Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52923
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李佳翰(Jia-Han Li)
dc.contributor.authorChing-Yun Huangen
dc.contributor.author黃靖昀zh_TW
dc.date.accessioned2021-06-15T16:34:13Z-
dc.date.available2020-07-14
dc.date.copyright2015-08-28
dc.date.issued2015
dc.date.submitted2015-08-12
dc.identifier.citation[1] M.-G. Lippmann, “Épreuves réversibles donnant la sensation du relief,” Journal of Theoretical and Applied Physics 7, 821-825, (1908).
[2] J.-H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48, H77-H94, (2009).
[3] S.-H. Hong, J.-S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express 12, 483-491, (2004).
[4] S.-H. Hong and B. Javidi, “Improved resolution 3D object reconstruction using computational integral imaging with time multiplexing,” Opt. Express 12, 4579-4588, (2004).
[5] H. Navarro, J.-C. Barreiro, G. Saavedra, M. Martínez-Corral, and B. Javidi, “High-resolution far-field integral-imaging camera by double snapshot,” Opt. Express 20, 890-895, (2012).
[6] H. Navarro, G. Saavedra, M. Martínez-Corral, M. Sjöström, and R. Olsson, “Depth-of-field enhancement in integral imaging by selective depth-deconvolution,” Journal of Display Technology 10, 182-188, (2014).
[7] H. Navarro, R. Martínez-Cuenca, A. Molina-Martín, M. Martinez-Corral, G. Saavedra, and B. Javidi, “Method to remedy image degradations due to facet braiding in 3D integral-imaging monitors,” Journal of Display Technology 6, 404-411, (2010).
[8] G. Li, S.-C. Kim, and E.-S. Kim, “Viewing quality-enhanced reconstruction of 3-D object images by using a modified computational integral-imaging reconstruction technique,” Journal of 3D Research 3, 1-9, (2012).
[9] J. Arai, F. Okano, H. Hoshino, and I. Yuyama, “Gradient-index lens-array method based on real-time integral photography for three-dimensional images,” Appl. Opt. 37, 2034-2045, (1998).
[10] J.-S. Jang and B. Javidi, “Three-dimensional projection integral imaging using micro-convex-mirror arrays,” Opt. Express 12, 1077-1083, (2004).
[11] J.-S. Jang and B. Javidi, “Large depth-of-focus time-multiplexed three-dimensional integral imaging by use of lenslets with nonuniform focal lengths and aperture sizes,” Opt. Lett. 28, 1924-1926, (2003).
[12] D. Zhu, C. Li, X. Zeng, and H. Jiang, “Tunable-focus microlens arrays on curved surfaces,” Appl. Phys. Lett. 96, 081111-081112, (2010).
[13] M. Hain, W. von Spiegel, M. Schmiedchen, T. Tschudi, and B. Javidi, “3D integral imaging using diffractive Fresnel lens arrays,” Opt. Express 13, 315-326, (2005).
[14] S. Pang, C. Han, L.-M. Lee, and C. Yang, “Fluorescence microscopy imaging with a Fresnel zone plate array based optofluidic microscope,” The Royal Society of Chemistry 11, 3698-3702, (2011).
[15] Y.-C. Liu, and M.-H. Wen, “Comparison of head-up display (HUD) vs. head-down display (HDD): driving performance of commercial vehicle operators in Taiwan,” Int. j. human-comput. stud. 61, 679-697, (2004).
[16] V. Charissis, and M. Naef, “Evaluation of prototype automotive head-up display interface: testing driver's focusing ability through a VR simulation,” IEEE INT VEH SYM 2007, IEEE, (2007).
[17] C.-H. Huang, C.-W. Chao, T. Tsai, and M.-H. Hung, “The effects of interface design for head-up display on driver behavior,” Life Sci. 10, 2058-2065, (2013)
[18] G. Weinberg, B. Harsham, and Z. Medenica, “Evaluating the usability of a head-up display for selection from choice lists in cars,” in Proceedings of the 3rd International Conference on Automotive User Interfaces and Interactive Vehicular Applications, AutomotiveUI ' 11,(New York, NY, USA), ACM, 39-46, (2011).
[19] C. R. Spitzer, U. Ferrell, and T. Ferrell, Digital Avionics Handbook, 3rd Edition, CRC Press, (2014).
[20] Díaz, L., 'Optical aberrations in head-up displays,' M.S. thesis, Universidad Pontificia Comillas Madrid, Spain, 2005.
[21] M. H. Kalmanash and R. Collins, “Digital HUDs for tactical aircraft,” Proc. SPIE 6225, 62250L, (2006).
[22] M. Weihrauch, G. Meloeny, and T. Goesch, “The First Head Up Display Introduced by General Motors,” SAE Technical Paper, 890288, (1989)
[23] M. K. Hedili, M. O. Freeman, and H. Urey, “Microstructured headup display screen for automotive applications,” Proc. SPIE 8428, 84280X-1–84280X-6, (2012).
[24] K. Aksit, O. Eldes, M. K. Hedili, and H. Urey, “Augmented reality and 3D displays using pico-projectors,” SID Int. Symp. Dig. Tech. Pap. 44(S1), 243-246, (2013).
[25] M. K. Hedili, M. O. Freeman, and H. Urey, “Microlens array-based high-gain screen design for direct projection head-up displays,” Appl. Opt. 52, 1351-1357, (2013).
[26] W.-H. Cho, C.-T. Lee, C.-C. Kei, B.-H. Liao, D. Chiang, and C.-C. Lee, “Head-up display using an inclined Al2O3 column array,” Appl. Opt. 53, A121-A124, (2014).
[27] T. Sun, G. Pettitt, N. T. Ho, K. Eckles, B. Clifton, and B. Cheng, “Full color, high contrast front projection on black emissive display,” Proc. SPIE 8254, 82540K, (2012).
[28] M. O. Freeman, “MEMS scanned laser head-up display,” Proc. SPIE 7930, 79300G-1-79300G-8, (2011).
[29] O. Utsuboya, T. Shimizu, and A. Kurosawa, “Augmented reality head up display for car navigation system,” SID Int. Symp. Dig. Tech. Pap. 44(S1), 243-246, (2013).
[30] K. Fujimura, L. Xu, C. Tran, R. Bhandari, and V. Ng-Thow-Hing, “Driver queries using wheel-constrained finger pointing and 3-D head-up display visual feedback,” In Proceedings of the 5th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, AutomotiveUI ’13, (New York, NY, USA), ACM, 56-62, (2013).
[31] D. Miyazaki, K. Shiba, K. Sotsuka, and K. Matsushita, “Volumetric display system based on three-dimensional scanning of inclined optical image,” Opt. Express 14, 12760-12769, (2006).
[32] D. Miyazaki, T. Honda, K. Ohno, and T. Mukai, “Volumetric display system using a digital micromirror device based on inclined-plane scanning,” J. Display Technol. 6, 548-552, (2010).
[33] D. Miyazaki, N. Hirano, Y. Maeda, S. Yamamoto, T. Mukai, and S. Maekawa, “Floating volumetric image formation using a dihedral corner reflector array device,” Appl. Opt. 52, A281–A289, 2013.
[34] D. Miyazaki, G. Miyazaki, Y. Maeda, and T. Mukai, “Floated integral imaging display viewable from surrounding area,” Imaging Appl. Opt. 2014, OSA Tech. Digest, DW2B.5, (2014).
[35] G. Favalora, R. K. Dorval, D. M. Hall, M. Giovinco, and J. Napoli, “Volumetric three-dimensional display system with rasterization hardware,” Proc. SPIE 4297, 227–235, (2001).
[36] G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. G. Giovinco, M. J. Richmond, and W. S. Chun, “100 Million-voxel volumetric display,” in Cockpit Displays IX: Displays Defense Appl., D. Hopper, Ed., Aug. 2002, Proc. SPIE 4712, 300–312, (2002).
[37] S. Yoshida, “fVisiOn: glasses-free tabletop 3-D display—its design concept and prototype,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2011), DTuA1, (2011).
[38] C. M. Alicia, H. Rabal, and M. Muramatsu, “The Levitating Buddha: Constructing a Realistic Cylindrical Mirror Pseudo Image,” The Physics Teacher 44, 443-444, (2006).
[39] G. Park, J. Yeom, S.-W. Min, and B. Lee, “Three-dimensional floating display by concave cylindrical mirror and tracking technology,” Proc. of SPIE 7797, 77970W, (2010).
[40] A. Sieradzan, “Teaching Geometrical Optics with the ‘Optic Mirage’,” The Physics Teacher 28, 534-536, (1990).
[41] S. Adhya and J. Noe, “A complete ray-trace analysis of the ‘mirage’ toy,” Proc. SPIE ETOP, 1-6, (2007).
[42] A. Butler, O. Hilliges, S. Izadi, S. Hodges, D. Molyneaux, and D. Kim, “Vermeer direct interaction with a 360° viewable 3D display,” In UIST ’11, 569-576, (2011).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52923-
dc.description.abstract近年來,3D (three-dimensional) 技術是很熱門的研究,而3D影像和3D投影皆是其中主要的研究主題。在3D影像方面,積體成像技術是被受期待的方法之ㄧ,在積體成像之光學系統中,包含了各種透鏡及感光元件等,其中,扮演關鍵核心的就是微透鏡陣列,微透鏡陣列能夠擷取外界光線的光場資訊,再儲存至感光元件中,經過後端運算及處理後,就能得到不同景深的3D影像。另一方面,目前有許多技術能實現3D投影,但多數需要屏幕,如水幕或水霧等,而無屏幕的3D投影技術在應用上是非常多元的,例如3D的車用抬頭顯示器等,是非常前瞻並具有挑戰性的研究主題。在本論文中,我們利用光學模擬軟體LightTools來做各種分析及模擬;在積體成像的研究中,我們模擬並擷取物體透過微透鏡陣列後的光場資訊,並重建影像,另外,由於透鏡的色散會影響影像的重建,因此我們設計出對紅藍綠三種波長不色散的特殊微透鏡陣列並模擬其成像結果,在實驗及量測上,我們設計結合三種波長的相位型菲涅耳波帶片,並對其分析討論;而在3D投影應用在車用抬頭顯示器的研究上,我們透過模擬一種非常簡易的3D投影系統:海市蜃樓器 (Mirage) ,來分析其光學特性,並設計及最佳化可能的無屏幕車用抬頭顯示器。在設計新光學系統中,因為能事先利用光學模擬軟體LightTools進行分析及模擬,讓我們除了可以預先判斷其成效外,也能夠減低製造成本。zh_TW
dc.description.abstractIn recent years, three-dimensional (3D) technologies are popular research topics, especially the issues of 3D imaging and 3D projection. With regards to 3D imaging, integral imaging has been considered one of the most prominent autostereoscopic techniques. The optical system of integral imaging is composed of a microlens array and a photosensor. The microlens array is the key element for capturing the 3D information, which is used to encode the angular information into the photosensor. The 3D information can be applied to image processing, such as depth reconstruction and digital refocusing. To analyze the elemental image through the microlens array in this research work, the optical system was simulated using LightTools, an optical simulation software tool. Moreover, new types of microlens arrays were designed, including achromatic microlens on different wavelength. The simulation results and the reconstructed images are discussed in this thesis. On the other hand, there are many methods to realize 3D projection. However, most of them require screens; and 3D projection without screens is challenging. In this research work, the technique of using. 3D projection in automobile head-up display (HUD) was studied. A 3D projection system called Mirage was used to design the new type of HUD. Through the analysis and simulations using LightTools, the HUD-Mirage is proposed in this thesis. The simulation using LightTools is helpful for analyzing the feasibility of the design ideas. In additions, it can reduce the fabrication budget and time.en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:34:13Z (GMT). No. of bitstreams: 1
ntu-104-R02525042-1.pdf: 4355621 bytes, checksum: 1a402a8de6e2edc20b3917aa1760188a (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書 #
致謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES xi
LIST OF SYMBOLS xii
Chapter 1 Introduction 1
1.1 Literature Review 1
1.1.1 Integral imaging 1
1.1.2 Head-Up Display 2
1.1.3 Three-Dimensional Projection 3
1.2 Motivation 4
1.3 Framework 4
Chapter 2 Principles and Methodology 6
2.1 Principles of Integral Imaging 6
2.2 Principles of Mirage 8
2.3 Simulation Software 13
2.3.1 Methods for Simulating Elemental Images 13
2.3.2 Methods for Simulating Mirage 16
Chapter 3 Results and Discussions 17
3.1 Integral Imaging 17
3.1.1 Reconstruction of the Integral Images 17
3.1.2 The Effect of the Chromatic Aberration on Integral Imaging 22
3.1.3 Experimental Results and Discussions 26
3.2 HUD-Mirage 34
3.2.1 Commercial Mirage 34
3.2.2 Special Design of Mirage 37
3.2.3 Design of HUD-Mirage 42
Chapter 4 Conclusions and Future Work 48
4.1 Conclusions 48
4.2 Future Works 49
REFERENCE 50
dc.language.isoen
dc.title模擬分析微透鏡陣列對積體成像的影響及設計新型虛擬車用抬頭顯示器zh_TW
dc.titleSimulation and Analysis of the Effects of the Microlens Array on Integral Imaging and Design of New Virtual Head-Up Displayen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee顏家鈺,張恆華,鍾添東,傅增棣
dc.subject.keyword積體成像,微透鏡陣列,相位型菲涅耳波帶片,抬頭顯示器,無屏幕投影,zh_TW
dc.subject.keywordintegral imaging,microlens array (MLA),phase Fresnel lens (PFL),head-up display (HUD),en
dc.relation.page54
dc.rights.note有償授權
dc.date.accepted2015-08-12
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
4.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved