Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53964
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳敏璋
dc.contributor.authorYi-Jen Tsaien
dc.contributor.author蔡伊甄zh_TW
dc.date.accessioned2021-06-16T02:34:52Z-
dc.date.available2020-09-02
dc.date.copyright2015-09-02
dc.date.issued2015
dc.date.submitted2015-07-28
dc.identifier.citation第一章
[1] Moore G. E., Cramming more components onto integrated circuits (Reprinted from Electronics, pg 114-117, April 19, 1965). P IEEE 1998, 86 (1), 82-85.
[2] Robertson J., High dielectric constant gate oxides for metal oxide Si transistors. Rep Prog Phys 2006, 69 (2), 327-396.
[3] International Technology Roadmap for Semiconductors. 2013.
[4] Hu C. C., Modern Semiconductor Devices for Integrated Circuits. 2009.
[5] Engstrom O., The MOS System. 2015.
[6] Houssa M., High-K gate dielectrics. 2004.
[7] Robertson J., High dielectric constant oxides. Eur Phys J-Appl Phys 2004, 28 (3), 265-291.
[8] Plummer J. D.; Griffin P. B., Material and process limits in silicon VLSI technology. P IEEE 2001, 89 (3), 240-258.
[9] Robertson J., Band offsets of wide-band-gap oxides and implications for future electronic devices. J Vac Sci Technol B 2000, 18 (3), 1785-1791.
[10] Hubbard K. J.; Schlom D. G., Thermodynamic stability of binary oxides in contact with silicon. J Mater Res 1996, 11 (11), 2757-2776.
[11] Copel M.; Gribelyuk M.; Gusev E., Structure and stability of ultrathin zirconium oxide layers on Si(001). Appl Phys Lett 2000, 76 (4), 436-438.
[12] Vanderbilt D.; Zhao X. Y.; Ceresoli D., Structural and dielectric properties of crystalline and amorphous ZrO2. Thin Solid Films 2005, 486 (1-2), 125-128.
[13] Colinge J.-P., FinFETs and Other Multi-Gate Transistors. 2008.
[14] Kedzierski J.; Ieong M.; Nowak E.; Kanarsky T. S.; Zhang Y.; Roy R.; Boyd D.; Fried D.; Wong H. S. P., Extension and source/drain design for high-performance FinFET devices. IEEE T Electron Dev 2003, 50 (4), 952-958.
[15] Hisamoto D.; Wen-Chin L.; Kedzierski J.; Anderson E.; Takeuchi H.; Asano K.; Tsu-Jae K.; Bokor J.; Chenming H. In A folded-channel MOSFET for deep-sub-tenth micron era, Electron Devices Meeting, 1998. IEDM '98. Technical Digest., International, 6-9 Dec. 1998; 1998; pp 1032-1034.
[16] Nyns L.; Ragnarsson L. A.; Hall L.; Delabie A.; Heyns M.; Van Elshocht S.; Vinckier C.; Zimmerman P.; De Gendt S., Silicon orientation effects in the atomic layer deposition of Hafnium oxide. J Electrochem Soc 2008, 155 (2), G9-G12.
[17] Puurunen R. L., Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. Journal of Applied Physics 2005, 97 (12), 121301.
[18] Kim H.; Lee H. B. R.; Maeng W. J., Applications of atomic layer deposition to nanofabrication and emerging nanodevices. Thin Solid Films 2009, 517 (8), 2563-2580.
[19] George S. M., Atomic Layer Deposition: An Overview. Chem Rev 2010, 110 (1), 111-131.
[20] Pinna N.; Knez M. Atomic Layer Deposition of Nanostructured Materials. 2011.
[21] Profijt H. B.; Potts S. E.; van de Sanden M. C. M.; Kessels W. M. M., Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges. J Vac Sci Technol A 2011, 29 (5).
[22] Kim H., Characteristics and applications of plasma enhanced-atomic layer deposition. Thin Solid Films 2011, 519 (20), 6639-6644.
第二章
[1] Kim I. W.; Kim S. J.; Kim D. H.; Woo H.; Park M. Y.; Rhee S. W., Fourier transform infrared spectroscopy studies on thermal decomposition of tetrakis-dimethyl-amido zirconium for chemical vapor deposition of ZrN. Korean J Chem Eng 2004, 21 (6), 1256-1259.
[2] Profijt H. B.; Potts S. E.; van de Sanden M. C. M.; Kessels W. M. M., Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges. J Vac Sci Technol A 2011, 29 (5).
[3] George S. M., Atomic Layer Deposition: An Overview. Chem Rev 2010, 110 (1), 111-131.
[4] Puurunen R. L., Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. Journal of Applied Physics 2005, 97 (12), 121301.
[5] Momose H. S.; Ohguro T.; Kojima K.; Nakamura S.; Toyoshima Y., 1.5-nm gate oxide CMOS on (110) surface-oriented Si substrate. IEEE T Electron Dev 2003, 50 (4), 1001-1008.
[6] Kim H., Characteristics and applications of plasma enhanced-atomic layer deposition. Thin Solid Films 2011, 519 (20), 6639-6644.
[7] Nyns L.; Ragnarsson L. A.; Hall L.; Delabie A.; Heyns M.; Van Elshocht S.; Vinckier C.; Zimmerman P.; De Gendt S., Silicon orientation effects in the atomic layer deposition of Hafnium oxide. J Electrochem Soc 2008, 155 (2), G9-G12.
[8] Ikumi Kashiwagi C. O., Shun-ichiro Ohmi and Hiroshi Iwai, Characteristics of High-k Gd2O3 Films Deposited on Different Orientation of Si Substrate.
[9] Cho M. J.; Park J.; Park H. B.; Hwang C. S.; Jeong J.; Hyun K. S., Chemical interaction between atomic-layer-deposited HfO2 thin films and the Si substrate. Appl Phys Lett 2002, 81 (2), 334-336.
[10] Kukli K.; Ritala M.; Uustare T.; Aarik J.; Forsgren K.; Sajavaara T.; Leskela M.; Harsta A., Influence of thickness and growth temperature on the properties of zirconium oxide films grown by atomic layer deposition on silicon. Thin Solid Films 2002, 410 (1-2), 53-60.
[11] Huang J. J.; Tsai Y. J.; Tsai M. C.; Lee M. H.; Chen M. J., Double nitridation of crystalline ZrO2/Al2O3 buffer gate stack with high capacitance, low leakage and improved thermal stability. Appl Surf Sci 2015, 330, 221-227.
[12] Houssa M., High-K gate dielectrics. 2004.
[13] Engstrom O., The MOS System. 2015.
[14] Copel M.; Gribelyuk M.; Gusev E., Structure and stability of ultrathin zirconium oxide layers on Si(001). Appl Phys Lett 2000, 76 (4), 436-438.
[15] Robertson J., High dielectric constant oxides. Eur Phys J-Appl Phys 2004, 28 (3), 265-291.
[16] Hori T., Gate Dielectrics and MOS ULSIs
[17] Iijima R.; Edge L. F.; Bruley J.; Paruchuri V.; Takayanagi M., Intrinsic Effects of the Crystal Orientation Difference between (100) and (110) Silicon Substrates on Characteristics of High-k/Metal Gate Metal-Oxide-Semiconductor Field-Effect Transistors. Jpn J Appl Phys 2011, 50 (6).
[18] Hiller D.; Zierold R.; Bachmann J.; Alexe M.; Yang Y.; Gerlach J.; Stesmans A.; Jivanescu M.; Müller U.; Vogt J., Low temperature silicon dioxide by thermal atomic layer deposition: Investigation of material properties. Journal of Applied Physics 2010, 107 (6), 064314.
[19] Hwang C. S., Atomic Layer Deposition for Semiconductors. 2014.
[20] Henson W. K.; Ahmed K. Z.; Vogel E. M.; Hauser J. R.; Wortman J. J.; Venables R. D.; Xu M.; Venables D., Estimating oxide thickness of tunnel oxides down to 1.4 nm using conventional capacitance-voltage measurements on MOS capacitors. Electron Device Letters, IEEE 1999, 20 (4), 179-181.
[21] Zhao C.; Roebben G.; Heyns M.; Van der Biest O., Crystallisation and tetragonal-monoclinic transformation in ZrO2 and HfO2 dielectric thin films. Key Engineering Materials 2002, 206, 1285-1288.
[22] Robertson J., Band offsets of wide-band-gap oxides and implications for future electronic devices. J Vac Sci Technol B 2000, 18 (3), 1785-1791.
[23] Huang J. J.; Tsai Y. J.; Tsai M. C.; Huang L. T.; Lee M. H.; Chen M. J., Impact of nitrogen depth profiles on the electrical properties of crystalline high-K gate dielectrics. Appl Surf Sci 2015, 324, 662-668.
[24] Guittet M.; Crocombette J.; Gautier-Soyer M., Bonding and XPS chemical shifts in ZrSiO4 versus SiO2 and ZrO2: Charge transfer and electrostatic effects. Physical Review B 2001, 63 (12), 125117.
第三章
[1] Kar S., High Permittivity Gate Dielectric Materials. 2013.
[2] Dai M.; Wang Y.; Shepard J.; Liu J.; Brodsky M.; Siddiqui S.; Ronsheim P.; Ioannou D. P.; Reddy C.; Henson W., Effect of plasma N2 and thermal NH3 nitridation in HfO2 for ultrathin equivalent oxide thickness. Journal of Applied Physics 2013, 113 (4), 044103.
[3] Jeon S.; Choi C.-J.; Seong T.-Y.; Hwang H., Electrical characteristics of ZrOxNy prepared by NH3 annealing of ZrO2. Appl Phys Lett 2001, 79, 245.
[4] Huang L.-T.; Chang M.-L.; Huang J.-J.; Lin H.-C.; Kuo C.-L.; Lee M.-H.; Liu C. W.; Chen M.-J., Improvement in electrical characteristics of HfO2 gate dielectrics treated by remote NH3 plasma. Appl Surf Sci 2013, 266, 89-93.
[5] Park K.-S.; Baek K.-H.; Kim D.; Woo J.-C.; Do L.-M.; No K.-S., Effects of N2 and NH3 remote plasma nitridation on the structural and electrical characteristics of the HfO2 gate dielectrics. Appl Surf Sci 2010, 257 (4), 1347-1350.
[6] Jung H.; Im K.; Hwang H.; Yang D., Electrical characteristics of an ultrathin (1.6 nm) TaOxNy gate dielectric. Appl Phys Lett 2000, 76, 3630.
[7] George S. M., Atomic Layer Deposition: An Overview. Chem Rev 2010, 110 (1), 111-131.
[8] Puurunen R. L., Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. Journal of Applied Physics 2005, 97 (12), 121301.
[9] Zhao C.; Roebben G.; Heyns M.; Van der Biest O., Crystallisation and tetragonal-monoclinic transformation in ZrO2 and HfO2 dielectric thin films. Key Engineering Materials 2002, 206, 1285-1288.
[10] Cho M.; Chung K.; Whang C.; Ko D.; Lee J.; Lee N., Nitridation for HfO2 high-k films on Si by an NH3 annealing treatment. Appl Phys Lett 2006, 88 (20), 202902.
[11] Maeng W.; Kim H., Atomic scale nitrogen depth profile control during plasma enhanced atomic layer deposition of high k dielectrics. Appl Phys Lett 2007, 91 (9), 092901.
[12] Guittet M.; Crocombette J.; Gautier-Soyer M., Bonding and XPS chemical shifts in ZrSiO4 versus SiO2 and ZrO2: Charge transfer and electrostatic effects. Physical Review B 2001, 63 (12), 125117.
[13] Lee S.; Bang S.; Jeon S.; Kwon S.; Jeong W.; Kim S.; Jeon H., Characteristics of Hafnium–Zirconium–Oxide Film Treated by Remote Plasma Nitridation. J Electrochem Soc 2008, 155 (7), H516-H519.
[14] Rizzo A.; Signore M.; Mirenghi L.; Piscopiello E.; Tapfer L., Physical properties evolution of sputtered zirconium oxynitride films: effects of the growth temperature. Journal of Physics D: Applied Physics 2009, 42 (23), 235401.

第四章
[1] Copel M.; Gribelyuk M.; Gusev E., Structure and stability of ultrathin zirconium oxide layers on Si(001). Appl Phys Lett 2000, 76 (4), 436-438.
[2] Wilk G. D.; Wallace R. M.; Anthony J. M., High-kappa gate dielectrics: Current status and materials properties considerations. Journal of Applied Physics 2001, 89 (10), 5243-5275.
[3] Robertson J., High dielectric constant oxides. Eur Phys J-Appl Phys 2004, 28 (3), 265-291.
[4] Huang J.-J.; Tsai Y.-J.; Tsai M.-C.; Lee M.-H.; Chen M.-J., Double nitridation of crystalline ZrO2/Al2O3 buffer gate stack with high capacitance, low leakage and improved thermal stability. Appl Surf Sci 2015, 330, 221-227.
[5] Gusev E.; Copel M.; Cartier E.; Baumvol I.; Krug C.; Gribelyuk M., High-resolution depth profiling in ultrathin Al2O3 films on Si. Appl Phys Lett 2000, 76 (2), 176-178.
[6] Ha S.-C.; Choi E.; Kim S.-H.; Roh J. S., Influence of oxidant source on the property of atomic layer deposited Al2O3 on hydrogen-terminated Si substrate. Thin Solid Films 2005, 476 (2), 252-257.
[7] Dai M.; Wang Y.; Shepard J.; Liu J.; Brodsky M.; Siddiqui S.; Ronsheim P.; Ioannou D. P.; Reddy C.; Henson W., Effect of plasma N2 and thermal NH3 nitridation in HfO2 for ultrathin equivalent oxide thickness. Journal of Applied Physics 2013, 113 (4), 044103.
[8] Huang L.-T.; Chang M.-L.; Huang J.-J.; Lin H.-C.; Kuo C.-L.; Lee M.-H.; Liu C. W.; Chen M.-J., Improvement in electrical characteristics of HfO2 gate dielectrics treated by remote NH3 plasma. Appl Surf Sci 2013, 266, 89-93.
[9] Jeon S.; Choi C.-J.; Seong T.-Y.; Hwang H., Electrical characteristics of ZrOxNy prepared by NH3 annealing of ZrO2. Appl Phys Lett 2001, 79, 245.
[10] Wu Y.-H.; Chen L.-L.; Lyu R.-J.; Li M.-Y.; Wu H.-C., Tetragonal Stack as High-Gate Dielectric for Si-Based MOS Devices. Electron Device Letters, IEEE 2010, 31 (9), 1014-1016.
[11] Zhao C.; Roebben G.; Heyns M.; Van der Biest O., Crystallisation and tetragonal-monoclinic transformation in ZrO2 and HfO2 dielectric thin films. Key Engineering Materials 2002, 206, 1285-1288.
[12] Vasquez R.; Hecht M.; Grunthaner F.; Naiman M., X‐ray photoelectron spectroscopy study of the chemical structure of thermally nitrided SiO2. Appl Phys Lett 1984, 44 (10), 969-971.
[13] Rosenberger L.; Baird R.; McCullen E.; Auner G.; Shreve G., XPS analysis of aluminum nitride films deposited by plasma source molecular beam epitaxy. Surface and Interface Analysis 2008, 40 (9), 1254-1261.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53964-
dc.description.abstract本論文利用ALD技術以TDMAZ為前驅物沉積高介電係數ZrO2薄膜於(100)及(110)晶面上,得到不同晶面上有不同的ALD成長速率及ALD製程窗口。以ZrO2 為MOS元件介電層在傳統ALD模式有較薄的IL及Dit值,而RPALD模式κ_ZrO2較大,漏電流較小。使用不同沉積模式混合堆疊ZrO2 MOS元件介電層並使用in-situ氮化處理,在(100)晶面上可達到CET=1.29 nm,Jg=1.18×〖10〗^(-4) A/〖cm〗^2,(110)晶面上CET=1.33nm,Jg=9.04×〖10〗^(-4) A/〖cm〗^2。以傳統ALD模式成長Al2O3做為Si與ZrO2間的緩衝層,之後再使用RPALD模式成長ZrO2形成ZrO2/Al2O3 MOS結構並透過退火時間的延長使整體CET降低,漏電流因Al2O3緩衝層幫助在(100)晶面上可達到Jg=1.17×〖10〗^(-4) A/〖cm〗^2,(110)晶面上Jg=4.93×〖10〗^(-5) A/〖cm〗^2。zh_TW
dc.description.abstractIn this thesis, we used thermal and remote plasma atomic layer deposition (RPALD) technique to deposit ultrathin zirconium oxide (ZrO2) as the high-κ gate dielectric on (100) and (110)-oriented Si substrates. In the first part of this thesis, we reported that the difference in the growth rate of ZrO2 deposition and the electrical characteristics of ZrO2 gate oxide on the (100) and (110)-oriented Si substrates. The difference in the ZrO2 ALD process window of the two ALD modes were demonstrated. The second part of this thesis introduced that the different deposition schemes along with in-situ nitridation, which can provide a significant improvement of capacitance equivalent thickness (CET), leakage current density (Jg), and interfacial state density (Dit). Besides, the Jg was suppressed by the in-situ atomic layer doping of nitrogen. Accordingly, an improved Jg=1.18×〖10〗^(-4) A/〖cm〗^2,D_it=1.55×〖10〗^12 〖cm〗^(-2) 〖eV〗^(-1), and CET=1.29 nm were achieved on Si(100) , on the other hand, Jg=9.04×〖10〗^(-4) A/〖cm〗^2, D_it=3.59×〖10〗^12 〖cm〗^(-2) 〖eV〗^(-1), and CET=1.33 nm were achieved on Si(110). The third part of this thesis investigated the crystalized ZrO2/Al2O3 buffer layer gate stack. A suppressed Jg of 1.17×〖10〗^(-4) A/〖cm〗^2 on Si(100) and 4.93×〖10〗^(-5) A/〖cm〗^2 on Si(110) could be achieved by the insertion of the Al2O3 buffer layer. Finally, we also found that the longer time PMA treatment time could improve the crystallinity of ZrO2 and the κ_eff of the ZrO2 gate dielectric.en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:34:52Z (GMT). No. of bitstreams: 1
ntu-104-R02527064-1.pdf: 3323248 bytes, checksum: 55cd4d23cbc9dbee200b39ed02649a30 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents致謝 I
摘要 II
Abstract III
目錄 V
圖目錄 VIII
表目錄 XI
第一章 簡介 1
1.1 研究動機 1
1.2 高介電係數(high-κ)材料 3
1.2.1 二氧化鋯 6
1.3 鰭式場效電晶體(FinFET) 7
1.4 原子層沉積技術 8
1.4.1 原子層沉積技術 8
1.4.2 電漿輔助原子層沉積技術 12
1.5 論文導覽 15
1.6 參考文獻 17
第二章 TDMAZ之基本性質測試以及利用傳統ALD和RPALD沉積二氧化鋯之薄膜性質比較 19
2.1 簡介 19
2.2 實驗步驟 19
2.2.1 TDMAZ前驅物介紹 22
2.3 實驗結果與討論 22
2.3.1 二氧化鋯於傳統ALD模式之ALD製程窗口 22
2.3.2 二氧化鋯於RPALD模式之ALD製程窗口 24
2.3.3 MOS元件電性分析 25
2.3.3.1傳統ALD成長二氧化鋯之Si-P(100) MOS元件電性 25
2.3.3.2傳統ALD成長二氧化鋯之Si-P(110) MOS元件電性 29
2.3.3.3 RPALD成長二氧化鋯之Si-P(100) MOS元件電性 31
2.3.3.4 RPALD成長二氧化鋯之Si-P(110) MOS元件電性 34
2.3.4 XRD分析 36
2.3.5 XPS分析 40
2.4 結論 44
2.5 參考文獻 45
第三章 利用不同ALD成長模式沉積二氧化鋯薄膜並以in-situ氮化處理做製程最佳化 47
3.1 簡介 47
3.2 實驗步驟 48
3.3 實驗結果與討論 51
3.3.1 不同ALD沉積模式混合成長不同厚度比例之二氧化鋯介電層MOS元件電性 51
3.3.2 in-situ氮化處理對二氧化鋯薄膜介電層MOS元件電性之影響 54
3.3.3 XRD分析 58
3.3.4 XPS分析 59
3.4 結論 62
3.5 參考文獻 63
第四章 利用傳統ALD成長氧化鋁緩衝層之二氧化鋯堆疊結構並以退火實驗做製程最佳化 65
4.1 簡介 65
4.2 實驗步驟 66
4.3 實驗結果與討論 67
4.3.1 MOS元件電性 67
4.3.2 XRD分析 71
4.3.2 XPS分析 72
4.4 結論 74
4.5 參考文獻 75
第五章 總結 77
dc.language.isozh-TW
dc.subject高介電係數閘極介電層zh_TW
dc.subject原子層沉積技術zh_TW
dc.subject遠程電漿輔助原子層沉積技術zh_TW
dc.subject四(二甲胺基)鋯zh_TW
dc.subject二氧化鋯zh_TW
dc.subject氧化鋁zh_TW
dc.subject緩衝層zh_TW
dc.subject鰭式場效電晶體zh_TW
dc.subjectAluminum(Al2O3)en
dc.subjectFinFETen
dc.subjectbuffer layeren
dc.subjectatomic layer deposition(ALD)en
dc.subjectremote plasma atomic layer deposition(RPALD)en
dc.subjectTetrakis(dimethylamino)Zirconium(TDMAZ)en
dc.subjectZirconium oxide (ZrO2)en
dc.subjecthigh-κ gate dielectricen
dc.title利用原子層沉積技術成長金氧半電容元件之二氧化鋯閘極介電層於矽基(100)及(110)晶面之研究zh_TW
dc.titleStudy of Metal-Oxide-Semiconductor Capacitors with Zirconium Oxide Gate Dielectrics on Si(100) and Si(110) Substrates Grown by Atomic Layer Depositionen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李敏鴻,廖洺漢,吳肇欣,葉凌彥
dc.subject.keyword原子層沉積技術,遠程電漿輔助原子層沉積技術,四(二甲胺基)鋯,二氧化鋯,氧化鋁,緩衝層,鰭式場效電晶體,高介電係數閘極介電層,zh_TW
dc.subject.keywordatomic layer deposition(ALD),remote plasma atomic layer deposition(RPALD),Tetrakis(dimethylamino)Zirconium(TDMAZ),Zirconium oxide (ZrO2),Aluminum(Al2O3),buffer layer,FinFET,high-κ gate dielectric,en
dc.relation.page78
dc.rights.note有償授權
dc.date.accepted2015-07-28
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
3.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved