Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5346
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor何傳愷
dc.contributor.authorTzu-Jung Tsengen
dc.contributor.author曾子榮zh_TW
dc.date.accessioned2021-05-15T17:56:29Z-
dc.date.available2016-07-16
dc.date.available2021-05-15T17:56:29Z-
dc.date.copyright2014-07-16
dc.date.issued2014
dc.date.submitted2014-06-26
dc.identifier.citationReferences
[1] Adesodun, J. K., J. S. C. Mbagwu, and N. Oti. 2005. Distribution of carbon, nitrogen and phosphorus in water-stable aggregates of an organic waste amended Ultisol in southern Nigeria. Bioresource Technology 96:509-516.
[2] Andruschkewitsch, R., D. Geisseler, H. J. Koch, and B. Ludwig. 2013. Effects of tillage on contents of organic carbon, nitrogen, water-stable aggregates and light fraction for four different long-term trials. Geoderma 192:368-377.
[3] Bardgett, R. D., W. D. Bowman, R. Kaufmann, and S. K. Schmidt. 2005. A temporal approach to linking aboveground and belowground ecology. Trends in Ecology & Evolution 20:634-641.
[4] Berlow, E. L., A. M. Neutel, J. E. Cohen, P. C. de Ruiter, B. Ebenman, M. Emmerson, J. W. Fox, V. A. A. Jansen, J. I. Jones, G. D. Kokkoris, D. O. Logofet, A. J. McKane, J. M. Montoya, and O. Petchey. 2004. Interaction strengths in food webs: issues and opportunities. Journal of Animal Ecology 73:585-598.
[5] Barton, B. T. 2010. Climate warming and predation risk during herbivore ontogeny. Ecology 91:2811-2818.
[6] Blois, J. L., P. L. Zarnetske, M. C. Fitzpatrick, and S. Finnegan. 2013. Climate Change and the Past, Present, and Future of Biotic Interactions. Science 341:499-504.
[7] Bonan, G. B. 2008. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320:1444-1449.
[8] Borcard, D. G., F; Legendre, P. . 2013. Numerical Ecology with R.
[9] Briones, M. J. I., N. J. Ostle, N. R. McNamara, and J. Poskitt. 2009. Functional shifts of grassland soil communities in response to soil warming. Soil Biology & Biochemistry 41:315-322.
[10] Cahoon, S. M. P., P. F. Sullivan, E. Post, and J. M. Welker. 2012. Large herbivores limit CO2 uptake and suppress carbon cycle responses to warming in West Greenland. Global Change Biology 18:469-479.
[11] Carter, M. R. 1993. Soil sampling and methods of analysis.
[12] Chave, J. 2013. The problem of pattern and scale in ecology: what have we learned in 20 years? Ecology Letters 16:4-16.
[13] Clive A. Edwards, P. J. B. 1996. Biology and Ecology of Earthworms.
[14] Clough, Y. 2012. A generalized approach to modeling and estimating indirect effects in ecology. Ecology 93:1809-1815.
[15] Crooks, J. A. 2002. Characterizing ecosystem-level consequences of biological invasions: the role of ecosystem engineers. Oikos 97:153-166.
[16] Davidson, E. A. and I. A. Janssens. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165-173.
[17] Davis, A. J., L. S. Jenkinson, J. H. Lawton, B. Shorrocks, and S. Wood. 1998. Making mistakes when predicting shifts in species range in response to global warming. Nature 391:783-786.
[18] Drechsel, P., B. Mutwewingabo, and F. Hagedorn. 1996. Effect of modifications of the P-Bray no 1 method on soil test results. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde 159:409-410.
[19] Dyer, L. A., L. A. Richards, S. A. Short, and C. D. Dodson. 2013. Effects of CO2 and Temperature on Tritrophic Interactions. Plos One 8.
[20] Ebert, T. A. and B. Cartwright. 1997. Biology and ecology of Aphis gossypii Glover (Homoptera: Aphididae). Southwestern Entomologist 22:116-153.
[21] Eisenhauer, N., V. Horsch, J. Moeser, and S. Scheu. 2010. Synergistic effects of microbial and animal decomposers on plant and herbivore performance. Basic and Applied Ecology 11:23-34.
[22] Eisenhauer, N., A. Milcu, E. Allan, N. Nitschke, C. Scherber, V. Temperton, A. Weigelt, W. W. Weisser, and S. Scheu. 2011. Impact of above- and below-ground invertebrates on temporal and spatial stability of grassland of different diversity. Journal of Ecology 99:572-582.
[23] Emmerson, J. T. W. a. M. 2005. Measurement of interaction strength in nature. Annual Review of Ecology, Evolution, and Systematics Vol. 36: 419-444.
[24] Garcia, J. A. and C. Fragoso. 2002. Growth, reproduction and activity of earthworms in degraded and amended tropical open mined soils: laboratory assays. Applied Soil Ecology 20:43-56.
[25] Gilman, S. E., M. C. Urban, J. Tewksbury, G. W. Gilchrist, and R. D. Holt. 2010. A framework for community interactions under climate change. Trends in Ecology & Evolution 25:325-331.
[26] Harley, C. D. G., A. R. Hughes, K. M. Hultgren, B. G. Miner, C. J. B. Sorte, C. S. Thornber, L. F. Rodriguez, L. Tomanek, and S. L. Williams. 2006. The impacts of climate change in coastal marine systems. Ecology Letters 9:228-241.
[27] Hastings, A., J. E. Byers, J. A. Crooks, K. Cuddington, C. G. Jones, J. G. Lambrinos, T. S. Talley, W. G. Wilson. 2007 Ecosystem engineering in space and time. Ecology Letters 10(2):153-164.
[28] Hoekman, D. 2010. Turning up the heat: Temperature influences the relative importance of top-down and bottom-up effects. Ecology 91:2819-2825.
[29] Ibanez, S., L. Bernard, S. Coq, M. Moretti, S. Lavorel, and C. Gallet. 2013. Herbivory differentially alters litter dynamics of two functionally contrasted grasses. Functional Ecology 27:1064-1074.
[30] Imai, K., L. Keele, and D. Tingley. 2010b. A General Approach to Causal Mediation Analysis. Psychological Methods 15:309-334.
[31] Imai, K., L. Keele, and T. Yamamoto. 2010a. Identification, Inference and Sensitivity Analysis for Causal Mediation Effects. Statistical Science 25:51-71.
[32] IPCC (Intergovernmental Panel on Climate Change) 2013. The Fifth Assessment Report Climate Change 2013: The Physical Science Basis Chapter 14 Climate Phenomena and their Relevance for Future Regional Climate Change
[33] Johnson, S. N., J. T. Staley, F. A. L. McLeod, and S. E. Hartley. 2011. Plant-mediated effects of soil invertebrates and summer drought on above-ground multitrophic interactions. Journal of Ecology 99:57-65.
[34] Jones, C. G., J. H. Lawton, and M. Shachak. 1994. ORGANISMS AS ECOSYSTEM ENGINEERS. Oikos 69:373-386.
[35] Jones, C. G., J. H. Lawton, and M. Shachak. 1997. Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78:1946-1957.
[36] Katayama, N., A. O. Silva, O. Kishida, and T. Ohgushi. 2013. Aphids decelerate litter nitrogen mineralisation through changes in litter quality. Ecological Entomology 38:627-630.
[37] Lavelle, P., D. Bignell, M. Lepage, V. Wolters, P. Roger, P. Ineson, O. W. Heal, and S. Dhillion. 1997. Soil function in a changing world: the role of invertebrate ecosystem engineers. European Journal of Soil Biology 33:159-193.
[38] Lee, S.-Y. 2007. Structural Equation Modeling: A Bayesian Approach Chapter 5: Model Comparison and Model Checking.
[39] Legendre, P. and E. D. Gallagher. 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129:271-280.
[40] Levin, S. A. 1992. The Problem of Pattern and Scale in Ecology. Ecology 73:1943-1967.
[41] M.J. Swift, O. W. H. J. M. A. 1979. Decomposition in terrestrial ecosystems.
[42] MacKinnon, D. P., A. J. Fairchild, and M. S. Fritz. 2007. Mediation analysis. Annual Review of Psychology 58:593-614.
[43] McCarthy, M. A. 2007. Bayesian methods for ecology.
[44] McKenzie, S. W., A. J. Vanbergen, R. S. Hails, T. H. Jones, and S. N. Johnson. 2013. Reciprocal feeding facilitation between above- and below-ground herbivores. Biology Letters 9.
[45] Ntzoufras, I. 2009. Bayesian modeling using WinBUGS.
[46] O'Connor, M. I. 2009. Warming strengthens an herbivore-plant interaction. Ecology 90:388-398.
[47] Parmesan, C. 2006. Ecological and evolutionary responses to recent climate change. Pages 637-669 Annual Review of Ecology Evolution and Systematics.
[48] Poveda, K., I. Steffan-Dewenter, S. Scheu, and T. Tscharntke. 2005. Effects of decomposers and herbivores on plant performance and aboveground plant-insect interactions. Oikos 108:503-510.
[49] R Development Core Team. 2013. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
[50] Shipley, B. 2009. Confirmatory path analysis in a generalized multilevel context. Ecology 90:363-368.
[51] Snyder, B. A., B. Boots, and P. F. Hendrix. 2009. Competition between invasive earthworms (Amynthas corticis, Megascolecidae) and native North American millipedes (Pseudopolydesmus erasus, Polydesmidae): Effects on carbon cycling and soil structure. Soil Biology & Biochemistry 41:1442-1449.
[52] Tylianakis, J. M., R. K. Didham, J. Bascompte, and D. A. Wardle. 2008. Global change and species interactions in terrestrial ecosystems. Ecology Letters 11:1351-1363.
[53] Underwood, N. 2000. Density dependence in induced plant resistance to herbivore damage: threshold, strength and genetic variation. Oikos 89:295-300.
[54] Utomo, W. H. and A. R. Dexter. 1982. Changes in Soil Aggregate Water Stability Induced by Wetting and Drying Cycles in Non-Saturated Soil. Journal of Soil Science 33:623-637.
[55] Walther, G. R., E. Post, P. Convey, A. Menzel, C. Parmesan, T. J. C. Beebee, J. M. Fromentin, O. Hoegh-Guldberg, and F. Bairlein. 2002. Ecological responses to recent climate change. Nature 416:389-395.
[56] Wardle, D. A., R. D. Bardgett, J. N. Klironomos, H. Setala, W. H. van der Putten, and D. H. Wall. 2004. Ecological linkages between aboveground and belowground biota. Science 304:1629-1633.
[57] Warren, C. R., J. F. McGrath, and M. A. Adams. 2001. Water availability and carbon isotope discrimination in conifers. Oecologia 127:476-486.
[58] Wurst, S., D. Dugassa-Gobena, and S. Scheu. 2004. Earthworms and litter distribution affect plant-defensive chemistry. Journal of Chemical Ecology 30:691-701.
[59] Wurst, S. and M. Forstreuter. 2010. Colonization of Tanacetum vulgare by aphids is reduced by earthworms. Entomologia Experimentalis Et Applicata 137:86-92.
[60] Wurst, S., R. Langel, A. Reineking, M. Bonkowski, and S. Scheu. 2003. Effects of earthworms and organic litter distribution on plant performance and aphid reproduction. Oecologia 137:90-96.
[61] Zaller, J. G., M. M. Caldwell, S. D. Flint, C. L. Ballare, A. L. Scopel, and O. E. Sala. 2009. Solar UVB and warming affect decomposition and earthworms in a fen ecosystem in Tierra del Fuego, Argentina. Global Change Biology 15:2493-2502.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5346-
dc.description.abstract暖化可能會影響地上部地下部的生物交互作用,改變直接或間接的交互作用的強度,但是相關的研究卻相當缺乏。為幫助了解暖化對生物交互作用的影響,並量化其中的直接和間接的生物交互作用,本研究在生長箱中建立地上部地下部生物交互作用的系統,藉由調控溫度來模擬正常(日均溫22.5℃,夜均溫18.5℃)及暖化(日夜均溫各加 4℃)的兩個情景。本研究在各溫度下設立了四種處理:控制組(只有植物竹仔菜Commelina diffusa)、蚯蚓組(植物加皮質遠環蚓Amynthas corticis)、蚜蟲組(植物加棉蚜Aphis gossypii),及蚯蚓蚜蟲組(加入植物、蚯蚓、蚜蟲)。記錄植物的形態變化、土壤的物化性質、落葉分解速度、蚯蚓的重量、及蚜蟲的族群增長,以便探討及量化各因素間的直接或間接關係。資料分析以冗餘分析來探討植物受蚜蟲蚯蚓及暖化的影響,以貝氏階層模式來量化直接效應,以導向分離法及中介分析來判別並量化可能存在的間接效應。研究結果顯示,蚯蚓及蚜蟲對植物的影響強度類似,但是方向相反;而暖化雖然對植物有很強的影響,但此效應隨著時間而呈線性地下降,且不會影響蚯蚓及蚜蟲對植物的效應。蚯蚓、蚜蟲及暖化處理的交互作用並不影響系統中的任何特質,代表這三個因子的影響是加成性的。中介分析顯示出植物氮含量及土壤物理性質是這系統中的中介因子,分別是蚯蚓能藉由增加植物氮含量而間接增加蚜蟲的族群量,以及暖化和蚯蚓處理能改善土壤的物理性質,進而間接促進植物的生長(節數的增加)。整體而言,這試驗顯示出暖化可以透過直接及間接的路徑,進而影響地上部與地下部的系統。zh_TW
dc.description.abstractClimate warming could affect the interactions between above- and below- ground biota and change the strength of direct or indirect effects, but relevant studies are sparse. To better understand above-below-ground interactions under warming, this study examined a system including the plant Commelina diffusa, the aphid Aphis gossypii, and the earthworm Amynthas corticis under 2 scenarios: (1) normal (day and night temperature at 22.5 and 18.5oC, respectively) and (2) warming (a 4 oC increase in day and night temperature). Each scenario included four treatments: a) control treatment (plants only), b) earthworm treatment (plants, earthworms), c) aphid treatment (plants, aphids), and d) earthworm–aphid treatment (plants, aphids, earthworms). To qualify and quantify the direct and indirect effects in this system, I measured the traits of plants, earthworms, aphids, litter, and soil. Data analyses were conducted by (1) redundancy analysis for exploring the general patterns of plant traits in response to the treatment factors (earthworm, aphid, and warming); (2) Bayesian hierarchical modelling to quantify the direct effects in the system; (3) d-sep test and mediation analysis for identifying and quantifying the indirect effects. The results showed that (1) the effect sizes of earthworm and aphid treatments on plants were similar but different in direction, and showed a non-contingent response to warming; (2) the effect of warming treatment on plants was strong but decreased linearly with time; (3) there were no interactions among aphid, earthworm, and warming treatments in this system; thus, the effects of these 3 factors were additive. In addition, I found 2 indirect effects in this system, suggesting plant nitrogen content and soil physical property as mediators in above-below-ground interactions: (1) earthworm treatment increased aphid population by increasing plant nitrogen content, and (2) warming and earthworm treatments increased plant growth (i.e. plant node number) by modifying soil physical property. Overall, this study reveals that warming can affect an above-below-ground system via direct and indirect pathways.en
dc.description.provenanceMade available in DSpace on 2021-05-15T17:56:29Z (GMT). No. of bitstreams: 1
ntu-103-R00b44020-1.pdf: 1329680 bytes, checksum: 81e2a842d2d52f4d30287cf517bbab47 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsContent
口試委員會審定書…………………………………..…………………………………..i
謝誌……………………………………………………….……………………………..ii
摘要…………………………………………………….…………………………….…iii
Abstract………………………………………………………………………………...iv
Introduction…………………………………………………………………………….1
Research objective………...………………………………………………….……7
Material and Methods………………………………………………………………….7
Above-below-ground system setup..……………...…………...……………….…7
Experimental procedures and trait measurements……………...…………..…10
Soil property analysis………..……………………………….……………………12
Data Analyses…………………...………………………..……………………….13
The response of plant traits to treatments………………………...……………14
The direct effects of treatments………………………………………...……….16
The indirect effects of treatments……………….…………………………...….17
The effect size of direct and indirect effects….………………..……...……...……19
Results………………..……………………………………………….……………..…20
The response of plant traits to warming, aphid, and earthworm treatment…20
Qualify and quantify the direct effects of treatments…..………….………………22
Qualify and quantify the indirect effects of treatments…..………………..………25
Indirect effects of warming and earthworm treatments on aphid population –
plant traits as mediators………………..………………………………………..…25
Indirect effects of warming and earthworm on plant traits –
soil properties as mediator………………..……………………….……………..27
Discussion………………..…………………………………………….…….………...29
The non-contingent response of above-below-ground-interactions to
Warming scenario ……………………………………………….………………...29
The independence between above-below-ground effects on plants ………………32
Mediators in above-below-ground interactions……………………………………35
Direct and indirect warming impacts……………………..………………...……..39
Problem of scale and generalization……………...…………………………..……40
Conclusions..…………………………………………………………….………...41
References………………………………………………………………………..…….42
Appendix……………………………………………………………………………….62
Content of Tables
Table 1. Result of DCA………………………………………………...………………47
Table 2. Stepwise procedure for RDA…………………………………….……………47
Table 3. Effect size on destructive sampling plant traits…………………………….…48
Table 4. Effect size on different size fraction of WSA…………………..…………….49
Table 5. D-sep test for 3 possible DAGs………………………………….……………50
Table 6. Summary of mediation effect of earthworm and warming on plant…..…...…51













Content of Figures
Figure 1. Experimental layout for pots and chambers………………………………….52
Figure 2. Ordination triplot of RDA results.……………….………….……………….53
Figure 3. Variance partitioning for plant traits based on RDA analysis....……………..54
Figure 4. The effect size of earthworm, aphid, and warming at week 2, 4, and 6 on the five plant traits……………….......................................……………….………….……55
Figure 5. ln(Aphid population) under each treatment…….……………………………56
Figure 6. Aphid population at week 7…………………...…..………...……………….57
Figure 7. Litter decomposition under each treatment…………………………………..58
Figure 8. The 3 possible DAGs…………………………...……………………………59
Figure 9. Path diagram with standardized coefficients for how earthworm affected aphid population………………………………………………………………………………60
Figure 10. Path diagram with standardized coefficient for how soil physical property mediating warming and earthworm effects on plant…………….…………......………61
dc.language.isozh-TW
dc.subject中介分析zh_TW
dc.subject蚜蟲zh_TW
dc.subject蚯蚓zh_TW
dc.subject暖化zh_TW
dc.subject地上部地下部交互作用zh_TW
dc.subjectmediation analysisen
dc.subjectearthwormen
dc.subjectaphiden
dc.subjectclimate warmingen
dc.subjectabove-below-ground interactionen
dc.title探討暖化下地上部與地下部的生物交互作用-路徑分析與直接、間接交互作用之量化zh_TW
dc.titleIdentify the Path Structure and Quantify Direct and Indirect Effects in an Above-below-ground System under Warmingen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林雨德,陳尊賢,王慧瑜
dc.subject.keyword地上部地下部交互作用,暖化,蚯蚓,蚜蟲,中介分析,zh_TW
dc.subject.keywordabove-below-ground interaction,climate warming,aphid,earthworm,mediation analysis,en
dc.relation.page75
dc.rights.note同意授權(全球公開)
dc.date.accepted2014-06-27
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生態學與演化生物學研究所zh_TW
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf1.3 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved