Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53137
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江文章(Wenchang Chiang)
dc.contributor.authorRachel Jui-cheng Hsuen
dc.contributor.author許瑞瑱zh_TW
dc.date.accessioned2021-06-15T16:46:35Z-
dc.date.available2020-08-16
dc.date.copyright2015-08-16
dc.date.issued2015
dc.date.submitted2015-08-10
dc.identifier.citation行政院農業委員會,2012。 糧食自給率-以熱量為權數,農委會統計資料查詢, 台灣,台北。
洪梅珠、 盧虎生、 簡 珮如, 2003。 白米質地特性與白米鹼溶性及醇溶性蛋白質相關之研究。 台中區農業改良研究彙報 80, 41-49。
高庭芳、 蘇宗振, 2014。 革新稻米產業發展策略。 農政與農情 270。
福場博保, 1985。 炊飯ソ科学。 全国米穀協会,日本。
盧訓、 呂政義、 陳文志、 1988。 不同碾磨技術對米粉理化特性之研究, 稻米品質研討會, 台灣, 310-326。
賴鳴鳳、 林穎聖、 盧訓、 呂政義,2004。 米粒組成與加熱條件對米粒糊化速率之影響。 台灣農業化學與食品科學 42, 280-292。
Abate, N., 2000. Obesity and cardiovascular disease - Pathogenetic role of the metabolic syndrome and therapeutic implications. Journal of Diabetes and Its Complications 14, 154-174.
Armendiades, C.D.a.B., E., 1977. Transitions and relaxations in polymers, in: Kaufman, H.S. (Ed.), Introduction to polymer science and technology: An SPE Textbook. Willey, New York.
Azhakanandam, K., Power, J.B., Lowe, K.C., Cocking, E.C., Tongdang, T., Bligh, H.F.J., Bligh, H.F.J., Harding, S.E., Davey, M.R., 2000. Qualitative assessment of aromatic indica rice (Oryza sativa L.): Proteins, lipids and starch in grain from somatic embryo- and seed-derived plants. Journal of Plant Physiology 156, 783-789.
Baik, M.Y., Kim, K.J., Cheon, K.C., Ha, Y.C., Kim, W.S., 1997. Recrystallization kinetics and glass transition of rice starch gel system. Journal of Agricultural and Food Chemistry 45, 4242-4248.
Bechtel, D.B., Pomernz, Y., 1978. Ultrastructure of the mature ungerminated rice (Oryza sativa) caryopsis. The starchy endosperm. . American Journal of Botany 65, 684-691.
Bello, M., Tolaba, M.P., Suarez, C., 2004. Factors affecting water uptake of rice grain during soaking. Lebensmittel-Wissenschaft Und-Technologie-Food Science and Technology 37, 811-816.
Benmoussa, M., Moldenhauer, K.A.K., Hamaker, B.R., 2007. Rice amylopectin fine structure variability affects starch digestion properties. Journal of Agricultural and Food Chemistry 55, 1475-1479.
Bergman, C.J., Bhattacharya, K.R., Ohtsubo, K., 2004. Rice end-use quality analysis, in: Champagne, E. (Ed.), Rice chemistry and technology, 3 ed. AACC, Minnesota, USA, pp. 415-472.
Bhattach.Kr, Sowbhagy.Cm, 1971. Water uptake by rice during cooking. Cereal Science Today 16, 420-&.
Biliaderis, C.G., Page, C.M., Maurice, T.J., Juliano, B.O., 1986. Thermal characterization of rice starches - a polymeric approach to phase-transitions of antigranulocytes starch. Journal of Agricultural and Food Chemistry 34, 6-14.
Brand-Miller, J., Pang, E., Bramll, L., 1992. Rice: a high or low glycemic index food? Am. J Clin Nutr 56, 1034-1036.
Briffaz, A., Mestres, C., Escoute, J., Lartaud, M., Dornier, M., 2012. Starch gelatinization distribution and peripheral cell disruption in cooking rice grains monitored by microscopy. Journal of Cereal Science 56, 699-705.
Brownlee, M.S., 2001. Maria de zayas y sotomayor, 'friendship betrayed', la 'traicion el la amistad'. Renaissance Quarterly 54, 285-286.
Champagne, E.T., Wood, D.F., Juliano, B.O., Bechtel, D.B., 2004. The rice grain and its gross composition, in: Champagne, E.T. (Ed.), Rice Chemistry and Technology. American Association of Cereal Chemists, St. Paul, MN, pp. 77-107.
Chen, J.J., Lii, C.Y., Lu, S., 2004. Relationships between grain physicochemical characteristics and flour particle size distribution for Taiwan rice cultivars. Journal of Food and Drug Analysis 12, 52-58.
Chiang, P.Y., Yeh, A.I., 2002. Effect of soaking on wet-milling of rice. Journal of Cereal Science 35, 85-94.
Chung, H.-J., Liu, Q., Hoover, R., 2009. Impact of annealing and heat-moisture treatment on rapidly digestible, slowly digestible and resistant starch levels in native and gelatinized corn, pea and lentil starches. Carbohydrate Polymers 75, 436-447.
Chung, H.J., Lim, H.S., Lim, S.T., 2006. Effect of partial gelatinization and retrogradation on the enzymatic digestion of waxy rice starch. Journal of Cereal Science 43, 353-359.
Donovan, J.W., 1978. Phase-transitions of starch-water system. Federation Proceedings 37, 1712-1712.
Eggum, B.O., Juliano, B.O., Perez, C.M., Acedo, E.F., 1993. The resistant starch, undigestible energy and undigestible protein contents of raw and cooked milled rice. Journal of Cereal Science 18, 159-170.
Eliasson, A.-C., Gudmundsson, M., 2006. Starch: Physicochemical and functional aspects, in: Eliasson, A.C. (Ed.), Food Science and Technology, pp. 391-469.
Eliasson, A.C., Gudmundsson, M., 1996. Starch: physicochemical and functional aspects., in: Eliasson, A.C. (Ed.), Carbohydrates in foods. University of Lund, Sweeden, pp. 505-553.
Ells, L.J., Seal, C.J., Kettlitz, B., Bal, W., Mathers, J.C., 2005. Postprandial glycaemic, lipaemic and haemostatic responses to ingestion of rapidly and slowly digested starches in healthy young women. British Journal of Nutrition 94, 948-955.
Engels, C., Hendrickx, M., De Samblanx, S., De Gryze, I., Tobback, P., 1986. Modelling water diffusion during long-grain rice soaking. Journal of Food Engineering 5, 55-73.
Englyst, H.N., Cummings, J.H., 1987. Digestion of polysaccharides of potato in the small-intestine of man. American Journal of Clinical Nutrition 45, 423-431.
Englyst, H.N., Hudson, G.J., 1996. The classification and measurement of dietary carbohydrates. Food Chemistry 57, 15-21.
Englyst, H.N., Kingman, S.M., Cummings, J.H., 1992. Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition 46, S33-S50.
Englyst, K.N., Englyst, H.N., Hudson, G.J., Cole, T.J., Cummings, J.H., 1999. Rapidly available glucose in foods: an in vitro measurement that reflects the glycemic response. American Journal of Clinical Nutrition 69, 448-454.
FAO, 2014. FAO Cereal Supply and Demand Brief. FAO.
FAO/WHO, 1998. Carbohydrates in human nutrition: Report of a Joint FAO/WHO Expert Consultation, 14-18 April 1997, FAO Food and Nutrtion Paper No. 66, Rome.
Fardet, A., Hoebler, C., Baldwin, P.M., Bouchet, B., Gallant, D.J., Barry, J.L., 1998. Involvement of the protein network in the in vitro degradation of starch from spaghetti and lasagne: a microscopic and enzymic study. Journal of Cereal Science 27, 133-145.
Farhat, I.A., Protzmann, J., Becker, A., Valles-Pamies, B., Neale, R., Hill, S.E., 2001. Effect of the extent of conversion and retrogradation on the digestibility of potato starch. Starch-Starke 53, 431-436.
Franco, C.M.L., Ciacco, C.F., 1992. Factors that affect the enzymatic degradation of natural starch granules - effect of the size of the granules. Starch-Starke 44, 422-426.
Fredriksson, H., Silverio, J., Andersson, R., Eliasson, A.C., Aman, P., 1998. The influence of amylose and amylopectin characteristics on gelatinization and retrogradation properties of different starches. Carbohydrate Polymers 35, 119-134.
Frei, M., Siddhuraju, P., Becker, K., 2003. Studies on the in vitro starch digestibility and the glycemic index of six different indigenous rice cultivars from the Philippines. Food Chemistry 83, 395-402.
Goddard, M.S., Young, G., Marcus, R., 1984. The effect of amylose content on insulin and glucose responses to ingested rice. American Journal of Clinical Nutrition 39, 388-392.
Hamaker, B.R., Griffin, V.K., 1990. Changing the viscoelastic properties of cooked rice through protein disruption. Cereal Chemistry 67, 261-264.
Han, X.-Z., Hamaker, B.R., 2001. Amylopectin fine structure and rice starch paste breakdown. Journal of Cereal Science 34, 279-284.
He, G., Suzuki, H., 1987. The relationship between translucency of rice grain and gelatinization of starch in the grain during cooking. Journal of Nutritional Science and Vitaminology 33, 263-273.
Hermansson, A.M., Svegmark, K., 1996. Developments in the understanding of starch functionality. Trends in Food Science & Technology 7, 345-353.
Holm, J., Bjorck, I., Ostrowska, S., Eliasson, A.C., Asp, N.G., Larsson, K., Lundquist, I., 1983. Digestibility of amylose-lipid complexes in vitro and in vivo. Starke 35, 294-297.
Hsu, R.J.-C., Lu, S., Chang, Y.H., Chiang, W.C., 2015. Effects of added water and retrogradation on starch digestibility of cooked rice flours with different amylose content. Journal of Cereal Science 61, 1-7.
Hu, P.S., Zhao, H.J., Duan, Z.Y., Zhang, L.L., Wu, D.X., 2004. Starch digestibility and the estimated glycemic score of different types of rice differing in amylose contents. Journal of Cereal Science 40, 231-237.
Imanaka, K., Fujii, J., Kawakami, I.. , 1972. Morphological studies on the cooked rice. 廣島文化女子短期大學紀要 6, 51-57.
Jane, J.L., Wong, K.S., McPherson, A.E., 1997. Branch-structure difference in starches of A- and B-type x-ray patterns revealed by their Naegeli dextrins. Carbohydrate Research 300, 219-227.
Jiao, A., Xu, X., Jin, Z., 2014. Modelling of dehydration-rehydration of instant rice in combined microwave-hot air drying. Food and Bioproducts Processing 92, 259-265.
Juliano, B.O., 1984. Rice starch: productions, properties and uses., in: BeMiller, R.L., BeMiller, J.N., Paschall, E.F. (Eds.), Starch: chemistry and technology. Academic Press, New York, pp. 507-528.
Juliano, B.O., 1985a. Criteria and tests for rice grain qualities., in: Juliano, B.O. (Ed.), Rice Chemistry and Technology. American Association of Cereal Chemists, St. Paul, Minnesota.
Juliano, B.O., 1985b. Polysaccharides, proteins and lipids of rice., in: Juliano, B.O. (Ed.), Rice: Chemistry and Technology. American Association of Cereal Chemists, St. Paul, MN, pp. 59-174.
Juliano, B.O., Bechtel, D.B., 1985. The rice grain and its cross composition, in: Juliano, B.O. (Ed.), Rice: chemistry and technology. The American Association of Cereal Chemists, Inc., St. Paul, Minnesota, USA, pp. 17 - 57.
Juliano, B.O., Goddard, M.S., 1986. Cause of varietal difference in insulin and glucose responses to ingested rice. Qualitas Plantarum-Plant Foods for Human Nutrition 36, 35-41.
Juliano, B.V.O., Perez, C.M., Barber, S., Blakeney, A.B., Iwasaki, T., Shibuya, N., Keneaster, K.K., Chung, S.M., Laignelet, B., Launay, B., Delmundo, A.M., Suzuki, H., Shiki, J., Tsuji, S., Tokoyama, J., Tatsumi, K., Webb, B.D., 1981. International cooperative comparison of instrument methods for cooked rice texture. Journal of Texture Studies 12, 17-38.
Kasai, M., Lewis, A., Marica, F., Ayabe, S., Hatae, K., Fyfe, C.A., 2005. NMR imaging investigation of rice cooking. Food Research International 38, 403-410.
Keetels, C., vanVliet, T., Walstra, P., 1996. Gelation and retrogradation of concentrated starch systems .3. Effect of concentration and heating temperature. Food Hydrocolloids 10, 363-368.
Lai, H.M., 2001. Effects of hydrothermal treatment on the physicochemical properties of pregelatinized rice flour. Food Chemistry 72, 455-463.
Lai, V.M.F., Lu, S., Lii, C., 2000. Molecular characteristics influencing retrogradation kinetics of rice amylopectins. Cereal Chemistry 77, 272-278.
Lee, Y.E., Osman, E.M., 1991. Correlation of morphological changes of rice starch granules with rheological properties during heating in excess water. Agricultural Chemistry and Biotechnology 34, 379-385.
Lehmann, U., Robin, F., 2007. Slowly digestible starch - its structure and health implications: a review. Trends in Food Science & Technology 18, 346-355.
Lin, J.-H., Chang, Y.-H., 2006. Molecular degradation rate of rice and corn starches during acid-methanol treatment and its relation to the molecular structure of starch. Journal of Agricultural and Food Chemistry 54, 5880-5886.
Lin, J.H., Lee, S.Y., Chang, Y.H., 2003. Effect of acid-alcohol treatment on the molecular structure and physicochemical properties of maize and potato starches. Carbohydrate Polymers 53, 475-482.
Lin, T.M., Durance, T.D., Scaman, C.H., 1998. Characterization of vacuum microwave, air and freeze dried carrot slices. Food Research International 31, 111-117.
Lu, S., Chen, L.N., Lii, C.Y., 1997. Correlations between the fine structure, physicochemical properties, and retrogradation of amylopectins from Taiwan rice varieties. Cereal Chemistry 74, 34-39.
Lu, Z.-H., Sasaki, T., Li, Y.-Y., Yoshihashi, T., Li, L.-T., Kohyama, K., 2009. Effect of amylose content and rice type on dynamic viscoelasticity of a composite rice starch gel. Food Hydrocolloids 23, 1712-1719.
Luangmalawata, P., Prachayawarakorn, S., Nathakaranakule, A., Soponronnarit, S., 2008. Effect of temperature on drying characteristics and quality of cooked rice. Lwt-Food Science and Technology 41, 716-723.
Ludwig, D.D.S., 2002. The glycemic index - Physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. Jama-Journal of the American Medical Association 287, 2414-2423.
Mahanta, C.L., Bhattacharya, K.R., 1989. Thermal-degradation of starch in parboiled rice. Starch-Starke 41, 91-94.
Miles, M.J., Morris, V.J., Orford, P.D., Ring, S.G., 1985. The roles of amylose and amylopectin in the gelation and retrogradation of starch. Carbohydrate Research 135, 271-281.
Mohapatra, D., Bal, S., 2006. Cooking quality and instrumental textural attributes of cooked rice for different milling fractions. Journal of Food Engineering 73, 253-259.
Oazi-Durrani, A.K., 1948. Quick cooking rice and process for making the same, US.
Ogawa, Y., Glenn, G.A., Orts, W.J., Wood, D.F., 2003. Histological structures of cooked rice grain. Journal of Agricultural and Food Chemistry 51, 7019-7023.
Ogawa, Y., Wood, D.F., Orts, W.J., Glenn, G.M., Miyashita, K., Tsuta, M., Sugiyama, J., 2003. Observation method for the histological structure of cooked rice kernels using adhesive tape. Nippon Shokuhin Kagaku Kogaku Kaishi 50, 319-323.
Ojeda, C.A., Tolaba, M.P., Suarez, C., 2000. Modeling starch gelatinization kinetics of milled rice flour. Cereal Chemistry 77, 145-147.
Okuda, M., Aramaki, I., Koseki, T., Inouchi, N., Hashizume, K., 2006. Structural and retrogradation properties of rice endosperm starch affect enzyme digestibility of steamed milled-rice grains used in sake production. Cereal Chemistry 83, 143-151.
Ong, M.H., Blanshard, J.M.V., 1995. The significance of starch polymorphism in commercially produced parboiled rice. Starch-Starke 47, 7-13.
Panlasigui, L.N., Thompson, L.U., Juliano, B.O., Perez, C.M., Yiu, S.H., Greenberg, G.R., 1991. Rice varieties with similar amylose content differ in starch digestibility and glycemic response in humans. American Journal of Clinical Nutrition 54, 871-877.
Park, E.Y., Baik, B.-K., Lim, S.-T., 2009. Influences of temperature-cycled storage on retrogradation and in vitro digestibility of waxy maize starch gel. Journal of Cereal Science 50, 43-48.
Park, I.M., Ibanez, A.M., Shoemaker, C.F., 2007. Rice starch molecular size and its relationship with amylose content. Starch-Starke 59, 69-77.
Pascual, C.G., Juliano, B.O., 1983. Properties of cell-wall preparations of milled rice. Phytochemistry 22, 151-159.
Patindol, J., Guraya, H., Champagne, E., Chen, M.-H., McClung, A., 2010. Relationship of cooked-rice nutritionally important starch fractions with other physicochemical properties. Starch-Starke 62, 246-256.
Patindol, J.A., Guraya, H.S., Champagne, E.T., McClung, A.M., 2010. Nutritionally Important Starch Fractions of Rice Cultivars Grown in Southern United States. Journal of Food Science 75, H137-H144.
Prasert, W., Suwannaporn, P., 2009. Optimization of instant jasmine rice process and its physicochemical properties. Journal of Food Engineering 95, 54-61.
Ramesh, M.N., Rao, P.N.S., 1996. Drying studies of cooked rice in a vibrofluidised bed drier. Journal of Food Engineering 27, 389-396.
Ranghino, F., 1966. Valutazione delle resistenza del riso alla cottura, in base al tempo di gelatinizzazione dei granelli. Il Riso 15, 117-127.
Reed, M.O., Ai, Y., Leutcher, J.L., Jane, J.-l., 2013. Effects of cooking methods and starch structures on starch hydrolysis rates of rice. Journal of Food Science 78, H1076-H1081.
Rewthong, O., Soponronnarit, S., Taechapairoj, C., Tungtrakul, P., Prachayawarakorn, S., 2011. Effects of cooking, drying and pretreatment methods on texture and starch digestibility of instant rice. Journal of Food Engineering 103, 258-264.
Robin, F., Merinat, S., Simon, A., Lehmann, U., 2008. Influence of chain length on alpha-1,4-d-glucan recrystallization and slowly digestible starch formation. Starch-Starke 60, 551-558.
Sagum, R., Arcot, J., 2000. Effect of domestic processing methods on the starch, non-starch polysaccharides and in vitro starch and protein digestibility of three varieties of rice with varying levels of amylose. Food Chemistry 70, 107-111.
Schweizer, T.F., Reimann, S., Solms, J., Eliasson, A.C., Asp, N.G., 1986. Influence of drum-drying and twin-screw extrusion cooking on wheat carbohydrates .2. Effects of lipids on physical-properties, degradation and complex-formation of starch in wheat-flour. Journal of Cereal Science 4, 249-260.
Seal, C.J., Daly, M.E., Thomas, L.C., Bal, W., Birkett, A.M., Jeffcoat, R., Mathers, J.C., 2003. Postprandial carbohydrate metabolism in healthy subjects and those with type 2 diabetes fed starches with slow and rapid hydrolysis rates determined in vitro. British Journal of Nutrition 90, 853-864.
Seguchi, M., Hayashi, M., Suzuki, Y., Sano, Y., Hirano, H.Y., 2003. Role of amylose in the maintenance of the configuration of rice starch granules. Starch-Starke 55, 524-528.
Shibuya, N., Nakane, R., Yasui, A., Tanaka, K., Iwasaki, T., 1985. Comparative studies on cell-wall preparations from rice bran, germ, and endosperm. Cereal Chemistry 62, 252-258.
Shin, S.I., Choi, H.J., Chung, K.M., Hamaker, B.R., Park, K.H., Moon, T.W., 2004. Slowly digestible starch from debranched waxy sorghum starch: Preparation and properties. Cereal Chemistry 81, 404-408.
Sievert, D., Wursch, P., 1993. Amylose chain association based on differential scanning calorimetry. Journal of Food Science 58, 1332-1334.
Silverio, J., Fredriksson, H., Andersson, R., Eliasson, A.C., Aman, P., 2000. The effect of temperature cycling on the amylopectin retrogradation of starches with different amylopectin unit-chain length distribution. Carbohydrate Polymers 42, 175-184.
Singh, N., Kaur, L., Sodhi, N.S., Sekhon, K.S., 2005. Physicochemical, cooking and textural properties of milled rice from different Indian rice cultivars. Food Chemistry 89, 253-259.
Song, B.-S., Park, J.-N., Lee, J.-W., Kim, J.-K., Kim, J.-H., 2014. Optimization of processing conditions to improve the rehydration and sensory properties of freeze-dried cooked rice. Journal of Food Processing and Preservation 38, 1244-1250.
Southgate, D.A.T., 1969. Determination of carbohydrates in foods .I. Available carbohydrate. Journal of the Science of Food and Agriculture 20, 326-&.
Sowbhagya, C.M., Ramesh, B.S., Ali, S.Z., 1994. Hydration, swelling and solubility behavior of rice in relation to other physicochemical properties. Journal of the Science of Food and Agriculture 64, 1-7.
Stapley, A.G.F., Fryer, P.J., Gladden, L.F., 1998. Diffusion and reaction in whole wheat grains during boiling. Aiche Journal 44, 1777-1789.
Tester, R.F., Debon, S.J.J., 2000. Annealing of starch - a review. International Journal of Biological Macromolecules 27, 1-12.
Tester, R.F., Morrison, W.R., 1990. Swelling and gelatinization of cereal starches .1. Effects of amylopectin, amylose, and lipids. Cereal Chemistry 67, 551-557.
Tian, Y., Zhang, L., Xu, X., Xie, Z., Zhao, J., Jin, Z., 2012. Effect of temperature-cycled retrogradation on slow digestibility of waxy rice starch. International Journal of Biological Macromolecules 51, 1024-1027.
Vandeputte, G.E., Derycke, V., Geeroms, J., Delcour, J.A., 2003. Rice starches. II. Structural aspects provide insight into swelling and pasting properties. Journal of Cereal Science 38, 53-59.
Varavinit, S., Shobsngob, S., Varanyanond, W., Chinachoti, P., Naivikul, O., 2003. Effect of amylose content on gelatinization, retrogradation and pasting properties of flours from different cultivars of Thai rice. Starch-Starke 55, 410-415.
Vidal, V., Pons, B., Brunnschweiler, J., Handschin, S., Rouau, X., Mestres, C., 2007. Cooking behavior of rice in relation to kernel physicochemical and structural properties. Journal of Agricultural and Food Chemistry 55, 336-346.
Wachters-Hagedoorn, R.E., Priebe, M.G., Heimweg, J.A.J., Heiner, A.M., Englyst, K.N., Holst, J.J., Stellaard, F., Vonk, R.J., 2006. The rate of intestinal glucose absorption is correlated with plasma glucose-dependent insulinotropic polypeptide concentrations in healthy men. Journal of Nutrition 136, 1511-1516.
Wunderlich, B., 1976. Molecular physics, Crystal nucleation, growth, annealing. Academic Press, New York.
Wursch, P., Delvedovo, S., Koellreutter, B., 1986. Cell structure and starch nature as key determinants of the digestion rate of starch in legume. American Journal of Clinical Nutrition 43, 25-29.
Yang, C.C., Lai, H.M., Lii, C.Y., 1984. The modified alkaline steeping method for the isolation of rice starch. Food Science (ROC) 11, 158-171.
Yeh, A.I., 2004. Preparation and applications of rice flour, in: Champagne, E. (Ed.), Rice chemistry and technology, 3rd ed. AACC, Minnesota, USA, pp. 495-540.
Yu, S., Ma, Y., Menager, L., Sun, D.-W., 2012. Physicochemical properties of starch and flour from different rice cultivars. Food and Bioprocess Technology 5, 626-637.
Zhang, G., Ao, Z., Hamaker, B.R., 2006. Slow digestion property of native cereal starches. Biomacromolecules 7, 3252-3258.
Zhang, G., Ao, Z., Hamaker, B.R., 2008. Nutritional property of endosperm starches from maize mutants: A parabolic relationship between slowly digestible starch and amylopectin fine structure. Journal of Agricultural and Food Chemistry 56, 4686-4694.
Zhang, G., Hamaker, B.R., 2009. Slowly digestible starch: concept, mechanism, and proposed extended glycemic index. Crit Rev Food Sci Nutr 49, 852-867.
Zhang, G., Venkatachalam, M., Hamaker, B.R., 2006. Structural basis for the slow digestion property of native cereal starches. Biomacromolecules 7, 3259-3266.
Zhang, L., Hu, X., Xu, X., Jin, Z., Tian, Y., 2011. Slowly digestible starch prepared from rice starches by temperature-cycled retrogradation. Carbohydrate Polymers 84, 970-974.
Zhu, L.-J., Liu, Q.-Q., Wilson, J.D., Gu, M.-H., Shi, Y.-C., 2011. Digestibility and physicochemical properties of rice (Oryza sativa L.) flours and starches differing in amylose content. Carbohydrate Polymers 86, 1751-1759.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53137-
dc.description.abstract米飯及米食產品等澱粉質食物是國人重要的碳水化合物來源,近年來研究顯示澱粉質食物的澱粉消化特性如消化速率緩急和常見的生活型態疾病如糖尿病具有相關性。澱粉消化特性可透過體外澱粉消化測定模式依消化速率區分為快速消化澱粉(rapidly digestible starch, RDS)、緩慢消化澱粉(slowly digestible starch, SDS)及抗性澱粉(resistant starch, RS),作為澱粉質食品的品質指標之一。若飲食中的碳水化合物的快速消化澱粉(RDS)含量較低,可減緩餐後血糖及胰島素的上升,並可延長飽足感。本研究擬依據體外澱粉消化測定模式,篩選具潛力的國產稻米品種,了解加工條件對米食產品及米飯的澱粉消化澱粉的影響,開發或改善具延緩消化澱粉特性的米食產品之製備方式及條件。首先收集國產主要米種分析其理化及澱粉分子特性,再選擇具代表性米種分別進行米穀粉產品及米飯的加工條件測試,探討延緩澱粉消化特性的最適加工條件。結果顯示,在米穀粉加工方面,當加水量低於7倍,米種的視直鏈澱粉含量和RDS含量呈負相關性,且延長冷藏時間有助於降低非糯性米種的RDS含量。在米飯部分,以較低的溫度、最短的時間及較少的水量烹煮米飯,可以保留較多完整的澱粉顆粒來延緩米飯的澱粉消化特性,再透過冷藏與低溫乾燥的共伴效應使澱粉分子結構重整形成不完美結晶結構以降低復水後速食米飯的澱粉消化特性。本研究探討國產大宗米種的基本理化及分子特性後,運用於米穀粉食品及速食米飯產品之製程條件選擇,將有助於國內米食產業未來生產具健康訴求之米食產品,做為國人日常飲食之選擇,期能對國人健康提升有所助益,並提高國產米食的消費量。zh_TW
dc.description.abstractRice being the staple food in Taiwan and Asia is the main source of carbohydrate in many countries. The nutritionally important fractions of food starches can be classified as rapidly digestible starch (RDS), slowly digestible starch (SDS), and resistant starch (RS) based on the rate of digestion according to Englyst’s assay. RDS content of starchy food is positively correlated to glycemic response. Oppositely, starchy food containing higher content of SDS leads to less glycemic response and makes it more nutritional for reducing the risk of raising glycemic response. In this study, we aimed to evaluate optimum process conditions for rice flour based foods and instant rice for reducing starch digestibility from domestic rice varieties. The results showed that the amount of water added for cooking and extending refrigeration duration impacted majorly on the starch digestibility of both low-amylose and high amylose for rice flours. By properly selecting a lower temperature, comparing to the traditional electronic cooker, with minimum time as well as adding limited water significantly reduced RDS of cooked rice. Evidence of SEM photogram showed that lower temperature cooking made the starch gelatinized without disruption all starch granule, leading to the lower starch digestibility. One day refrigeration was enough for the conformation of starch structure. The synergy of refrigeration and lower temperature drying significantly reduced the starch digestibility. In addition, molecular structure of rice starch significantly not only affected the starch digestibility of rice flour based products, but also the rehydrated instant rice. It appears possible to reduce rice starch digestibility by establishing optimum processing conditions for different rice varieties.en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:46:35Z (GMT). No. of bitstreams: 1
ntu-104-D99641005-1.pdf: 3196489 bytes, checksum: 823afa436936e0d87b82b14bec318b84 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents壹、 研究背景與目的 15
貳、 第一部分:國產白米品種篩選與米穀粉加工 17
一、 文獻回顧 17
(一) 國產稻米品種 17
(二) 澱粉消化特性的定義 18
(三) 澱粉消化特性與生理功效 19
(四) 稻米品種及其理化特性與澱粉消化 21
(五) 影響澱粉消化特性的物理與化學結構 22
(六) 米穀粉加工與澱粉消化特性 24
二、 材料與方法 27
(一) 研究架構 27
(二) 白米樣品及其米澱粉 27
(三) 米穀粉磨製 27
(四) 米澱粉萃取 27
(五) 米穀粉加工試驗 28
(六) 分析方法 28
三、 結果與討論 35
(一) 國產米種基本成分與理化特性 35
(二) 加水量對米穀粉澱粉消化特性的影響 39
(三) 冷藏時間對各米種米穀粉澱粉消化特性的影響 41
(四) 品種對米穀粉消化特性的影響 42
(五) 降低RDS含量的米穀粉加工條件 46
(六) 米穀粉RDS及SDS含量與理化特性的相關性分析 47
四、 結論 48
參、 第二部分:具延緩澱粉消化特性的速食米飯加工條件探討 49
一、 文獻回顧 49
(一) 米粒的結構 49
(二) 白米中的主要成分 50
(三) 米飯及速食米飯的加工 52
二、 材料與方法 58
(一) 研究架構 58
(二) 米飯烹煮試驗 58
(三) 冷藏 59
(四) 乾燥 59
(五) 分析方法 60
三、 結果與討論 62
(一) 加熱預試驗 62
(二) 加熱條件對米飯澱粉消化特性的影響 66
(三) 冷藏時間對米飯澱粉消化特性的影響 70
(四) 乾燥對速食米飯復水後澱粉消化特性之影響 71
(五) 乾燥與冷藏的共伴效應 72
(六) 品種對速食米飯澱粉消化特性的影響 75
四、 結論 77
肆、 綜合結論 78
伍、 表 79
陸、 圖 102
柒、 參考文獻 133
dc.language.isozh-TW
dc.subject米穀粉zh_TW
dc.subject米飯zh_TW
dc.subject速食米飯zh_TW
dc.subject澱粉消化特性zh_TW
dc.subject米食加工zh_TW
dc.subjectriceen
dc.subjectrice flouren
dc.subjectinstant riceen
dc.subjectstarch digestibilityen
dc.subjectrice based productsen
dc.title影響米穀粉及速食米飯澱粉消化特性因子之探討zh_TW
dc.titleStudy on the factors affecting starch digestibility of rice flour based products and instant riceen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree博士
dc.contributor.coadvisor陳宏彰(Hong-Jhang Chen)
dc.contributor.oralexamcommittee盧訓(Shin Lu),黃青真(Ching jang Huang),葉安義(An-i Yeh),呂廷璋(Ting-jang Lu),張永和(Yungho Chang)
dc.subject.keyword米穀粉,米飯,速食米飯,澱粉消化特性,米食加工,zh_TW
dc.subject.keywordrice,rice flour,instant rice,starch digestibility,rice based products,en
dc.relation.page144
dc.rights.note有償授權
dc.date.accepted2015-08-10
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
3.12 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved