請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54056
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林招松(Chao-Sung Lin) | |
dc.contributor.author | Han-Bang Yi | en |
dc.contributor.author | 易漢邦 | zh_TW |
dc.date.accessioned | 2021-06-16T02:38:14Z | - |
dc.date.available | 2017-08-11 | |
dc.date.copyright | 2015-08-11 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-07-24 | |
dc.identifier.citation | 1. Birbilis, N. and R. Buchheit, Electrochemical characteristics of intermetallic phases in aluminum alloys an experimental survey and discussion. Journal of the Electrochemical Society, 2005. 152(4): p. B140-B151.
2. Buchheit, R., A compilation of corrosion potentials reported for intermetallic phases in aluminum alloys. Journal of the Electrochemical Society, 1995. 142(11): p. 3994-3996. 3. Campestrini, P., et al., Relation between microstructural aspects of AA2024 and its corrosion behaviour investigated using AFM scanning potential technique. Corrosion Science, 2000. 42(11): p. 1853-1861. 4. He, W., et al., WEEE recovery strategies and the WEEE treatment status in China. Journal of Hazardous Materials, 2006. 136(3): p. 502-512. 5. Hischier, R., P. Wäger, and J. Gauglhofer, Does WEEE recycling make sense from an environmental perspective?: The environmental impacts of the Swiss take-back and recycling systems for waste electrical and electronic equipment (WEEE). Environmental Impact Assessment Review, 2005. 25(5): p. 525-539. 6. Ongondo, F.O., I.D. Williams, and T.J. Cherrett, How are WEEE doing? A global review of the management of electrical and electronic wastes. Waste management, 2011. 31(4): p. 714-730. 7. Walther, G. and T. Spengler, Impact of WEEE-directive on reverse logistics in Germany. International Journal of Physical Distribution & Logistics Management, 2005. 35(5): p. 337-361. 8. Directive, E., Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment. Official Journal of the European Union, 2003. 13: p. L37. 9. Hicks, C., R. Dietmar, and M. Eugster, The recycling and disposal of electrical and electronic waste in China—legislative and market responses. Environmental Impact Assessment Review, 2005. 25(5): p. 459-471. 10. Schlummer, M., et al., Characterisation of polymer fractions from waste electrical and electronic equipment (WEEE) and implications for waste management. Chemosphere, 2007. 67(9): p. 1866-1876. 11. Selin, H. and S.D. VanDeveer, Raising global standards: hazardous substances and e-waste management in the European Union. Environment: Science and Policy for Sustainable Development, 2006. 48(10): p. 6-18. 12. Sepúlveda, A., et al., A review of the environmental fate and effects of hazardous substances released from electrical and electronic equipments during recycling: Examples from China and India. Environmental Impact Assessment Review, 2010. 30(1): p. 28-41. 13. Bhatt, H. Trivalent Chromium Conversion Coating for Corrosion Protection of Aluminum Surface. in Proceedings of the Department of Defence Corrosion Conference. 2009. 14. Guo, Y. and G. Frankel, Active Corrosion Inhibition of AA2024-T3 by Trivalent Chrome Process Treatment. Corrosion, The Journal of Science and Engineering, 2012. 68(4): p. 045002-1-045002-10. 15. Guo, Y. and G. Frankel, Characterization of trivalent chromium process coating on AA2024-T3. Surface and Coatings Technology, 2012. 206(19): p. 3895-3902. 16. Hughes, A., et al., Factors influencing the deposition of Ce-based conversion coatings, part I: The role of Al3+ ions. Surface and Coatings Technology, 2009. 203(19): p. 2927-2936. 17. Johnson, B.Y., J. Edington, and M.J. O’Keefe, Effect of coating parameters on the microstructure of cerium oxide conversion coatings. Materials Science and Engineering: A, 2003. 361(1): p. 225-231. 18. Lau, D., et al., Factors influencing the deposition of Ce-based conversion coatings, Part II: The role of localised reactions. Surface and Coatings Technology, 2009. 203(19): p. 2937-2945. 19. Li, L., et al., The Formation, Structure, Electrochemical Properties and Stability of Trivalent Chrome Process (TCP) Coatings on AA2024. Journal of The Electrochemical Society, 2011. 158(9): p. C274-C283. 20. Chen, W.-K., et al., Growth and characteristics of Cr (III)-based conversion coating on aluminum alloy. Journal of the Taiwan Institute of Chemical Engineers, 2012. 43(6): p. 989-995. 21. Guo, Y., A Study of Trivalent Chrome Process Coatings on Aluminum Alloy 2024-T3. 2011, The Ohio State University. 22. Moffitt, C., D. Wieliczka, and H. Yasuda, An XPS study of the elemental enrichment on aluminum alloy surfaces from chemical cleaning. Surface and Coatings Technology, 2001. 137(2): p. 188-196. 23. Rangel, C., T. Paiva, and P. Da Luz, Conversion coating growth on 2024-T3 Al alloy. The effect of pre-treatments. Surface and Coatings Technology, 2008. 202(14): p. 3396-3402. 24. Cherepy, N.J., et al., Characterization of an effective cleaning procedure for aluminum alloys: surface enhanced Raman spectroscopy and zeta potential analysis. Journal of colloid and interface science, 2005. 282(1): p. 80-86. 25. De Frutos, A., et al., Influence of pre-treatments in cerium conversion treatment of AA2024-T3 and 7075-T6 alloys. Surface and Coatings Technology, 2008. 202(16): p. 3797-3807. 26. Harvey, T., et al., Non-chromate deoxidation of AA2024-T3: Sodium bromate–nitric acid (20–60° C). Applied Surface Science, 2008. 254(11): p. 3562-3575. 27. Boag, A., The Relationship Between Microstructure and Stable Pitting Initiation in Aerospace Aluminium Alloy 2024-T3. Melbourne, RMIT. PhD, 2009. 28. Birbilis, N. and R. Buchheit, Investigation and discussion of characteristics for intermetallic phases common to aluminum alloys as a function of solution pH. Journal of The Electrochemical Society, 2008. 155(3): p. C117-C126. 29. 聂祚仁, et al., Development on research of advanced rare-earth aluminum alloy. 中国有色金属学会会刊: 英文版, 2003. 13(3): p. 509-514. 30. Szklarska-Smialowska, Z., Pitting corrosion of aluminum. Corrosion Science, 1999. 41(9): p. 1743-1767. 31. Foley, R., Localized corrosion of aluminum alloys-a review. Corrosion, 1986. 42(5): p. 277-288. 32. Shao, M., et al., A study on pitting corrosion of aluminum alloy 2024-T3 by scanning microreference electrode technique. Materials Science and Engineering: A, 2003. 344(1): p. 323-327. 33. Birbilis, N., M. Cavanaugh, and R. Buchheit, Electrochemical behavior and localized corrosion associated with Al7Cu2Fe particles in aluminum alloy 7075-T651. Corrosion Science, 2006. 48(12): p. 4202-4215. 34. Liao, C.-M., et al., In-situ monitoring of pitting corrosion in aluminum alloy 2024. Corrosion, 1998. 54(6): p. 451-458. 35. McCafferty, E., Sequence of steps in the pitting of aluminum by chloride ions. Corrosion Science, 2003. 45(7): p. 1421-1438. 36. Chen, G., M. Gao, and R. Wei, Microconstituent-induced pitting corrosion in aluminum alloy 2024-T3. Corrosion, 1996. 52(1): p. 8-15. 37. Koroleva, E., et al., Surface morphological changes of aluminium alloys in alkaline solution:: effect of second phase material. Corrosion Science, 1999. 41(8): p. 1475-1495. 38. Schmutz, P. and G. Frankel, Corrosion Study of AA2024‐T3 by Scanning Kelvin Probe Force Microscopy and In Situ Atomic Force Microscopy Scratching. Journal of the Electrochemical Society, 1998. 145(7): p. 2295-2306. 39. Schmutz, P. and G. Frankel, Characterization of AA2024‐T3 by Scanning Kelvin Probe Force Microscopy. Journal of the Electrochemical Society, 1998. 145(7): p. 2285-2295. 40. Buchheit, R., M. Martinez, and L. Montes, Evidence for Cu Ion Formation by Dissolution and Dealloying the Al2CuMg Intermetallic Compound in Rotating Ring‐Disk Collection Experiments. Journal of The Electrochemical Society, 2000. 147(1): p. 119-124. 41. Hollingsworth, E. and H. Hunsicker, Corrosion of aluminum and aluminum alloys. ASM Handbook., 1987. 13: p. 583-609. 42. Buchheit, R., et al., The Electrochemical Characteristics of Bulk‐Synthesized Al2CuMg. Journal of The Electrochemical Society, 1999. 146(12): p. 4424-4428. 43. McCune, H., Corrosion of Aluminum by Alkaline Sequestering Solutions. Industrial & Engineering Chemistry, 1958. 50(1): p. 67-70. 44. Zhang, J., M. Klasky, and B.C. Letellier, The aluminum chemistry and corrosion in alkaline solutions. Journal of Nuclear Materials, 2009. 384(2): p. 175-189. 45. Joshi, S., W.G. Fahrenholtz, and M.J. O'Keefe, Alkaline activation of Al 7075-T6 for deposition of cerium-based conversion coatings. Surface and Coatings Technology, 2011. 205(17): p. 4312-4319. 46. Joshi, S., W.G. Fahrenholtz, and M.J. O’Keefe, Effect of alkaline cleaning and activation on aluminum alloy 7075-T6. Applied Surface Science, 2011. 257(6): p. 1859-1863. 47. Dimitrov, N., et al., Dealloying of Al2CuMg in alkaline media. Journal of The Electrochemical Society, 2000. 147(9): p. 3283-3285. 48. Vukmirovic, M., N. Dimitrov, and K. Sieradzki, Dealloying and Corrosion of Al Alloy 2024 T 3. Journal of The Electrochemical Society, 2002. 149(9): p. B428-B439. 49. Campestrini, P., et al., Formation of a cerium-based conversion coating on AA2024: relationship with the microstructure. Surface and Coatings Technology, 2004. 176(3): p. 365-381. 50. Digby, R. and D. Packham, Pretreatment of aluminium: topography, surface chemistry and adhesive bond durability. International journal of adhesion and adhesives, 1995. 15(2): p. 61-71. 51. Campestrini, P., et al., Chromate Conversion Coating on Aluminum Alloys II: Effect of the Microstructure. Journal of The Electrochemical Society, 2004. 151(6): p. B359-B369. 52. Li, L., A.L. Desouza, and G.M. Swain, Effect of Deoxidation Pretreatment on the Corrosion Inhibition Provided by a Trivalent Chromium Process (TCP) Conversion Coating on AA2024-T3. Journal of The Electrochemical Society, 2014. 161(5): p. C246-C253. 53. Katzman, H., et al., Corrosion-protective chromate coatings on aluminum. Applications of Surface Science, 1979. 2(3): p. 416-432. 54. Kendig, M., et al., Role of hexavalent chromium in the inhibition of corrosion of aluminum alloys. Surface and Coatings Technology, 2001. 140(1): p. 58-66. 55. Campestrini, P., et al., Chromate Conversion Coating on Aluminum Alloys III. Corrosion Protection. Journal of the Electrochemical Society, 2004. 151(6): p. B370-B377. 56. Eppensteiner, F.W. and M.R. Jenkins, Chromate conversion coatings. Metal finishing, 2001. 99: p. 494-506. 57. Campestrini, P., et al., Chromate Conversion Coating on Aluminum Alloys I. Formation Mechanism. Journal of the Electrochemical Society, 2004. 151(2): p. B59-B70. 58. Jaime Vasquez, M., et al., On the nature of the chromate conversion coating formed on intermetallic constituents of AA2024‐T3. Surface and interface analysis, 2002. 33(7): p. 607-616. 59. Xia, L. and R.L. McCreery, Structure and function of ferricyanide in the formation of chromate conversion coatings on aluminum aircraft alloy. Journal of the Electrochemical Society, 1999. 146(10): p. 3696-3701. 60. Brown, G., et al., The morphology, structure and mechanism of growth of chemical conversion coatings on aluminium. Corrosion science, 1992. 33(9): p. 1371-1385. 61. Yoon, Y. and R. Buchheit, The Effect of Cu Content on Chromate Conversion Coating Formation of Compositional Analogs of the η Phase Mg (Zn, xCu) 2. Electrochemical and Solid-State Letters, 2005. 8(11): p. B65-B68. 62. Blanc, C., B. Lavelle, and G. Mankowski, The role of precipitates enriched with copper on the susceptibility to pitting corrosion of the 2024 aluminium alloy. Corrosion Science, 1997. 39(3): p. 495-510. 63. Buchheit, R., et al., Local Dissolution Phenomena Associated with S Phase (Al2CuMg) Particles in Aluminum Alloy 2024‐T3. Journal of the Electrochemical Society, 1997. 144(8): p. 2621-2628. 64. Jaime Vasquez, M., et al., Spatially resolved microchemical analysis of chromate‐conversion‐coated aluminum alloy AA2024‐T3. Surface and interface analysis, 2002. 33(10‐11): p. 796-806. 65. Sinha, S., B.D. Humphrey, and A.B. Bocarsly, Reaction of nickel electrode surfaces with anionic metal-cyanide complexes: formation of precipitated surfaces. Inorganic Chemistry, 1984. 23(2): p. 203-212. 66. Chidambaram, D., C.R. Clayton, and G.P. Halada, Interactions of the components of chromate conversion coating with the constituents of aluminum alloy AA2024-T3. Journal of The Electrochemical Society, 2004. 151(3): p. B151-B159. 67. Al‐Suhybani, A., Y. Sultan, and W. Hamid, Corrosion of aluminium in alkaline solutions. Materialwissenschaft und Werkstofftechnik, 1991. 22(8): p. 301-307. 68. Chidambaram, D., et al., Surface Pretreatments of Aluminum Alloy AA2024-T3 and Formation of Chromate Conversion Coatings II. Composition and Electrochemical Behavior of the Chromate Conversion Coating. Journal of The Electrochemical Society, 2004. 151(11): p. B613-B620. 69. Clark, W.J., et al., A galvanic corrosion approach to investigating chromate effects on aluminum alloy 2024-T3. Journal of The Electrochemical Society, 2002. 149(5): p. B179-B185. 70. Hagans, P.L. and C.M. Haas, Influence of metallurgy on the protective mechanism of chromium‐based conversion coatings on aluminum–copper alloys. Surface and interface analysis, 1994. 21(2): p. 65-78. 71. Meng, Q. and G. Frankel, Characterization of chromate conversion coating on AA7075‐T6 aluminum alloy. Surface and interface analysis, 2004. 36(1): p. 30-42. 72. Laget, V., et al., Dehydration-induced loss of corrosion protection properties in chromate conversion coatings on aluminum alloy 2024-T3. Journal of The Electrochemical Society, 2003. 150(9): p. B425-B432. 73. Liang, C. and R. Zheng, Conversion coating treatment for AZ91 magnesium alloys by a permanganate‐REMS bath. Materials and corrosion, 2007. 58(3): p. 193-197. 74. Wang, C.-M., H.-C. Liau, and W.-T. Tsai, Effect of heat treatment on the microstructure and electrochemical behavior of manganese phosphate coating. Materials chemistry and physics, 2007. 102(2): p. 207-213. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54056 | - |
dc.description.abstract | 鋁合金2024-T3為航空載具結構件的重要材料,為了避免材料腐蝕影響航空飛行的安全,通常會在鋁合金2024-T3表面進行化成處理。經六價鉻化成處理的鋁合金擁有優異的抗蝕能力,但六價鉻具有致癌性,也會給環境帶來嚴重汙染,國際指令因此嚴格限制六價鉻物質的使用,目前大量研究試著尋找替代六價鉻的環保製程。
三價鉻化成處理是現今廣泛應用的替代六價鉻環保製程,但三價鉻本身氧化能力較六價鉻弱,且沒有六價鉻皮膜特有的自我癒合能力,故仍需透過製程條件的調控來改善抗蝕能力,現今國內航空產業所使用的化成液大多來自國外廠商,配方和操作窗口也受到航空規範的限制,製程上能夠做的調整幅度也有限,在不對三價鉻化成處理本身做改良的情形下,本研究探討不同酸洗前處理對鋁合金2024-T3三價鉻化成皮膜抗蝕能力的影響,研究發現兩種不同酸洗前處理結果對於鋁合金表面形貌影響差異大,經Deoxidizer 6酸洗後底材表面改變較大,表面佈滿蝕孔且平整性差,經硝酸酸洗的底材僅在表面出現些微蝕孔,最終硝酸酸洗前處理的三價鉻皮膜能夠通過航空產業所要求的168小時鹽霧試驗規範。 在TEM橫截面觀察下,兩酸洗前處理條件的三價鉻化成處理後,皆在表面生成三價鉻鈍化膜,硝酸酸洗前處理之皮膜較Deoxidizer 6酸洗前處理之皮膜緻密且厚。藉由TEM-EDS元素分析,三價鉻皮膜為一雙層結構,外層的Cr(III)、Zr含量較內層高,內層的Al含量則較外層高,XPS分析皮膜組成中含有Cr(III)、Zr和Al的氧化物及氫氧化物。在浸泡含有六價鉻的Deoxidizer 6酸洗液後,試片表面會留有一層薄薄鈍化層,此鈍化層會降低三價鉻化成處理時的反應性。基於考量到皮膜連續性及化成反應性因素,硝酸酸洗前處理較Deoxidizer 6酸洗前處理適合Metalast TCP-HF三價鉻化成製程,動電位極化曲線結果顯示腐蝕電流較小且較能阻擋鹽霧試驗下蝕孔的擴大。 | zh_TW |
dc.description.abstract | Aluminum alloy 2024-T3 has widely been used in the aircraft industry. To avoid an air crash caused by corrosion of the alloy, conversion coatings have commonly conducted on aluminum alloy 2024-T3. Hexavalent chromium conversion coatings provide excellent anti-corrosion properties; however, hexavalent chromium is a toxic element and harmful to species and environment. International directives have strictly banned the use of hexavalent chromium. Therefore, many efforts have been made to find the process alternative to hexavalent chromium conversion process.
Trivalent chromium conversion coating is a potential alternative process to hexavalent chromium conversion coating. However, the oxidizing capability of trivalent chromium is inferior to hexavalent chromium. Moreover, trivalent chromium conversion coating does not have self-healing capability. Modifications of the processing procedure are thus essential to improve the anti-corrosion properties of trivalent chromium conversion coating. The trivalent chromium conversion solution we now use in Taiwan is imported from foreign manufacturers and the modifications we can make are limited by aerospace specifications. Under that premise, this study is to understand the effect of two different acidic pretreatments, nitric acid and Deoxidizer 6, on the microstructure and properties of the subsequent trivalent chromium conversion coating on aluminum alloy 2024-T3. The results show that the coating treated with nitric acid pretreatment performs better in potentiodynamic polarization test and are able to pass 168-hr of the salt spray test. Pits attacked by F ions become larger and then coalescence with each other, resulting in a rough surface after pretreatment in Deoxidizer 6. The uneven surface may also influence the uniformity of the trivalent chromium coating. However, there are only a few pits on the surface pretreated in nitric acid and the surface seems smoother than that pretreated in Deoxidizer 6. Cross-sectional characterization reveals the presence of trivalent chromium conversion coating on aluminum alloy 2024-T3 after immersion in Metalast TCP-HF regardless of the acidic pretreatments. The trivalent chromium conversion coating on aluminum alloy 2024-T3 pretreated in nitric acid is denser and thicker compared to that on aluminum alloy 2024-T3 pretreated in Deoxidizer 6. A two-layered structure is clearly observed, where Cr(III) and Zr content in the outer part of the coating is higher than that in the inner part. On the contrary, the inner part of the coating is rich in Al. The trivalent chromium conversion coating on aluminum alloy 2024-T3 is composed of oxide and hydroxide of Cr(III), Zr, and Al, as revealed by XPS. Due to the presence of chromate ions in Deoxidizer 6, there is already a thin film containing Cr(III) on the surface after the acidic pretreatment. This thin film serving as a passivation layer deteriorates the reactivity during the following TCP. With respect to the uniformity of the coating and reactivity of conversion reaction, the pretreatment in nitric acid is more suitable for the trivalent chromium conversion process using the Metalast TCP-HF solution. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T02:38:14Z (GMT). No. of bitstreams: 1 ntu-104-R02527012-1.pdf: 8123023 bytes, checksum: 4a25d1f2dabff4c9d75a8f609052f52b (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 摘要 iv Abstract vi 目錄 viii 表目錄 xi 圖目錄 xii 第一章 前言 1 第二章 文獻探討 3 2-1 鋁合金簡介 3 2-1-1 鋁與鋁合金 3 2-1-2 鋁合金分類 9 2-2 鋁合金的腐蝕行為 11 2-2-1 鋁的腐蝕行為概述 11 2-2-2 鋁合金內不同微結構的腐蝕行為 12 2-3 鋁合金的表面處理 23 2-3-1 鹼洗前處理 23 2-3-2 酸洗前處理對化成皮膜生成影響 29 2-3-3 化成處理 36 2-3-4 六價鉻皮膜化成處理 38 2-3-5 三價鉻皮膜化成處理 43 第三章 實驗方法及步驟 50 3-1 試片表面前處理 50 3-2 製程條件 50 3-3 微結構觀察 53 3-3-1 掃描式電子顯微鏡 53 3-3-2 能量散佈光譜儀 53 3-3-3 橫截面穿透式電子顯微鏡 53 3-4 表面成分分析 54 3-4-1 化學分析電子光譜 54 3-5 化成皮膜抗蝕性質分析 55 3-5-1 動電位極化曲線 55 3-5-2 鹽霧試驗 57 第四章 實驗結果 58 4-1 鋁合金2024-T3底材分析 58 4-1-1 ICP-MS化學成分分析 58 4-1-2 表面形貌觀察 58 4-2 不同酸洗前處理條件之試樣表面分析 61 4-2-1 表面巨觀形貌觀察 61 4-2-2 表面形貌SEM觀察 62 4-3 不同酸洗前處理條件之表面化成皮膜分析 65 4-3-1 表面形貌SEM觀察 65 4-3-2 橫截面TEM觀察 68 4-3-3 表面XPS分析 73 4-3-4 極化曲線 76 4-3-5 鹽霧試驗 82 4-4 酸洗前處理對三價鉻皮膜抗蝕能力之影響機構 91 第五章 討論 97 第六章 結論 99 參考文獻 101 | |
dc.language.iso | zh-TW | |
dc.title | 鋁合金三價鉻化成處理研究 | zh_TW |
dc.title | A Study of Trivalent Chromium Conversion Coatings on Aluminum Alloy 2024-T3 | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 葛明德(Ming-Der Ger),李岳聯(Yueh-Lien Li) | |
dc.subject.keyword | 鋁合金2024-T3,三價鉻化成處理,酸洗前處理,抗蝕性, | zh_TW |
dc.subject.keyword | Aluminum alloy 2024-T3,trivalent chromium conversion coating,acidic pretreatment,corrosion resistance, | en |
dc.relation.page | 106 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-07-24 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 7.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。