50Ni25Cu25 ribbons prepared by rapid solidification process (RSP) at 4000 rpm are studied to investigate the transformation behavior, microstructure and mechanical properties. As-spun Ti50Ni25Cu25 ribbons are nearly fully amorphous with a lower wavenumber Qp than the amorphous Ti-Ni alloys and the partially amorphous Ti50Ni40Cu10 ribbons owing to its high Cu content. Both crystallization activation energy Ea and onset temperature Tx for Ti50Ni25Cu25 ribbons are lower than those for Ti50Ni50 and Ti50Ni40Cu10 ribbons/thin films, which also indicate a worse thermal stability exhibited in amorphous Ti50Ni50-xCux alloys with high Cu content. Texture of {100}B2 orientation is discovered on the contact side of the ribbons, due to that the heat flow associated with ribbon processing is normal to the spin wheel during RSP. Nanoindentation tests show that proper annealing process is required to obtain well crystallized ribbons with promising pseudoelasticity (PE). The PE property of these annealed ribbons is found to be related to two factors: the transformation latent heat and the precipitation behavior. The PE recovery ratio of nanoindentation tests can reach > 80% in these ribbons, indicating quite good PE property exhibited in annealed Ti50Ni25Cu25 ribbons.en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:56:10Z (GMT). No. of bitstreams: 1
ntu-104-R01527069-1.pdf: 11832615 bytes, checksum: 2e1a537daeac12c7471b69174828236b (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents摘要 i
Abstract iii
目錄 v
第一章 前言 1
第二章 文獻探討 3
2-1 形狀記憶合金(SMAs)簡介 3
2-1-1 熱彈性麻田散體變態 4
2-1-2 形狀記憶效應(SME) 6
2-1-3 超彈性/擬彈性(Pseudoelasticity, PE) 8
2-2 TiNi基形狀記憶合金 9
2-3 TiNiCu形狀記憶合金 12
2-3-1 TiNiCu形狀記憶合金簡介 12
2-3-2 TiNiCu形狀記憶合金之相變態行為 13
2-3-3 Ti50Ni50-xCux (x=0~20, at%) melt-spun箔帶 14
2-3-4 Ti50Ni25Cu25 melt-spun箔帶 14
2-4 快速凝固製程 16
2-5 奈米壓痕試驗 18
2-5-1 技術起源及基本原理 18
2-5-2 奈米壓痕分析模型 19
2-5-3 試驗校正參數 20
2-5-4 奈米壓痕試驗在形狀記憶合金上之應用 22
第三章 實驗方法與設備 47
3-1 以RSP製備Ti50Ni25Cu25箔帶 47
3-2 TiNiCu合金箔帶之熱處理 48
3-3 DSC熱分析實驗 48
3-4 XRD晶體結構分析 48
3-5 SEM觀察與EBSD分析 49
3-6奈米壓痕硬度與超彈性測試 49
第四章 結果與討論 59
4-1 As-spun Ti50Ni25Cu25合金箔帶分析與討論 59
4-2 於500℃退火之Ti50Ni25Cu25合金箔帶 61
4-2-1 DSC相變態分析 61
4-2-2 常溫下相組成分析 63
4-2-3 常溫下顯微組織分析 66
4-2-4 奈米壓痕硬度及超彈性之測試結果 68
4-3 於435℃退火之Ti50Ni25Cu25合金箔帶 72
4-3-1 DSC相變態分析 72
4-3-2 常溫下相組成分析 73
4-3-3 常溫下顯微組織分析 75
4-3-4 奈米壓痕硬度及超彈性之測試結果 77
4-4 Ti50Ni25Cu25合金箔帶於500℃與435℃退火之比較 80
第五章 結論 117
參考文獻 119
dc.language.isozh-TW
dc.subject奈米壓痕zh_TW
dc.subjectTi50Ni25Cu25形狀記憶合金zh_TW
dc.subject箔帶zh_TW
dc.subject超彈性zh_TW
dc.subject優選方位zh_TW
dc.subjectTi50Ni25Cu25形狀記憶合金zh_TW
dc.subject箔帶zh_TW
dc.subject奈米壓痕zh_TW
dc.subject超彈性zh_TW
dc.subject優選方位zh_TW
dc.subjectNanoindentationen
dc.subjectNanoindentationen
dc.subjectPseudoelasticityen
dc.subjectTextureen
dc.subjectRibbonen
dc.subjectTi50Ni25Cu25 SMAsen
dc.subjectTextureen
dc.subjectPseudoelasticityen
dc.subjectTi50Ni25Cu25 SMAsen
dc.subjectRibbonen
dc.titleTi50Ni25Cu25形狀記憶合金箔帶麻田散體變態及超彈性能之研究zh_TW
dc.titleStudies on Martensitic Transformation and Pseudoelasticity of Ti50Ni25Cu25 Ribbonsen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林新智,胡塵滌,周棟勝,張世航
dc.subject.keywordTi50Ni25Cu25形狀記憶合金,箔帶,奈米壓痕,超彈性,優選方位,zh_TW
dc.subject.keywordTi50Ni25Cu25 SMAs,Ribbon,Nanoindentation,Pseudoelasticity,Texture,en
dc.relation.page126
dc.rights.note有償授權
dc.date.accepted2015-07-08
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
11.56 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved