請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53811完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳敏璋(Miin-Jang Chen) | |
| dc.contributor.author | Chung-Yen Hsieh | en |
| dc.contributor.author | 謝忠諺 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:30:17Z | - |
| dc.date.available | 2020-07-01 | |
| dc.date.copyright | 2015-09-02 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-30 | |
| dc.identifier.citation | [1] Peng, Z.W., et al., Direct Growth of Bilayer Graphene on SiO2 Substrates by Carbon Diffusion through Nickel. Acs Nano, 2011. 5(10): p. 8241-8247.
[2] Shin, H.J., et al., Transfer-free growth of few-layer graphene by self-assembled monolayers. Adv Mater, 2011. 23(38): p. 4392-7. [3] Su, C.Y., et al., Direct formation of wafer scale graphene thin layers on insulating substrates by chemical vapor deposition. Nano Lett, 2011. 11(9): p. 3612-6. [4] Puurunen, R.L., Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. Journal of Applied Physics, 2005. 97(12): p. 121301. [5] Knez, N.P.a.M., Atomic Layer Deposition of Nanostructured Materials. 2011: Wiley-VCH Verlag GmbH & Co. KGaA. [6] Zhou, H. and S.F. Bent, Molecular layer deposition of functional thin films for advanced lithographic patterning. ACS Appl Mater Interfaces, 2011. 3(2): p. 505-11. [7] Seo, E.K., et al., Atomic Layer Deposition of Titanium Oxide on Self-Assembled-Monolayer-Coated Gold. Chemistry of Materials, 2004. 16(10): p. 1878-1883. [8] Schreiber, F., Structure and growth of self-assembling monolayers. Progress in Surface Science, 2000. 65(5-8): p. 151-256. [9] Kim, H., H.-B.-R. Lee, and W.J. Maeng, Applications of atomic layer deposition to nanofabrication and emerging nanodevices. Thin Solid Films, 2009. 517(8): p. 2563-2580. [10] Love, J.C., et al., Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev, 2005. 105(4): p. 1103-69. [11] Jung, G.-Y., et al., Vapor-Phase Self-Assembled Monolayer for Improved Mold Release in Nanoimprint Lithography. Langmuir, 2005. 21(4): p. 1158-1161. [12] Dubois, L.H., B.R. Zegarski, and R.G. Nuzzo, Molecular ordering of organosulfur compounds on Au(111) and Au(100): Adsorption from solution and in ultrahigh vacuum. The Journal of Chemical Physics, 1993. 98(1): p. 678-688. [13] Zhuang, Y.X., et al., Thermal stability of vapor phase deposited self-assembled monolayers for MEMS anti-stiction. Journal of Micromechanics and Microengineering, 2006. 16(11): p. 2259-2264. [14] Masuda, Y., Nano/Micro-Patterning of Metal Oxide Nanocrystals. Nanocrystal, ed. D.Y. Masuda. 2011: InTech. [15] Jorio, A., Raman Spectroscopy in Graphene-Based Systems: Prototypes for Nanoscience and Nanometrology. ISRN Nanotechnology, 2012. 2012: p. 1-16. [16] Willets, K.A. and R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem, 2007. 58: p. 267-97. [17] Le Ru, E.C., et al., Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study. The Journal of Physical Chemistry C, 2007. 111(37): p. 13794-13803. [18] Geim, A.K. and K.S. Novoselov, The rise of graphene. Nat Mater, 2007. 6(3): p. 183-91. [19] Chen, J.H., et al., Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nanotechnol, 2008. 3(4): p. 206-9. [20] Wallace, P.R., The Band Theory of Graphite. Physical Review, 1947. 71(9): p. 622-634. [21] Antonio Castro Neto, F.G., Nuno Miguel Peres, Drawing conclusions from graphene. Physics World 2006. 19(33). [22] Castro Neto, A.H., et al., The electronic properties of graphene. Reviews of Modern Physics, 2009. 81(1): p. 109-162. [23] Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. Science, 2004. 306(5696): p. 666-9. [24] de Heer, W.A., et al., Epitaxial graphene. Solid State Communications, 2007. 143(1-2): p. 92-100. [25] Kageshima, H., H. Hibino, and S. Tanabe, The physics of epitaxial graphene on SiC(0001). J Phys Condens Matter, 2012. 24(31): p. 314215. [26] Park, S. and R.S. Ruoff, Chemical methods for the production of graphenes. Nat Nanotechnol, 2009. 4(4): p. 217-24. [27] Mayavan, S., J.-B. Sim, and S.-M. Choi, Easy synthesis of nitrogen-doped graphene–silver nanoparticle hybrids by thermal treatment of graphite oxide with glycine and silver nitrate. Carbon, 2012. 50(14): p. 5148-5155. [28] Yu, Q.K., et al., Graphene segregated on Ni surfaces and transferred to insulators. Applied Physics Letters, 2008. 93(11): p. 113103. [29] Lewis Gomez De Arco, Y.Z.a.C.Z., Large Scale Graphene by Chemical Vapor Deposition: Synthesis, Characterization and Applications, Graphene - Synthesis, Characterization, Properties and Applications, ed. P.J. Gong. 2011: InTech. [30] Erjun Kan, Z.L.a.J.Y., Graphene Nanoribbons: Geometric, Electronic, and Magnetic Properties, Physics and Applications of Graphene - Theory, ed. D.S. Mikhailov. 2011: InTech. [31] Son, Y.-W., M.L. Cohen, and S.G. Louie, Energy Gaps in Graphene Nanoribbons. Physical Review Letters, 2006. 97(21). [32] Hicks, J., et al., A wide-bandgap metal–semiconductor–metal nanostructure made entirely from graphene. Nature Physics, 2012. 9(1): p. 49-54. [33] Thomsen, C. and S. Reich, Double resonant raman scattering in graphite. Phys Rev Lett, 2000. 85(24): p. 5214-7. [34] Venezuela, P., M. Lazzeri, and F. Mauri, Theory of double-resonant Raman spectra in graphene: Intensity and line shape of defect-induced and two-phonon bands. Physical Review B, 2011. 84(3). [35] Beams, R., L.G. Cancado, and L. Novotny, Low temperature raman study of the electron coherence length near graphene edges. Nano Lett, 2011. 11(3): p. 1177-81. [36] Yuan, Y. and T.R. Lee, Contact Angle and Wetting Properties. 2013. 51: p. 3-34. [37] Weng, C.C., et al., Modification of aliphatic self-assembled monolayers by free-radical-dominant plasma: the role of the plasma composition. Langmuir, 2004. 20(23): p. 10093-9. [38] Raiber, K., et al., Removal of self-assembled monolayers of alkanethiolates on gold by plasma cleaning. Surface Science, 2005. 595(1-3): p. 56-63. [39] Blake, P., et al., Making graphene visible. Applied Physics Letters, 2007. 91(6): p. 063124. [40] Liu, W., et al., Chemical vapor deposition of large area few layer graphene on Si catalyzed with nickel films. Thin Solid Films, 2010. 518(6): p. S128-S132. [41] Kurra, N., et al., Field effect transistors and photodetectors based on nanocrystalline graphene derived from electron beam induced carbonaceous patterns. Nanotechnology, 2012. 23(42): p. 425301. [42] Lin, Y.C., et al., Efficient reduction of graphene oxide catalyzed by copper. Phys Chem Chem Phys, 2012. 14(9): p. 3083-8. [43] Sun, H., L. Cao, and L. Lu, Magnetite/reduced graphene oxide nanocomposites: One step solvothermal synthesis and use as a novel platform for removal of dye pollutants. Nano Research, 2011. 4(6): p. 550-562. [44] Jerng, S.K., et al., Nanocrystalline Graphite Growth on Sapphire by Carbon Molecular Beam Epitaxy. The Journal of Physical Chemistry C, 2011. 115(11): p. 4491-4494. [45] Hawaldar, R., et al., Large-area high-throughput synthesis of monolayer graphene sheet by Hot Filament Thermal Chemical Vapor Deposition. Sci Rep, 2012. 2: p. 682. [46] Biró, L.P. and P. Lambin, Grain boundaries in graphene grown by chemical vapor deposition. New Journal of Physics, 2013. 15(3): p. 035024. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53811 | - |
| dc.description.abstract | 本實驗改善文獻上無需轉印石墨烯(Transfer-free Graphene)的方法,改變自組裝單分子薄膜(Self-Assembled Monolayers, SAMs)沉積方式,並利用化學氣相沉積(Chemical Vapor Deposition, CVD)製作石墨烯的原理,最終使石墨烯直接成長於基材上。以SAMs代替CVD碳源,除了在製程上不用考慮氣體混合均勻性,SAMs作為固態碳源更可控制單位面積的碳原子數,並使石墨烯位於基材及金屬催化層之界面成長,因此無須轉印製程可直接後續製程。實驗分析主要利用表面增強拉曼散射(Surface-Enhanced Raman Scattering, SERS),在石墨烯表面鍍上奈米銀顆粒,以利於分析。研究發現,鎳金屬催化層的鍍率對熱處理後的金屬平整度,以及石墨烯的品質,有很大的影響;並且發現可利用鎳金屬層厚度可控制固溶的碳含量。另外移除鎳金屬蝕刻液的選用及基材的選擇,對石墨烯品質亦有很大的影響。 | zh_TW |
| dc.description.abstract | A transfer-free, direct growth of graphene on oxide surface by self-assembled monolayers (SAMs) was developed. Instead of the conventional CVD carbon sources, a SAMs was used as a new carbon source for preparing graphene. It is facial to control surface carbon density by using SAMs as a solid state carbon source substituting for those used in conventional CVD. The Ag nanoparticles were used to enhance the intensity of Raman spectroscopy from graphene due to the surface-enhanced Raman scattering (SERS) mechanism. We found that the roughness of nickel metal catalyst layer after annealing was significantly affected by the deposition rate. In addition, the thickness of nickel metal catalyst layer could be used to control the carbon content of the solid solution. Furthermore, the quality of graphene was influenced by the selection of metal etching solution and the oxide substrate. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:30:17Z (GMT). No. of bitstreams: 1 ntu-104-R02527042-1.pdf: 7035047 bytes, checksum: 23d01839240ac4c3c3c7edeb9cd84ad6 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 誌謝 I
中文摘要 III ABSTRACT IV 目錄 V 圖目錄 IX 表目錄 XIII 第一章 簡介及文獻回顧 1 1.1研究動機 1 1.2原子層沉積技術(ALD) 2 1.2.1 ALD製程原理 2 1.2.2 ALD製程區間 3 1.2.3 MLD介紹 5 1.2.4 ALD選擇性成長 6 1.3自組裝單分子層(SAMs) 8 1.3.1自組裝分子(SAM) 8 1.3.2自組裝單分子層(SAMs) 10 1.3.3自組裝單分子層的應用 13 1.4表面增強拉曼光譜(SERS) 16 1.4.1拉曼光譜(Raman Spectroscopy) 16 1.4.2表面電漿子共振(LSPR) 18 1.4.3表面增強拉曼光譜(SERS) 18 1.5石墨烯 20 1.5.1石墨烯的結構與特性 20 1.5.2石墨烯製程方式 21 1.5.3石墨烯的能隙 25 1.5.4石墨烯拉曼光譜 27 1.6研究目的 30 第二章 原子層沉積自組裝分子層 32 2.1 SAMs製程與傳統ALD之差異 32 2.1.1 SAMs製程組件 32 2.1.2 SAMs製程 32 2.2 ALD SAMs製程區間 35 2.2.1 ALD SAMs自限反應時間 36 2.2.2 ALD SAMs溫度製程區間 37 2.2.3不同ALD SAMs比較 38 2.3 SAMs液相製程 40 2.3.1 FOTS於乙醇溶劑沉積 40 2.3.2 FOTS、DTS於苯甲醚溶劑沉積 41 2.4 SAMs穩定性測試 42 第三章 石墨烯製程與分析 45 3.1石墨烯製程 45 3.2利用SERS觀測石墨烯 46 3.3 SAMs對石墨烯的影響 47 3.4鎳金屬對石墨烯的影響 49 3.5熱處理對石墨烯的影響 52 3.5.1熱處理溫度區間 53 3.5.2持溫時間控制 54 3.5.3降溫速率 55 3.5.4持溫溫度 56 3.6後退火對石墨烯的影響 57 3.7蝕刻液對石墨烯的影響 58 3.8電漿表面處理 59 3.9不同基材對石墨烯的影響 60 3.10石墨烯結構推測 64 第四章 總結 66 參考文獻 68 | |
| dc.language.iso | zh-TW | |
| dc.subject | 表面增強拉曼散射 | zh_TW |
| dc.subject | 原子層沉積 | zh_TW |
| dc.subject | 自組裝單分子層 | zh_TW |
| dc.subject | 石墨烯 | zh_TW |
| dc.subject | 非轉印石墨烯 | zh_TW |
| dc.subject | Surface-Enhanced Raman Scattering (SERS) | en |
| dc.subject | Atomic Layer Deposition (ALD) | en |
| dc.subject | Self-Assembled Monolayers (SAMs) | en |
| dc.subject | Graphene | en |
| dc.subject | Transfer-Free Graphene | en |
| dc.title | 利用原子層沉積技術製備石墨烯成長碳源之研究 | zh_TW |
| dc.title | Preparation of Carbon Source for the Growth of Graphene by Using Atomic Layer Deposition | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 葉凌彥(Ling-Yen Yeh),陳景翔(Ching-Hsiang Chen),陳良益(Liang-Yih Chen) | |
| dc.subject.keyword | 原子層沉積,自組裝單分子層,石墨烯,非轉印石墨烯,表面增強拉曼散射, | zh_TW |
| dc.subject.keyword | Atomic Layer Deposition (ALD),Self-Assembled Monolayers (SAMs),Graphene,Transfer-Free Graphene,Surface-Enhanced Raman Scattering (SERS), | en |
| dc.relation.page | 71 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-07-31 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 6.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
